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Quantum fields in expanding universe

Summary Quantization of a scalar field in a Friedmann universe. Bogolyubov
transformations. Choice of the vacuum state. Particle production. Correlation
functions. Amplitude of quantum fluctuations.

Scalar field quantization is tremendously simplified in an isotropic and homoge-
neous expanding universe. Homogeneity and isotropy dictate a preferable choice
of the spacetime foliation and a preferable time parametrization. In this chapter
we will consider a minimally coupled quantum scalar field and study how its state
changes in a homogeneous and isotropic gravitational background.

6.1 Classical scalar field in expanding background

For simplicity, we consider only the case of the spatially flat Friedmann universe.
In the preferred coordinate system where the symmetries of the spacetime are
manifest, the metric takes the form

ds® = di? — a(1)8,.dx'dx*. (6.1)

Note that although the three-dimensional surfaces of constant time are flat, the
spacetime is nevertheless curved. It is convenient to introduce the conformal time
todt
h= [
(1) ()

instead of the physical time ¢. With this new coordinate interval (6.1) is
ds® = a*(n) [dn? — 8pdx'dx] = a* (), dxtdx”, (6.2)

and it is obvious that the metric is conformally equivalent to the Minkowski
metric 7,
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6.1 Classical scalar field in expanding background 65

A real minimally coupled massive scalar field ¢(x) in a curved spacetime is
described by the action

1
S = E/ J—gd*x [g"Bd)’aqb’B - m2¢2] . (6.3)
With the substitution g®? = a=21*# and /=g = a* this action becomes

S = % ] d*xdna*[¢? — (Vp)? —m?a*$*], (6.4)

where the prime ' denotes derivatives with respect to the conformal time 7.
Moreover, introducing the auxiliary field

X =a(n)o, (6.5)
we can rewrite action (6.4) in terms of y as
1 1
S = _/ d’*xdn [X’Z — (V)% — (m2a2 — “—) X2] , (6.6)
2 a

where the total derivative terms were omitted.

Exercise 6.1
Derive (6.6) from (6.4).

Variation of the action (6.6) with respect to y gives the following equation of
motion,

a

X' —Ax+ <m2a2—a—)X20. (6.7)

Comparing (6.7) with (4.7), we find that the field y obeys the same equation of
motion as a massive scalar field in Minkowski spacetime, except that the effective
mass,
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a
mag(n) = m*a® — P (6.8)

becomes time-dependent. This time dependence of the effective mass accounts
for the interaction of the scalar field with the gravitational background.

Thus, the problem of quantization of a scalar field ¢ in a flat Friedmann
universe is reduced to the mathematically equivalent problem of quantization of a
free scalar field y in Minkowski spacetime. All information about the influence of
the gravitational field on ¢ is encapsulated in the time-dependent mass mqg(n).
Note that action (6.6) is explicitly time-dependent, so the energy of the scalar
field x is not conserved. In quantum theory this leads to particle creation; the
energy for new particles is supplied by the classical gravitational field.
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66 Quantum fields in expanding universe

6.1.1 Mode expansion

Expanding the field y in Fourier modes,

d? .
v = [ e (69)

and substituting this expansion into (6.7) we find that the Fourier modes Xx(7)
satisfy a set of decoupled ordinary differential equations

/

.+ oi(Mxx =0, (6.10)

where
1

a
02 () = K2+ mgg(m) = I+ ma® (m) = (6.11)

Because the field x (x, n) is real, i.e. Xt (x,m) = x (&, 1), the complex Fourier
modes xy(n) must satisty the condition

xi () = x-x(0)- (6.12)

Since wi(n) in equation (6.10) depends only on k = |K|, its general solution can
be written as

() = % [apvi(m) +a* )] 6.13)

Here v, (1) and its complex conjugate vi(n) are two linearly independent solutions
of (6.10) which are the same for all Fourier modes with the given magnitude of
the wavevector k = |Kk|, and alf are two complex constants of integration that can
depend also on the direction of vector k. The index —K in the second term and
the factor 1/ /2 are chosen for later convenience. Since y is real, it follows from
(6.12) that ¢y = (ag)"-

Exercise 6.2
Verify that if v, satisfies (6.10), then the Wronskian

W v, vi] = vvg — v v} = 2ilm (V'v° (6.14)

is time-independent. Show that W v, vi] #0 if and only if v, and v are linearly
independent solutions. Verify that the coefficients ai can be expressed in terms of xi (M)
and v, (7n) as:

’ — v, s W , ;
ay = \/iwvl,‘)(k vAX'f = «/iw[vk Xk]; ay =(a)" - (6.15)
VL Up — Ui lk W v, vi

Note that the numerators and denominators in (6.15) are time-independent.

When v(7) is multiplied by a constant, v(n) — Av(n), the Wronskian W [v, v*]
scales as l/\lz. Therefore if W # 0 we can always normalize v; in such a way that




6.2 Quantization 67

Im(vv*) = 1. In this case a complex solution vi(7) is called a mode function.
It follows from the results of Exercise 6.2 that v;(n) and vi(n) are linearly
independent.

Substituting (6.13) into (6.9) we find

1 ’k ,
Yo =25 @%% [axvi(m) +aZy v (m)] ™™

1 d*k ox

= %1 Gon [ax vi(m)e +alka(n)e_ik‘x] , (6.16)

where in the second term the integration variable k was changed from k to —k
to make the integrand a manifestly real expression.

Remark: isotropic mode functions In equation (6.13) we expressed all Fourier modes
Xx(n) with a given |k| =k in terms of the same mode function v,(n). This isotropic
choice of the mode functions is possible because of the isotropy of the Friedmann universe
where w, depends only on k = |k|.

6.2 Quantization

The field x is quantized by imposing the standard equal-time commutation rela-
tions on the field operator ¥ and its canonically conjugate momentum 7 = ¥/,

(X m), 7 (y. m]=i6(x—y); (6.17)
X x.0), X (y. )] =[#7(x,1), 7 (y,1)] = 0. (6.18)
The Hamiltonian for the quantum field Y is
A 1 . . R
Hn) =3 [ @x[#+ 0+ mig(mi] (6.19)

The creation and annihilation operators &f can be introduced via the mode oper-
ators Yy as in Chapter 4. However, a quicker way is to begin directly with the
mode expansion (6.16) considering the constants of integration af as operators

aif. Then the field operator ¥ is expanded as

1 d3k ik-x

X(x, m= 7 PR (™ v (may + e-ik'ka(n)&ﬁ) , (6.20)

where the mode functions v, (7) obey the equations

v + w}%(n)vk =0, oy =y k% + mgff(”l)s (6.21)

and satisfy the normalization condition
!k */
LA ATA

=1. 6.22
2i (622)

Im (v;vf) =
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68 Quantum fields in expanding universe

Substituting (6.20) into (6.17) and taking into account (6.22) we find that the
operators &lf satisfy the commutation relations

[, 4 ]=8(k-K), [a, av]l= (a7, ag] =0, (6.23)
and thus can be interpreted as the creation and annihilation operators.

Exercise 6.3
Verify this last statement.

Remark: complex scalar field If y were a complex field, then in general xi # X_k
and the mode expansion would be written as

A 1 d3k KX * ~_ —ikx 7
xXx,mn= 7—5/ e (ff”k vi(m)ay +e ™ Uk(”fl)bﬁ>’

where the operators a; and lAJf{ are independent. In this case we have two sets of cre-
ation and annihilation operators, & and b, satisfying (&) = &¢ and (b)) = b . The
operators &, and i)lf create the particles and antiparticles respectively. This agrees with
the picture that a complex scalar field describes particles which are different from their
antiparticles. For a real scalar field particles are their own antiparticles.

6.3 Bogolyubov transformations

The operators sz can be used to construct the basis of quantum states in the

Hilbert space. However, the corresponding states acquire an unambiguous physical
interpretation only after the particular mode functions ve(m) are selected. The
normalization condition (6.22) is not enough to completely specify the complex
solutions v,(n) of the second-order differential equation (6.21).

In fact, the functions

(1) = e vp (M) + Brvi (M), (6.24)

where «; and 3; are time-independent complex coefficients, also satisfy equation
(6.21). Moreover, if the coefficients a; and B, obey the condition

la > = 1B =1, (6.25)

then the functions u,(n) satisfy the normalization condition (6.22) and therefore
they can be used as the mode functions instead of v, (1).

Exercise 6.4
Verify that if (6.25) is satisfied then Im(u;u;) = 1.

In terms of the mode functions u;(n) the field operator expansion takes the
following form,
d’k

1 , ~ , N
x(x,m) = :/—?:f W [e’k'xuz(n)b]: +e"k'xuk(n)bf{] , (6.26)

B .
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where l;f is another set of the creation and annihilation operators satisfying the
standard commutation relations (6.23). To determine how the operators blf are
related to &, we note that the two expressions (6.20) and (6.26) for the same
field operator y (x, 1) agree only if

e [HZ(n)iﬂi + uk(n)bfk] = "X [uf(may +v(maty].

Substituting here the expression for u; in terms of v, from (6.24), we find the
following relation between the operators &f and bf :

i = atbg +Bibty, & = b+ Brb,. (6.27)

The above relations are called the Bogolyubov transformation. One can reverse
(6.27) to obtain

by = apay —Beat,. b =atay —Brac,. (6.28)

The Bogolyubov coefficients «; and B; can in turn be expressed in terms of the
mode functions v, (n) and uy (7). From the relations

u (M) = v () + Brvg (M),
ur () = agvp () + By’ (),

we find

W u,, vf
ak=h(—2kl."“k2, B

_w (Vg )

, 6.29
2i (629)

where W is the Wronskian.

6.4 Hilbert space; “a- and b-particles”

Both sets of the operators &f and l;f(t can be used to build orthonormal bases in
the Hilbert space. The two different “vacuum vectors” (a)O) and ‘(b)0> can be
defined in the standard way,

i [@0) =0, by |n0) =0,

for all k. We call them the “g-vacuum” and the “b-vacuum” respectively. Two
sets of excited states,

L > - ﬁ [(a;} ) (&,jz)" . ] l0) (6.30)

and
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70 Quantum fields in expanding universe

describe the “a- and b-particles” respectively. An arbitrary quantum state |) can
be written as a linear combination of the excited states,

Wy = 3 C&) | ym )= D CO | ymi,» Mgs - )

m.,n,... m,n,...

2
. For

and the probability to find m “a-particles” in the mode ki, etc. is ’C,(f,z
the “b-particles” the corresponding probabilities are given by lC,(f,z ‘2

The b-states are in general different from the a-states. In particular, if B; # 0
then the “b-vacuum” contains “a-particles.” To verify this let us calculate the
expectation value of the a-particle number operator Néa) = a; ay in the state
\(b)0>. Using (6.27) we obtain

(00 B 0 = {010] @5 . |0)
= (0] (i +Bibo) (ibic +Bib) w0
= (0] (B7) (Bb™y) l0) = 1B 8P (0). (632)

The divergent factor 8(0) accounts for an infinite spatial volume and hence the
mean density of the a-particles in the mode Kk is

ng = lBkiz .
The total mean density of all particles,
n=[ PKIBl

is finite only if | Bkl2 decays faster than k3 for large k.
The “b-vacuum” can be expressed as a superposition of excited a-particle states
as (see Exercise 6.5)

1 Bi ~in
|)0) = [l—[ 2P (gflzaiafk)} @)

klk

T I /\o—o*{@i_\nl . _\\ (R33)
lkl lak|1/z \nL:B \2011(} ()" ko —k// . 63,

Because of the isotropy the particles come in pairs with opposite momenta k
and —k.

Exercise 6.5
Derive (6.33).



6.5 Choice of the physical vacuum 71

Quantum states defined by an exponential of a quadratic combination of cre-
ation operators acting on the vacuum, as in (6.33), are called squeezed states.
The “b-vacuum” is therefore a squeezed state with respect to the “a-vacuum.”
Similarly, the “a-vacuum” is a squeezed state with respect to the “b-vacuum.”

The “b-vacuum” is normalized by the infinite product [y |a,|. This product
converges only if |a,| tends to unity rapidly enough as k — oo or, more precisely,
if |,Bk| vanishes faster than k=3 for large k. Otherwise, the vacuum state ‘(b)O)
is not expressible as a normalized combination of a-states, and the Bogolyubov
transformation is not well-defined. Note that the same condition guarantees that
the total mean number density is finite.

6.5 Choice of the physical vacuum

It is clear from the above consideration that the particle interpretation of the theory
depends on the choice of the mode functions. We have seen that the a-vacuum
[(Q)O), being a state without a-particles, nevertheless contains b-particles. A natu-
ral question is whether the a- or b-particles correspond to the observable particles.
So far, all mode functions related by linear transformations (6.24) are on the
same footing and our problem here is to determine the preferable set of the mode
functions that describe the “actual” physical vacuum and particles.

6.5.1 The instantaneous lowest-energy state

In Chapter 4 the vacuum was defined as an eigenstate of the Hamiltonian with
the lowest possible energy. This allowed us to choose the preferable set of mode
functions and thus to unambiguously determine the physical vacuum. However,
in the case under consideration the Hamiltonian (6.19) depends explicitly on time
and thus does not possess time-independent eigenvectors that could serve as a
vacuum. Nevertheless, given a particular moment of time 7, we can still define
the instantaneous vacuum /n ) as the lowest-energy state of the Hamiltonian

H (10)-
To find a set of mode functions that determine

2,0, we first compute the
expectation value <(U)O] H (m0) ‘(U)O) for the “vacuum” state I(U)O) determined by
arbitrarily chosen mode functions v, (7). Then we shall minimize this expectation
value with respect to v, (). (A standard result of the linear algebra is that the
minimization of (x]A |x) with respect to normalized vectors |x) is equivalent
to finding the eigenvector |x) of the operator A with the smallest eigenvalue.)
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Taking into account that 7 = %’ and substituting the mode expansion (6.20) into
(6.19) we find:

H(n) = % f d°k [a;a:kF,j tatat Fot (221;&; +60 (0)) Ek] . (639)
where

Ey () = | "+ 0f () v, (6.35)

Fy (1) = o + @R (g (6.36)

Exercise 6.6
Derive (6.34).

Since ay ](v)0> = 0, the expectation value of H (np) in the state ‘(v)0> is

(O] H (10) |(1)0) = %5(3)(0) / PKE; (M) -

As discussed above, the divergent factor 83)(0) is a harmless manifestation of
the infinite total volume of space. The energy density is then

o) =+ [ @k (o) = ¢ [ @ ([ (o) + 00 (). (637)

and our task is to determine which mode functions v, () minimize £ (o). It
is clear that for each mode k its contribution to the energy must be minimized
separately. Thus, for a given k we have to determine vy (7g) and v; () which
minimize the expression

, 2
Ei(ng) = ‘Uk (770)‘ + wi("lo) |vg (770)|2 (6.38)
while obeying the normalization condition (6.22),
v} (10) % (1) — e (o) Vi (mo) =21 (6.39)

Substituting
v = 1 exp (i)
into (6.39), we infer that the real functions ry and a; obey
ria=1. (6.40)
With this relation we find that

2
Eq (o) = |vi|* + @f [

1
2,20, 22 R 2.2
=’ + oy +ogrg =7 +p+wkrk (6.41)
k

B
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is minimized when 7, (1) =0 and r; (1) = a)k_l/ 2 (ng). We thus find that the
initial conditions

1 . )
v EE——— T =iJo (M) — gy , (6.42
k (o) m (o) (M) ke(m0)s ( )

select the preferred mode functions which determine the vacuum (the lowest-
energy state) at a particular moment of time 7. Although the phase factors a; (1)
remain undetermined, they are irrelevant and we can set them to zero. Note that
the above considerations are valid only if wi > (. For w%(no) < 0 the function
E; has no minimum. In this case the instantaneous lowest-energy vacuum does
not exist.

Remark: Hamiltonian diagonalization The mode functions satisfying the conditions
(6.42) define a certain set of operators a; and the corresponding vacuum [%0). For these
mode functions one finds E, (1) = 2w, (1,) and F, (1,) =0, so the Hamiltonian at time

Mo 18
N 1
) = [ ko) ajay + 5570 (6.43)

At 1 = n, this Hamiltonian is diagonal in the eigenbasis of the occupation number
operators N, = a; &, which consists of the vacuum state | 2,0 and the corresponding
excited states. Accordingly, the state |n0 0) is sometimes called the vacuum of instantaneous
Hamiltonian diagonalization. The vacuum states at two different moments of time are
related by Bogolyubov coefficients «, and B,, so particles are produced if 8, # 0.

Remark: zero-point energy As before, the zero-point energy density of the quantum
field in the vacuum state |m]0> is divergent,

1 1
Z/d3kEk(nO) = E/ d3kwk(770)-

This quantity is time-dependent and cannot be simply subtracted. A more sophisticated
renormalization procedure (developed in Part II of this book) is needed to obtain the
correct value of the energy density.

For a scalar field in Minkowski spacetime, w, is time-independent and the
prescription (6.42) yields the standard mode functions (4.31), which determine
the time-independent vacuum state. But if w, changes with time then the mode
functions satisfying (6.42) at 7 = g will generally differ from the mode functions
that satisfy the same conditions at a different time 7; # 7,. In other words, the
vacua |, 0) and |, O} are different and the state |, 0) is not the lowest-energy
state at a later moment of time 7,. In this case there are no states which remain
eigenstates of the Hamiltonian at all times. This can be easily seen from (6.34).
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A vacuum state could remain an eigenstate of the Hamiltonian only if £}, =0 for
all n, i.e.

Fe(n) = (vﬁc)2 + w2 (v =0.

This differential equation has the exact solutions,

v () = Cexp| i [ we(mdn).

which do not satisfy the mode function equation (6.21) if w, (n) depends on time.
The operators & (1) and aif (my) defining the instantaneous vacuum states
|5,0) and |,,,0) at two different moments of time are related by a Bogolyubov

A~

transformation. The expectation value of the Hamiltonian H (m,) in the vacuum
state lm)O) is

(w01 A1) 1, 0) = 0 [ @) [ g 00+ 3370

= 5(0) [ @kopn) [3+1BiF].

where B, is the corresponding Bogolyubov coefficient. Unless B, =0 for all k,
this energy is larger than the minimum possible value and hence the state ‘m)0>
contains particles at time 7.

Remark: minimal fluctuations The value of the mode function v, (1) can be chosen
to be arbitrarily small without violating the normalization condition (6.22). However, in
this case v/ (1) must be very large. This is the consequence of the Heisenberg uncertainty
relation. In this case v, would acquire large values within a short time, leading to large
field fluctuations. In the lowest-energy state both v, (1) and v, (n,) are optimized so
that the generation of large fluctuations within a short time is avoided. In this sense the
vacuum state is the state with the minimal quantum fluctuations.

6.5.2 Ambiguity of the vacuum state

Minimization of the instantaneous energy is not the only possible way to define the
“yacuum state” and there is no unique “best” physical prescription for choosing
the vacuum state of a field in a general curved spacetime. The physical reason
for this ambiguity is easy to understand. The usual definitions of the vacuum
and particle states in Minkowski spacetime are based on a decomposition of
fields into plane waves exp (ikx —iw;?). A localized particle with momentum
k is described by a wavepacket with a momentum spread Ak and the particle
momentum is well-defined only if Ak < k. The spatial size A of the wavepacket is
inversely proportional to Ak, so that A ~ 1/Ak, and therefore A >> 1/k. However,
when the geometry of a curved spacetime varies significantly across a region
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of size A, the plane waves are not a good approximation to the solution of the
wave equation and the usual definition of a particle with momentum k fails. This
definition is meaningful only if the curvature scale (the distance below which
the spacetime can be well approximated by Minkowski space) exceeds k~!. Note
that the relevant quantity is the four-dimensional curvature. Therefore, even in a
spatially flat Friedmann universe the vacuum and particle states are not always
well-defined for some modes. For example, those modes of the scalar field for
which the squared frequency,

a//
wi(n) =k +m*a’ — P

is negative, do not oscillate and for them the analogy with a harmonic oscillator
breaks down. Formally, even for a)i < 0 mode expansions still make sense,
but the interpretation of the corresponding states in Hilbert space in terms of
physical particles is problematic. In particular, the “excited” states can have
negative energy. Moreover, an eigenstate with the lowest instantaneous energy
does not exist for such modes: For wi < 0 the condition F; (1) = 0 contradicts
the normalization condition (6.22) and hence the lowest energy eigenstate cannot
be defined.

Further complications arise in curved spacetimes without symmetries. We shall
see in Chapter 8 that an accelerated detector in a flat spacetime registers particles
even when the field is in the true Minkowski vacuum state. Thus the definition
of particles depends in general on the coordinate system which is preferred “from
the point of view” of a detector. In a curved spacetime there is no a priori
preferable coordinate system. Moreover, in the presence of gravity the energy is
not necessarily bounded from below and the definition of the “true” vacuum state
as the lowest energy state can therefore also fail.

Remark: short distances We have seen that the minimal energy state does not exist
for modes with w? < 0. However, because w; = k* + mZ;(7), modes with large enough
k, namely,

”

sk o=—ml = —mia?, (6.44)
a

min

have positive @? > 0 even if m?; < 0, and therefore the lowest-energy state is well-defined
for these modes. In cosmological applications, a negative m2; can arise because of the
field interaction with the gravitational background. In such cases a natural length scale is
the radius of curvature and f is negative only for modes exceeding the curvature scale.
On much shorter scales, the spacetime can be treated as approximately flat. Therefore
the field modes with wavelengths much smaller than the curvature radius are almost

SRR
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76 Quantum fields in expanding universe

unaffected by gravitation. On very small scales, corresponding to large k, we can neglect
|ms| < k and set w, ~ k. Then the mode functions are those given in (4.31),

1 .
v(n) ~ —=e*". (6.45)
k \/E
This leads to a natural definition of the minimal excitation state, which is unambiguous
in the leading order and adequate only on small scales, L <& Ly ~ koo ™ |meff|‘l.

Remark: adiabatic vacuum  As we have noted above, the notion of the particle in
an arbitrary curved spacetime does not have an absolute meaning. Instead one has to
consider the detector response which can be unambiguously determined for a given
quantum state of the fields. Nevertheless sometimes it is useful to have “an approximate
particle definition” which suits our intuition in the best possible way. In spacetimes with
slowly changing geometry, the so-called adiabatic vacuum leads sometimes to a more
meaningful notion of particles compared to the instantaneous vacuum prescription. In
particular, in anisotropic universes a procedure based on the adiabatic vacuum allows one
to separate the non-local contribution to the energy-momentum tensor resulting from the
“particle production” from the local vacuum polarization effects in a more meaningful
manner.

The adiabatic vacuum prescription relies on the WKB approximation for the solution
of equation (6.21) in the case of slowly varying w?(7). Substituting the ansatz

To

1 "
i == e i wiman| (6.46)

into (6.21) we find that the function W, (7) must obey the nonlinear equation

1 ’ 2
szzwi—l[&——é(&> } (6.47)
21 W, 2\W
Let us consider the case when w, is a slowly varying function of time. More precisely,
we assume that w, and all its derivatives change substantially, i.e. Aw,/w, ~ O (1), only
during time intervals 7 > 1/w,. In this case, equation (6.47) can be used as a recurrence
relation which allows us to find a particular solution for W, in the form of the asymptotic

series in the powers of small parameter (wkT)fl. For example, to zeroth order in (@, T )
we have

OW, = w,,

" 72
W, = w, (1—%ﬁ’i+§3’&).

3 q
w;, 8w

while to second order

In principle one could find MW, to an arbitrary order N. However the series obtained
is asymptotic, and so the accuracy of the approximation reaches an optimum value at a
particular N and subsequently becomes worse as N grows. Substituting MW, in (6.46)
we obtain an approximate WKB solution v,((N)(n) of the mode equation (6.21) to adiabatic
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order N. Then the mode functions v,(n) determining the adiabatic vacuum of order N
at a particular time 7, are defined by the requirement that the exact solution v, (1) of
equation (6.21) satisfies the following initial conditions,

ve(m0) = v (m0), V(1) = v (1)

All vacuum prescriptions agree if w;(n) is exactly constant. In particular, in the
case when w;(n) tends to a constant both in the remote past (n < 1) and in
the future (7 >> 7,) one can unambiguously define “in”” and “out” particle states
in the past and future respectively. If the frequency w;(n) is time-dependent
within some interval 7, < 1 < 7, then the positive-frequency solution for 17 <« 7,
evolves to a mixture of positive and negative frequency solutions for 3> 7,. As a
consequence, particles are produced and the number density of these particles can
be unambiguously determined in the “out” region 71 3> 77,. On the other hand, the
notion of the particle is ambiguous in the intermediate regime, 1, < 1 < 7,, when
w; is time-dependent. The reason is that in this case the vacuum fluctuations are
not only “excited” but also “deformed” by the external field. This latter effect is
called the vacuum polarization. There is no unique way to separate the “particles”
and the vacuum polarization contributions in the total energy-momentum tensor.
However, this does not lead to ambiguities in physical predictions because only
the total energy-momentum tensor is relevant as the source of the gravitational
field. The response of a specific particle detector can also be unambiguously
determined given a quantum state of the field.

Thus, the absence of a generally valid definition of the vacuum and particle
states does not impair our ability to make predictions for specific observable
quantities in a curved spacetime. All well-posed physical questions can always
be unambiguously answered even in the absence of such a definition.

Remark: a quantum-mechanical analogy Note that the stationary Schrédinger equa-
tion for a particle in a one-dimensional potential V(x),

2

BV =0,
dx

coincides with the mode equation (6.21) after we replace the spatial coordinate x by the
time 1 and substitute w?(7n) for E — V(x). The wave function s then “plays the role” of
the mode function v,. This allows us to draw a formal mathematical analogy between
the problem of particle creation and the problem of a quantum-mechanical penetration
through a potential barrier. Considering a plane wave with an amplitude « falling onto
the potential barrier from the right (see Fig. 6.1) we find that the incident wave “splits”
into reflected and transmitted waves. Normalizing the amplitude of the transmitted wave
to unity (7 = 1) we obtain from the conservation of probability that |a|* = |B|°+ 1, the
condition analogous to (6.25). The transmitted wave in this consideration corresponds
to the initial vacuum fluctuations in the problem of particle creation, while the reflected
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Vix)
incoming(a)
e
T=1 outgoing(3)
- e
X3 X X

Fig. 6.1 Quantum-mechanical analogy: motion in a potential V(x).

wave “describes the produced particles.” We would like to stress once more that this
analogy is entirely formal and is useful only to those who have a solid intuition for the
corresponding quantum-mechanical problem.

6.6 Amplitude of quantum fluctuations

Correlation function Given a quantum state of the field [¢), the amplitude of
quantum fluctuations is always well-defined irrespective of whether the particle
interpretation of the field is available. Let us consider the equal-time correlation
function (| ¥ (x, ) ¥ (¥, m) |¢). For a “vacuum state” |0) determined by a set
of mode functions v, (7)), we obtain

i o0 sinkL
Oy (x. Mx(y.m0)=-— | Kkdk 2 : 6.48
O x Xm0 = 5 [ Kkl = (6:48)

where L =[x —y|.

Exercise 6.7
Derive (6.48) using the mode expansion (6.20).

Generically the main contribution to the integral in (6.48) comes from
wavenumbers k ~ L~!, and therefore the magnitude of the correlation function
can be estimated as

O & (. m) ¥ (3, M 0) ~ &2 v, ], (6.49)

with.k,o~ IZ! Nate_that.in.the _Friedmann_universe the comoving_coordinate
distance L = |x —y]| is related to the physical distance L, as L, = a(n)L, where
a(m) is the scale factor. The field y is related to the original, physical field ¢ by
¢ = x/a(n).
Fluctuations of spatially averaged fields One can consider a field operator
averaged over a region of size L (e.g. a cube with sides L x L x L),

R 1 R
) =13 X (x,m) d°x,
LxLxL
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and calculate
Sxi(m) = WM ¥).

This is another way to characterize the typical fluctuations on scales L. Sometimes
instead of integrating over the box with the sharp boundaries it is more convenient
to define the window-averaged operator

fum = [k x Wi,

where W, (x) is a window function W(x) which is of order 1 for |x| < L and
rapidly decays for |x| >> L. This function must satisfy the normalization condition

/ Wx)dPx = 1. (6.50)

The prototypical example of a window function is the Gaussian function

_ 1 [xI°
WL (X) - (277)3/2L3 exp _'2_L—2_

which selects [x] < L. In the general case it is rather natural to select a window
function with the following scaling properties:

L3 L
WLI(X) = "l‘:/“j'WL PX .
In this case
/ W, (x)e " ®*Px = w(kL),

and the Fourier image w (kL) satisfies w|,_, = 1 and decays rapidly for [k| > L~!.
Given the mode expansion (6.20) for the field operator j (x, 1), after straight-
forward algebra we find

, d’k
@2m)*

2
Sxi =0l [ [ @xwox e m] 10) =5 [ P hw ki)

Since the function w (kL) is of order unity for |k| < L~! and quickly decays for
|k| > L~!, one can estimate the above integral as

d’k L 1 -
Gy ~f0 @ o die~ 5 ol ke~ L7

Thus the amplitude of fluctuations dy; is of order

[ ol (kL)

Sxi ~ K ul?, 6.51)

where k ~ LL.
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Comparing (6.49) and (6.51), we see that the correlation function and the mean
square fluctuation both have the same order of magnitude and both characterize
the typical amplitude of quantum fluctuations on scales L. Therefore we refer to

8 (k) = 2%19/2 lve] (6.52)

as the spectrum of quantum fluctuations.

6.6.1 Comparing fluctuations in the vacuum and excited states

Intuitively one may expect that the fluctuations in an excited state are larger than
those in the vacuum state. To demonstrate this, let us compare the fluctuations
of a scalar field for the vacuum and excited states in Minkowski spacetime.
The spectrum of the vacuum fluctuations in Minkowski spacetime was already

calculated in Chapter 4, equation (4.34), and the result is

I S U

5. )= ———="——""""T73" 6.53
vac (K) 2w Jwop 27 (k2+m2)1/4 (6.53)

This time-independent spectrum is sketched in Fig. 6.2. When measured with a
high-resolution device (small L or large k), the field shows large fluctuations.
On the other hand, if the field is averaged over a large volume (L — o0), the
amplitude of fluctuations tends to zero.

Fig. 6.2 A sketch of the spectrum of fluctuations 8y, in Minkowski space;
L = 2mk~". (The logarithmic scaling is used for both axes.)
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Let us consider the (nonvacuum) state |b) annihilated by all operators i)l:
defined via the field operator expansion

& _1_ ik-x *B— + —ik-x B-I' &’k
X — ﬁ e Uk k e Uk k (277_)3/29
where
1 . )
v = —— (@ M4 Bre k) (6.54)
= )
Substituting (6.54) in (6.52), we find the spectrum of fluctuations in the state |b) :
1 k32 . 1/2
8 (k) = 5——— [lou* + Bl — 2Re (™M) . (659)

27 Jwy
Thus for the ratio of the amplitudes we obtain

2

& 4
gz_b.. = 1+2|B]* — 2Re (e B ¥ “) . (6.56)

vac

After averaging over a sufficiently long time interval, An > w,:l, the oscillat-
ing term Re (a;Be*“*m) vanishes and the result in (6.56) simply reduces to

1428,1%

6.7 An example of particle production

For illustrative purposes we now perform explicit calculations for a rather artificial
but simple case when the effective mass of the scalar field changes as follows,

2 .
mg, n <0 and > 7;
mgff(n) =1 >

(6.57)
—-mg, O0<mn<m.

In the regions n < 0 and 7 > 7; the vacuum states are well-defined; they are
called the “in” vacuum |0;,) and the “out” vacuum |0, ) respectively. We assume
that initially (for n < 0) the scalar field is the “in” vacuum state and compute
(a) the mean particle number, (b) the mean energy of produced particles, and (c)
the spectrum of quantum fluctuations for i > 7,.

Mode functions The “in” and “out” vacuum states are entirely determined
by specifying the negative frequency mode functions, which are

in 1 iw
for n <0 and
1 .
UIEOUt)(n) — = em—mey (6.59)

T TR
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for 7 > 7, where @ = /K24 m}.

Since wi(n) =k*+ mgﬁ»(n) changes at 7 =0 and n =7, the mode functions

vgn)(n) evolve into superposition of the negative and positive frequencies for
n>m:

U]((‘“)(n) = —= [aielwk(n—m) _i_Bie"wk(n_nl)]‘ (6.60)
@k

The Bogolyubov coefficients oy, B, are determined by the requirement that the

solution and its first derivative must be continuous at n = 0 and 1 = 7;. The
result is

2 2
e~ w QO iem QO
= [y [ZR) S Ok _ [Zk)
4 Qk Wy 4 Qk Wy
L% o (aaem  —iem) — L (2 _ @)
— | =x K i{); _ . — | ==K Q ,
pum (S (e o) =5 (G- )o@

where w, = /k?+m} and Q, = /K2 —m}.

Exercise 6.8
Derive the above expressions for the Bogolyubov coefficients.

Particle number density For 1> 7, the state |0,,) is different from the true
vacuum state |0,,) and so the state |0,,) contains particles. The mean particle

sin (m,/k2 - m%)

Note that this expression remains finite as k — myg. Let us consider separately
two limiting cases: k >> mg (ultrarelativistic particles) and k < mg (nonrelativistic
particles).

For k >> mq, we have o, ~ and assuming that mgm; is not too large one
can expand (6.61) in powers of the small parameter (mg/k). After some algebra

number density in a mode K is

4 2
My

ne = |Bel* = ] (6.61)

we obtain
mg .2 m(s)
n, = F sSin (kT]l) + o —k—s— . (662)

It follows that n, < 1 or, in other words, very few relativistic particles are created.

The situation is different for k < my. In this case ,/ k* — m(z) /2 imy is imaginary
and we obtain

np ~ Sinh2 (monl) . (663)

L ——

b
VR
K it
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If mgm; > 1, the density of the produced particles is exponentially large.
Particle energy density Since n;, ~ k=* for k — oo, the energy density of
the produced particles,

€0 = / nw dk, (6.64)

logarithmically diverges for large k (ultraviolet limit). This divergence is, how-
ever, entirely due to the discontinuous change of mgff(n) and it disappears for
any smooth function mgff(n). Therefore, we ignore this divergence and assume
that there is an ultraviolet cutoff at some k.. Then for mymn; >> 1, the main con-
tribution to the integral comes from the modes with k < m, for which @ | ~ m,.
Using (6.63) we can estimate the energy density of the produced particles as

mo
£ ™ mofo dk k* exp (2mgm;) ~ mg exp (2mon,) .

Exercise 6.9*

Assuming that the integral in (6.64) is performed over the range 0 < k < k,,,, show that
for mym; > 1 the dominant contribution to the integral comes from k ~ ,/m,/7n, and
derive a more precise estimate for g:

2 exp (2mon,) -

X 0
(mmy)™"?
Amplitude of fluctuations Neglecting the oscillating term in (6.55) we imme-

diately obtain the following estimate for the amplitude of quantum fluctuations at

N>

/

Fig. 6.3 A sketch of the spectrum Sy, after particle creation; L = 27k, (The
logarithmic scaling is used for both axes.) The dotted line is the spectrum in
Minkowski space.
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3/2

k 1/2 k, k ;
6~ —— (1+2|:Bkl2) ~ 3/2 —>1>/2m0
N KB2my " exp (momy), k<L mg.

Thus, we see that on large scales the amplitude of fluctuations is enhanced by
the factor exp (mgn,) compared to the amplitude of the vacuum fluctuations (see

Fig. 6.3).



