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Quantum fields in the de Sitter universe

Summary Field quantization in de Sitter spacetime. Bunch-Davies vacuum.
Time evolution of quantum fluctuations.

7.1 De Sitter universe

We now apply the formalism developed in the previous chapter to study the
behavior of quantum fluctuations in the de Sitter universe. The de Sitter universe
is a particular case of a homogeneous and isotropic universe with a positive
cosmological constant A. Formally this cosmological constant can be thought of
as an “ideal hydrodynamical fluid” with the equation of state

DA = —&x- (7.1)
In this case, the energy-momentum tensor of the perfect fluid becomes
T} = (e + p)utu, — pdl) = £,

and it follows from the conservation law TE‘; o = 0 that &, = const. This is
the energy-momentum tensor corresponding to a cosmological constant. For a
flat isotropic universe, the 0-0 component of the Einstein equations (called the
Fripdmann.arugtiond rgduceads o
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HE<3) =T, (7.2)
a 3

where a(t) is the scale factor and the dot denotes the derivative with respect to
the physical time . This equation has the obvious solution

a(t) = age’’, (7.3)
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86 Quantum fields in the de Sitter universe

which describes a flat de Sitter universe with the time-independent Hubble
parameter
H A= gz(-;—s A
3
In this case it is easy to verify that all curvature invariants are constant and
therefore the metric

ds® = di* — Hyexp (2H,1) 8y dx’dx® (7.4)

(where for convenience we set dg = HXI) describes a static maximally symmetric
spacetime in expanding coordinates. There exist no static coordinates which can
cover the de Sitter spacetime on scales larger that the curvature scale H7!, and
even the expanding coordinates in (7.4) are incomplete. To verify this, let us first
rewrite metric (7.4) in terms of the conformal time

/"0 dt (—H,\1)
=— — = —exp(— ,
n . a(n) p A

instead of the physical time ¢ and the spherical coordinates instead of x'. The
result is

ds® = !

= [dn? —dr? — r* (d6” +sin® 0de?) ], (7.5)
A

where —oco < 11 <0 and 0 < r < oo. Next we change from 7, r to the new
coordinates 7, y which are related to the old ones (in the region where both
overlap) via

SO L B —— (1.6)
cosM—+Ccosy cosn+cosy
Metric (7.5) then takes the form
1
ds = —5——— [di? —dx’ —sin’ X (d6? +sin* 8de”)], (1.7)
Hj sin"m

and describes a closed de Sitter universe which first contracts for —m <N < —m/2,
reaches the minimal radius at ) = —7/2 and then expands so that a — oo as
7 — —0. It is obvious, however, that (7.7) simply corresponds to another coordi-
nate choice for the same de Sitter spacetime. In this sense the de Sitter universe
is a very special case of the Friedmann universe. Generally, the energy density in
the Friedmann universe is time-dependent and the geometry of hypersurfaces of
constant energy density is unambiguously determined; hence the closed and flat
universes are physically distinguishable. In the de Sitter universe, however, the
energy density is time-independent and therefore any hypersurface is a hypersur-
face of constant energy. As a consequence, the flat, closed, and open de Sitter
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universes describe the same spacetime in different coordinate systems. The coor-
dinates in (7.7) span the ranges

—-T<n<0, O0<y<m,

covering the entire de Sitter spacetime. The nontrivial time-radial part of this
spacetime can be graphically represented by a square in Fig. 7.1, called a confor-
mal diagram. Note that each point of the diagram corresponds to a two-dimensional
sphere and the radial null geodesics, determined by equation ds” = 0, are straight
lines at +45° angles.

Using relations (7.6) to draw the hypersurfaces 1 = const and r = const in the
1 — X plane, we find that the coordinates in (7.5) cover only a half of the entire
de Sitter spacetime (see Fig. 7.1). Therefore, these coordinates are incomplete.
In cosmological applications, however, only a relatively small region of the de
Sitter spacetime (shaded in Fig. 7.1) is used to approximate the inflationary epoch
in the history of the universe. Within this region the closed and flat coordinates
are similar and hence the incompleteness of the flat coordinates is not a problem.
On the other hand, the analysis of the behavior of quantum fields is significantly
simplified in these coordinates. Therefore, we shall use the flat coordinates and
ignore their inability to cover events in the distant past which are irrelevant for
physical applications.

Our history

Fig. 7.1 A conformal diagram of de Sitter spacetime. The flat coordinate system
covers only the left upper half of the diagram. Dashed lines are surfaces of
constant 7.
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Remark: horizons  An interesting feature of de Sitter spacetime is the presence of both
particle and event horizons. Given a particular moment of cosmic time, the particle horizon
is the boundary of the spatial region which consists of the points causally connected to
an observer. Let us consider the closed de Sitter universe. Taking into account that the
radial light geodesics are described by

x () = £n+const,
we find that at time 7 only those points which have comoving coordinates
X<x,(M=n+7 (7.8)
are causally connected to an observer at y = 0. The physical size of the particle horizon,
i
H,sing’

dy = a (i) X, () = (7.9)

grows as d,, X —1/9 ocexp(H,t) when 1 — —0.
Any event happening at time 7 at distances

X> X (M) =-17 (7.10)

will never be seen by an observer at y = 0. The sphere with comoving radius X, (%) is
called the event horizon. Its physical size,

d.=a(@x. (M) = Hosini’ (7.11)

approaches the curvature scale Hj' as ) — —0. This limit corresponds to the exponentially
expanding universe: a o exp (H,t). The origin of the event horizon in the de Sitter
universe is rather curious. An observer never catches lightrays emitted at a distance
d > Hy' because the intervening space expands too quickly.

7.2 Quantization

Now we quantize a massive scalar field ¢ (x, 1) with the potential V(¢) = %mch)z
in the de Sitter background. Because the flat de Sitter universe is a particular
case of the flat Friedmann universe, we can use the formulae from the previous
chapter without any alterations by simply substituting for the scale factor

1

—, —o0<m<0.
Hpm

a(n) = —

Introducing the auxiliary field y = a¢ and noting that

1
—. (7.12)
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we find that the mode function satisfies (see (6.21)):

m? 1
Wk -2-—|—= v, =0. 7.13
k l: ( sz\ 7’2 k ( )

The general solution of this equation is given in terms of the Bessel functions
J, (x) and Y, (x):

2
o_m (7.14)

ve(m = VkIn|[Agd, (k[nl)+B.Y, (kInD], n 1T
A

Il

(see Exercise 7.1). The normalization condition Im (vfv}) =1 (see (6.22)) con-
strains the integration constants A, and B; by
imT
AkB;; - Asz = .
k
Exercise 7.1

Assuming that m/H, < 3/2, find a change of variables which reduces (7.13) to the Bessel
equation

d’f  df
2 2 2 —
Sd—sz“f‘S"Eg‘*{‘(S —n)f__O

with the general solution

£(s) = AJ,(5) + BY, (s).

Using the asymptotics of the Bessel functions, determine the behavior of v,(n) for
kin|> 1 and k|n| « 1.

The asymptotic behavior of the solutions can be found directly from equation
(7.13). Given a wavenumber &, let us consider the early time asymptotic k |n| > 1
(which corresponds to large negative 7). In this case the physical wavelength,

H—l
L,~a(mk™ !~ A (7.15)

P k|l
is much smaller than the curvature scale HX‘. Thus we expect that the corre-
sponding mode is not affected by gravity and behaves as in Minkowski space.
For k |n| >> 1 one can neglect the 7~ term compared with k2 in (7.12) and hence
wy ~ k. The two independent solutions of (7.13) are then o exp (+ikmn) and we
can define the minimal excitation (“vacuum”) state for the corresponding modes

by choosing the negative-frequency mode as
1 ikm

V(M) = «—\/_—;(-e . (7.16)
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This determines the vacuum state only to the leading order in lknl_l, that is
with precision which is enough to find the amplitude of the minimal quantum
fluctuations.

As the universe expands, the absolute value |n| decreases, and so for a given
k the value of k|n| eventually becomes smaller than unity. It is clear from
(7.15) that the physical scale of the mode with a given k becomes of order the
curvature scale Hy ' at n =1, when k || ~ 1. We call this time the moment of
(event) horizon crossing and refer to the modes with k|n| > 1 and k|n| K 1 as
the subhorizon and superhorizon modes respectively. The subhorizon modes are
eventually stretched by expansion and start to feel the curvature of the universe.
After horizon crossing, for k|n| <« 1, we can neglect the k2 term in (7.13) and

hence
v 2 m ) 1 v, =0
¢ TR

The general solution of this equation is

v (m) = A In|" + By Inl™ (7.17)

1 9 m?
25Va T H

At late times (7 — 0) the term proportional to B |n|"> dominates.

where

7.2.1 Bunch-Davies vacuum

The superhorizon modes do not oscillate and hence the notion of a particle is not
well-defined for k < |n|~". Moreover, for m? < 2HZ the effective mass squared,

m2\ 1
mge () = — (2— “ﬁg) el
A

is negative and the lowest energy state does not exist for the superhorizon modes.
However, there exists a preferred quantum state called the Bunch—Davies vacuum.
This state is de Sitter invariant and does not change with time. Let us construct
the mode functions for the Bunch-Davies vacuum. Considering a mode with a
given comoving k, we find that in the far remote past (n — —o0), when k |m| > 1,
this mode does not feel the curvature and one can fix the initial conditions by
requiring that

ve(m) = me"“’k” (7.18)
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as 11 — —oo. In other words, we select the minimal excitation state in the remote
past. Assuming that m < %HA and using the results of Exercise 7.1, we find that
the functions

|7 9 m?

ve(n) =/ = [a k) =¥, (kD] n=/-— . (7.19)
2 4 H

have the required asymptotic (7.18). These mode functions determine the Bunch—
Davies vacuum |0gp) in the standard way: |Ogp) is annihilated by all operators
ay_ entering expansion (6.20) with v given in (7.19). To verify that |Ogp) actually
describes a time-independent state, let us find how the amplitude of fluctuations
of the original field ¢ depends on the physical wavenumber kpn = k/a. The
field ¢ is related to the auxiliary field by ¢ = a~'y. Taking into account that
kln| = kth_l, we find (see (6.52))

|
8¢ (kpn) = 77 YR ()]

H ko \ 272 k k 172
“wm) GG o
8w \Hyp Hy Hy
and hence the amplitude of the fluctuations on a given physical scale does not

depend on time. Using the asymptotics of the Bessel functions, one obtains from
(7.20) that

k

o kpn > Hy,
8= om0 () (kph 3 (7.21)
Hy

5—n

In Fig. 7.2 we show the amplitude of quantum fluctuations as a function of
the physical wavelength Ly, = 27/k,. For short-wavelength modes, the Bunch—
Davies spectrum is in agreement with the spectrum of fluctuations in Minkowski
space (see (6.53)). This confirms our naive expectations that the curvature is not
very relevant on subcurvature scales. When m? <« H 2 we have

—m2 2
B oc Ly P (7.22)

for L, > Hxl and the amplitude of the fluctuations decays only weakly with the
scale. In the case of a massless field, this amplitude becomes scale independent
on supercurvature scales.
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Fig. 7.2 The fluctuation amplitude 6¢Lph(n) as function of L, at fixed time 7.

The dashed line shows the amplitude of fluctuations in Minkowski spacetime.
(Logarithmic scaling is used for both axes.)

7.3 Fluctuations in inflationary universe

The de Sitter universe plays an important role in cosmology. It can be used as
a good approximation for the stage of accelerated expansion, known as infla-
tion. The inflationary stage has a finite duration and therefore we need only
a “piece” of the entire de Sitter spacetime to describe it. Let us assume that
inflation begins at time 1 = n; and is over by 7 = 7. Within the time inter-
val m; < m < 7, We approximate the expansion by a flat de Sitter solution. In
this case the quantum state of fields at the beginning of inflation depends on
the previous history of the universe and can be very different from the Bunch-
Davies state. Let us show that regardless of the initial conditions, the spectrum
of fluctuations converges to the Bunch-Davies spectrum as the universe expands.
To simplify the calculations we assume that at n = 7); the subhorizon modes
are in the state of minimal excitation. This means that for the modes with

kln;| > 1,

~ _..1_._ ikn
ve(m) N (7.23)
for m; < m < —1/k (recall that 7 is negative). At 1=, the minimal excitation
state cannot be defined for the modes with k |7;] < 1 and their spectrum is entirely
determined by the unknown preinflationary evolution. Let us see what happens
to a subcurvature mode when it crosses the horizon at time n; ~ —1/k. For
1 > m; the asymptotic solution for v,(n) is given in (7.17) where the first term
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eventually becomes negligible. Ignoring the numerical coefficients of order unity
and matching solutions (7.23) and (7.17) at n, =~ —1/k, we obtain

0 () ~ Jﬁ P (7.24)

for m > 7. Thus, after the beginning of inflation we have

L;hl’ Ly, < Hy',
3
K2 ()] Lw |5 mi -
o, (L s = e HA e , H '—>1L h = H .
4’( ph n) 277'61(7]) HXI A ) Dl
unknown, Lph > HXIE.

(7.25)

The evolution of the spectrum with time is shown in Fig. 7.3. We see that the
perturbations stretched from subhorizon scales build the longwave part of the
Bunch-Davies spectrum. The unknown part of the spectrum is redshifted by the
expansion to very large physical scales

Ly, > H' (m;/m) = Hlexp(Hy (t—1,)).

If inflation continued forever (1 — —0), then an arbitrary initial state would evolve
into the Bunch-Davies vacuum. However, because the duration of inflation is
finite, the Bunch-Davies spectrum is formed only on the scales Ly < HXlnf /.

6¢

H! Lph
Fig. 7.3 The fluctuation spectrum at time n = 7, (solid curve) and at later time
1 = 7, (dashed curve). The wiggly lines in the infrared region of the spectrum

correspond to the scales where the fluctuation amplitude is unknown; this region
moves towards very large scales.
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In realistic models, the Hubble parameter H = a/a changes slightly and
decreases towards the end of inflation. Let us find how this influences the spec-
trum of the generated fluctuations for a massless scalar field. We have found that
in this case the amplitude of the large-scale fluctuations must be scale-independent
or, in other words, the spectrum is flat, if H is strictly constant. It is clear that the
change in H will cause deviations from the flat spectrum. For a massless scalar
field (m = 0) the mode equation takes the form

g ) a//
Uk -+ ke — ; Vg = 0. (726)

The effective mass squared is expressed in terms of the Hubble parameter H as

a//

mgff = - =—d° (2H2 +H) ,

where the dot denotes the derivative with respect to the physical time 7. During
inflation, the Hubble parameter changes insignificantly during a Hubble time H ™!
and hence |H| < H?. Given a mode with a comoving wavenumber k> aH=a,
we find that this mode which had originally a physical wavelength Ly, < H -1
is stretched to the curvature scale at the moment 7, determined by the condition
k ~ a,Hy. Later on, at t > t, its physical wavelength exceeds the curvature scale.
Note that subcurvature scales can be stretched to supercurvature scales only during
inflation when the expansion is accelerating (& grows). In a decelerating universe,
& decreases and the condition k >> aH = & holds at all times if it is satisfied
initially. Thus in a decelerating Friedmann universe the subcurvature modes will
never feel the effects of curvature.

Considering a subcurvature mode with k > a;H;, we find that for t; <t < 1;
the mode function corresponding to the minimal excitation state is

v, & —e" ", 7.27
T (727

At t = 1, this mode leaves the (event) horizon and for t > 1, we can neglect the
k? term in equation (7.26) which then becomes

The general solution of this equation is

d
v, = Aka+Bka/ -;g (7.28)
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One can verify that the first term (proportional to a) becomes dominant at late
times. Therefore, neglecting the second mode in (7.28) and matching solutions
(7.27) and (7.28) at r = 1;, (by order of magnitude), we obtain

1 a(t) Hk
s el O 2
JE a; k372
where a;, and H, are the values of the scale factor and the Hubble parameter

at the moment of horizon crossing determined by the condition k ~ a, H,. The
"“‘“"S‘}')L'C‘u’hﬁﬁ]'\ﬁ ool aruding act 3 fl]"ib“ uIci

v~ (1), (7.29)

k32 t
8¢~ [V ~H, for H' (1) < Ly, < H! (-‘—l—-(~)—> . (7.30)

a (1) a(t;)
Because the Hubble parameter is decreasing during inflation, the value of H, is
larger for those modes which left the horizon earlier. As a result, the amplitude of
fluctuations is slightly higher toward the large scales and the resulting fluctuation
spectrum is red-tilted within the corresponding range of scales (see Fig. 7.4).

These results can be directly applied to derive the spectrum of long-wavelength
gravitational waves produced during inflation. One can show that the quantization
of gravitational waves in an expanding universe can be reduced to the problem
of quantization of a massless scalar field. Therefore the spectrum of gravitational
waves produced in an accelerated universe also deviates from the flat spectrum.
Since the Hubble parameter changes very slowly, the amplitude of fluctuations
depends on the scale only logarithmically. The observed structure of the universe

op

ph

Hi'H;' HY!

Fig. 7.4 The fluctuation spectrum resulting from inflation at three consecutive
moments of time where the Hubble parameter has values H ', H,', H;!. The
spectrum is red-tilted towards large scales in the region L, > H -1
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can be explained by considering the quantum scalar metric perturbations dur-
ing inflation. This is a technically much more involved problem. However, the
physical explanation of the production of the primordial inhomogeneities with a
nearly scale-invariant spectrum is not very different from that presented above.
In the case of matter inhomogeneities the “backreaction” of the gravitational field
potential makes the m? term in (7.22) negative and this adds to the red tilt of the
spectrum of scalar metric perturbations when compared to the spectrum of gravity

waves.!

I For a detailed treatment of the quantum theory of cosmological perturbations, we refer the reader to the book
Physical Foundations of Cosmology by V. Mukhanov (Cambridge University Press, 2005).




