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Reminder: classical fields

Summary Action functional in general. Minimal and conformal coupling of
scalar field to gravity. Internal symmetries and gauge fields. Gravitational field.
The energy-momentum {ensor. Conservation laws.

5.1 The action functional

In this book we mainly consider a quantum scalar field interacting with the

classical gravitational or electromagnetic fields. To determine the admissible form

of their couplings we have to recall the basic principles of classical field theory.
A theory of a classical field ¢; (x) is based on the action

S[d] = f dx (b 3,00 --) (5.1)

where i is an “internal index,” d,¢; = d¢;/dxt, and the Lagrangian density £
depends on the field strength and its derivatives. The variable ¢; can designate
a real or complex scalar field, a vector field, or a tensor field. For instance,
in the case of the gravitational field ¢; = Zap(xY), where g,p is the metric.
Consideration of fermionic fields is beyond the scope of this book.

Choosing the action functional The action functional is usually chosen in
accordance with the following guiding principles:

(i) The action must be real-valued because otherwise the total probability is not con-
served in the corresponding quantum theory.

(ii) Local theories have so far been successful in describing experiments and therefore
the action is usually taken as a local functional of the fields and their derivatives. The
Lagrangian density £ is then a function of the fields and their derivatives. Otherwise,
as for example in the case

/ d*xd*x ¢ (x — 1) (X)),
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5.1 The action functional 55

the Lagrangian density is also a functional and the values of the field at separated
points x and x” are “coupled.”

(iii) Usually it is sufficient to specify the initial conditions for the field itself and at most
for its first derivatives in order to unambiguously predict the subsequent evolution
of the field. This means that the equations of motion contain derivatives of at most
second order and hence we can restrict ourselves to actions which depend only on
the field strength and its first derivatives, that is, £ = £ (¢;, ¢;, M).

(iv) In the absence of gravity, the action must be Poincaré-invariant in order to respect
the translational and Lorentz invariance of the flat spacetime. This requirement
strongly constrains possible Lagrangians. In particular, the Lagrangian density £
cannot depend explicitly on x or ¢.

(v) In an arbitrary curved spacetime, the action must be invariant with respect to general
coordinate transformations since physical properties of the system are independent
of the coordinate system used (“geometrical character” of nature).

(vi) The conservation of different charges is usually related to the existence of some
internal symmetries, among which gauge symmetry is of particular importance. In
such cases the action must respect these symmetries. For example, the Lagrangian
describing an electrically charged complex scalar field must be invariant with respect
to U(1) local gauge transformations because otherwise the electric charge would not
be conserved. The Standard Model of particle physics is based on SU(3) x SU(2) x
U(1) group of local gauge transformations.

As we will see shortly, the above requirements usually suffice to fix the coupling
of the different fields almost unambiguously.

Equations of motion The requirement that the action takes an extremum value
for a classically allowed field configuration ¢;(x) leads to the Euler-Lagrange
equations of motion,
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For a Lagrangian density £ =0 (q’),-, on ,u), the variation of the action is

aL da aL
55 = [ d's (53,- - d)i’#) 8¢:(x)+0 ([841%).

and so the equations of motion are

8S[¢] _ oL 9 oL _ (5.2)

8, (x)  dp; oxr 0P; B
Here summation over u is implied and we have assumed that the boundary terms
vanish sufficiently rapidly as x| — oo, || — .
The formula (5.2) holds for all Lagrangians that depend on the field strength and
at most on its first derivatives. If the Lagrangian contains second-order derivatives
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56 Reminder: classical fields

such as ¢ . the corresponding equations of motion are generally of third or
fourth order.

5.2 Real scalar field and its coupling to the gravity

The simplest relativistically invariant Lagrangian density for a real scalar field
¢(x) in a flat spacetime takes the form
1
L (d)’ aﬂd)) )
where n** = diag(1, —1, —1, —1) is the Minkowski metric and V(¢) is a potential
that describes the self-interaction of the field. For a free (i.c. noninteracting) field
of mass m the potential is

77’”¢,,L¢,v - V((;b)’ (53)

V(@) = 5

Note that a linear term A¢ in the potential can be always removed by a field
redefinition ¢(x) = H(x) + do-

To generalize the Lagrangian (5.3) to the case of a curved spacetime with an
arbitrary metric g,,, W€ have to:

(i) replace 1, with the metric g,,,5
(ii) replace ordinary derivatives by covariant derivatives (note that the first covariant
derivative of a scalar function coincides with the ordinary derivative);
(iii) use the covariant volume element d*x./—g, where g =detg,,, instead of the usual
volume element d*x dt.

The resulting action,
4 1 uy
s= [ d'xy=g| 58" ubs V()| (5:4)

explicitly depends on g, and describes a scalar field minimally coupled to
the gravity. This coupling necessarily follows from the requirement of general
covariance.

Remark: covariant volume element To understand the appearance of the factor \/I—g_l
in the volume element, let us consider a two-dimensional Euclidean plane covered by
curvilinear coordinates ¥, . In these coordinates, the metric g,-j(ic), where i, j=1,2, is
generally different from the Euclidean metric ;. Infinitesimal coordinate increments dX,
dy define an area element corresponding to the infinitesimal parallelogram spanned by
the vectors 1, = (dX, 0) and 1, = (0, dy). The length of the vector I, is given by

L= Y, gijlilljll = «/gndi-
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Similarly, we find |I,| = ,/g,,dy. The scalar product of the vectors 1, and 1, is
L= gijlilé = g, dxdy.

On the other hand, one can express the scalar product 1, -1, through the angle 6 between
the vectors (according to the cosine theorem),

1,-L, = || || cos 8 = /g ,8,d%dY cos b.
Comparing the two expressions for 1, -1,, we find that

812

\/811822’

and the infinitesimal area dA of the parallelogram is

dA =L |L|sin 6 =/ g,,8», — (81,)’dXdy = et g ;d%d5.

In n dimensions this formula is generalized to dV = d"x./|g(x)|. In a four-dimensional
spacetime where the metric has the signature (+, —, —, —), the determinant g is always
negative and hence the volume element is d*x./—g.

cosf =

Nonminimal and conformal couplings The action can in principle contain
additional terms which directly couple the fields to the curvature tensor R, .
Such couplings to the gravity are called nonminimal and they violate the strong
equivalence principle, which states that all local effects of gravity must disappear
in the local inertial frame. However, curvature does not vanish in a local inertial
frame and hence influences the behavior of fields in theories with nonminimal
coupling. However, the only criterion for the legitimacy of a theory is agreement
with experiment. Theories violating the strong equivalence principle are allowed
as long as they agree with available experiments.

The simplest action for a nonminimally coupled scalar field is

1 3
S= / d4x\/__g [zgﬂvd),p(b,v - V(¢) - -2~Rd)2i| » (55)
where R is the Ricci curvature scalar and £ is a constant parameter. The additional
term induces a “mass” correction which is proportional to the scalar curvature.

With V =0 and & = 1/6, this theory has an additional symmetry, namely, the
action (5.5) is invariant under conformal transformations,

= — 02
g,l.w - gy,v — Q (x)gp,w (56)
where the conformal factor Q%(x) is an arbitrary function.!
! Verifying the conformal invariance of the above action takes a fair amount of algebra. We omit the details of

this calculation which can be found in Chapter 6 of the book by S. Fulling, Aspects of Quantum Field Theory
in Curved Space-Time (Cambridge, 1989).
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As we will see later, the energy-momentum tensor of a conformally invariant
field is traceless in the classical theory. Conformal invariance has also another
important aspect: In conformally flat spacetimes, where the metric can be written
down as g, = Q2 (x) Ny the influence of the gravitational field on the behavior
of the conformally invariant quantum field is greatly simplified. An important
example of a conformally flat spacetime is the Friedmann universe.

The equation of motion for the real scalar field ¢ coupled to the gravity follows
from the action (3.5),

0L AL o v
gy ey I ) — +éRP ) J=g=0. (5.7
For the minimally coupled scalar field we have & = 0.
Equation (5.7) can also be rewritten in a manifestly covariant form

LV _
Gt g5 T ERD =0, (5.8)

where ; a denotes the covariant derivative with respect to the coordinate x“.

5.3 Gauge invariance and coupling to the electromagnetic field

A real scalar field is electrically neutral and does not couple to the electromagnetic
field. The conservation of the electric charge is related to the existence of internal
symmetry associated with U (1) gauge transformations. These transformations are
implemented as multiplication of the field by exp (i), where « is an arbitrary
real constant. Therefore they cannot be realized for the real scalar field and the
electrically charged scalar field is necessarily described by the complex variable
@, or equivalently, by two real scalar fields.
The action

1
S161= [ a7 3600 -V os)| 59
is clearly invariant with respect to the global gauge transformation

e(x) = p(x) = o (x), (5.10)

where « is a real constant, i.e. « is the same number for all points in the spacetime.
This explains why transformation (5.10) is called global.

The minimal coupling of the charged scalar field with the electromagnetic field
is unambiguously determined by the requirement of the local gauge invariance.
Generalizing (5.10) to a local gauge transformation,

¢(x) = p(x) = e Wo(x), (5.11)
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where a(x) an arbitrary function of the spacetime coordinates, we find that

0 ()= &,(x0) =Yg, +ia ,0).

Hence, action (5.9) is not invariant under local gauge transformations. To regain
its local gauge invariance we are forced to introduce an additional vector field A,
called the gauge field, which compensates the extra term in the derivative ¢ e
(In the present case the field A, is interpreted as the electromagnetic field.) Then,

replacing the ordinary derivatives d,, by the gauge covariant derivatives D,
o= Dyp=0,+iA,e, (5.12)

and postulating for the field A* the transformation law

A, — A=A, —a,, (5.13)
we find
D#{D = ((9“ + iAM) (eia(x)go) = eia(x)DMgo.
It follows that the action
1
S =/ d*x/=g [Eg"ﬁ (Do9) (Do) —V (sw*)] (5.14)
4 1 af * *
=f d'x/=8| 587009~V (0¢7)
1 af . * * 1 af *
+t587iA, (‘PSD,B —¢ 90,3) +58  AaApee (5.15)

is invariant under local gauge transformations (5.11)—(5.13). This action describes
the minimal coupling of the charged scalar field to the electromagnetic field and
to gravity. In the following chapters we consider the behavior of a quantum scalar
field in the presence of the classical gravitational and electromagnetic fields.

5.4 Action for the gravitational and gauge fields

In the second part of the book we will need the action for the classical gravita-
tional and electromagnetic fields themselves. The simplest possible action for the
gravitational field is the Einstein—Hilbert action:

1

———— | d*x/=g(R+2A), 5.16
167TG./ */=g(R+2A) (5.16)

where G is Newton’s gravitational constant, R is the Ricci scalar curvature and

A is a constant parameter (the cosmological constant). The Einstein equations are
obtained by extremizing this action with respect to g®P.

Sgrav _
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Exercise 5.1
Derive the Einstein equations in the absence of matter and cosmological constant using
the Palatini method: assume that the metric g,, and the Christoffel symbol Ff:B are
independent and vary the action with respect to both of them.

Hint: The expression for the Ricci tensor in terms of g,, and FL‘B is

R=g™®R, 5= g% (3,T% — 35T, + Thgl, — T, T3,) (5.17)

First find the variation of R./=g with respect to I" and assuming that Fﬁﬁ is symmetric
in a,B establish the standard relation between I' and g,

1
Fgﬁ = Eglw (gav,ﬁ +gﬁv,a - gaB,V) . (518)

Then compute the variation of R,/=g with respect to g*? and obtain the vacuum Einstein

equation
ssE /=g 1
0 T8 (R,—-g,R)=0. 5.19

SgP 167TG< ap — 88 > (5:19)

Remark: higher-derivative gravity The Einstein equations are the only possible
second-order covariant equations for the gravitational field. Any modification of the
Einstein—Hilbert action in four dimensions leads to a higher-derivative gravity. At present,
the Einstein theory is in a very good agreement with experiments. However, it is likely
that this theory breaks down in regions with an extremely strong gravitational field,
where the curvature radius is comparable to the Planck length. In this case, the correct
gravitational action must contain additional terms quadratic in the curvature, such as R?,
R, R*, or R, R, and the Einstein equations are modified by higher derivative
terms. The R2 terms can be of fundamental origin or, as we will see later, can arise due
to vacuum polarization effects.

The simplest action describing the dynamics of the electromagnetic field A,
itself can be easily built out of the gauge invariant field strength

FWEA,,’M—AM;V=AV’M—AM,V, (5.20)

and the result is
1
S[Au] === / d*x /=58P " F o Fan- (5.21)

It also describes the coupling of the electromagnetic field to gravity. Action (5.21)
is conformally invariant: under the conformal transformation (5.6) the factors
J/—g and g*F are multiplied by 0?4 and Q2 respectively, resulting in no net
change in the action. Therefore the evolution of the electromagnetic field in
conformally flat spacetimes is greatly simplified. In particular, the gravitational
field in the Friedmann universe does not produce any photons.
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5.5 Energy-momentum tensor

The total action describing gravity coupled to the matter fields ¢; can be written as

S [d)i’ gp,v] = Sgrav [gpw] + Sm [d)i’ g;u/] .

The equations of motion for the gravitational field are obtained by varying this
action with respect to the metric:

N [¢i’ gp,v] 0 ) .
6gaB = 8gOCB Sgl‘av [guv] -+ S'éa—ﬁ's [d)i’ gl“"] = 0 (522)

These equations must coincide with the Einstein equations,

1

where T, is the energy-momentum tensor of the matter fields ¢;. Taking into
account (5.23) we find that the equations (5.22) and (5.23) are consistent only if

S
af — H S gaB ’
Thus equation (5.24) can be viewed as a definition of the energy-momentum

tensor (EMT) for the matter fields. The resulting tensor 7,z is automatically
symmetric and covariantly conserved,

(5.24)

TS, =0. (5.25)

Example 5.1 The energy-momentum tensor of the minimally coupled scalar
field ¢ with the action (5.4) is

2 oS
V& 88%F(x)
Conservation of the EMT The covariant conservation of the EMT is a

consequence of the invariance of the action with respect to general coordinate
transformations. Considering an infinitesimal coordinate transformation

Top() = = b tas | 58000, -VD)]|. 6529

X% = X =x"+ &%), (5.27)
we find that the metric transforms as
8% (x) = 8 (1) = g (x) + 6P+ 68 0 (1¢T°) .

Note that g*# (x) and g*? (x) refer to different points of the manifold which have
the same coordinate values in two different coordinate systems x and X. The
specific form of the transformation law for the matter field,

di(x) = <7>,-(X) = ¢;(x) +8¢,(x),
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62 Reminder: classical fields
depends on the type of the field. For example, for the real scalar field
B(x) > (x) = ¢(x) — ¢ &P (5.28)

The action does not depend on the coordinate system and hence its variation under
the coordinate transformation (5.27) must vanish, that is,

m __ o85™ B Bia 4
oS™ = agag(x) (f +¢ )d“x-f—/ —-—8¢ ( )5d) (x)d x = (529)

Taking into account (5.24), one obtains

ssm
8g%R(x)

= [[(15e9), - 188" | v=aats =~ [ gt VTRt 520

(fa;ﬂ+§ﬁ;“> d4x=/ Taﬁgﬂ;“\/fgd“x

where we have assumed that £€% vanishes sufficiently quickly at infinity. Consid-
ering the real scalar field ¢ and substituting (5.30) and (5.28) into (5.29), we find
that §S™ = 0 only if

85’”

It follows that the energy-momentum tensor is covariantly conserved, Ig,=0,
if the equations of motion

T ot —1bp=0. (5.31)

ssm
%%~ 0 (5.32)

are satisfied.

Moreover, one can easily see from (5.31) that the covariant conservation of
TE‘ is equivalent to the equations of motion (5.32). The Einstein tensor G g
defined in (5.23) satisfies the Bianchi identities Gg;a = 0 and hence the con-
servation of the energy-momentum tensor is incorporated in the Einstein equa-
tions. Therefore the equations of motion for matter do not need to be postulated
separately.

If the action for the matter field is invariant with respect to the conformal
transformations (5.6) then the trace of the corresponding EMT vanishes. In fact,
considering an infinitesimal conformal variation of the metric,

8¢ = g*P 50, (5.33)

O
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where 80(x) is an arbitrary function, we find that

_ af3 44 .. _ af 4 — @ 4
= [ 5oap0ed x—/ Y T 60 x /T TE60d* x,

o8™

and hence T¢ =0 if $™ is invariant with respect to transformation (5.33). We
will show in the second part of the book that the vacuum polarization effects
generally spoil conformal invariance of the original classical theory and generate
a nonzero value of T2. This phenomenon is called the trace anomaly.
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