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From harmonic oscillators to fields

Summary Ensemble of harmonic oscillators. Field quantization and mode expan-
sion. Vacuum energy. Schrodinger equation for quantum fields.

4.1 Quantum harmonic oscillators

A free ficld can be treated as a set of infinitely many harmonic oscillators.
Therefore we quantize a scalar field by simply generalizing the method used to
describe a finite set of oscillators.

The most general classical action describing N harmonic oscillators with gen-
eralized coordinates gy, ..., qy I8

1 N N
NFAES Ef \:Zqiz_ > Mijqiqj] dt, 4.1
i=1 ij=1

where the matrix M;; is symmetric and positive-definite.
By choosing an appropriate set of normal coordinates

N
aa = Z Caiqi
i=1

the matrix M;; can be diagonalized, M;; > M,g = Saﬁwi, and the oscillators
“decoupled” from each other. In terms of these new coordinates the action (4.1)
reduces to

Slaal =5 [ é (8 - ol dr.

where w,, are the eigenfrequencies.

Exercise 4.1
Find a linear transformation which “decouples” the oscillators.
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For brevity, we shall omit the tilde and write g, instead of g, below. The normal
modes ¢, are quantized (in the Heisenberg picture) by introducing the operators
G, (1), Do (f) which satisfy the standard equal-time commutation relations:

(G0 Pp] = i8ap>  [Ga 4] = [Par Pg] =0

In turn, the creation and annihilation operators &f(t), defined as

#50= % (@05 L h0).

obey the equations similar to (3.5) and (3.6):
d. . oAt
E a (1) = fiw,ag (®).

The general solution of these equations for each oscillator is
&zf(t) — (O)afe:tiwat’

where (O)&f are operator-valued constants of integration which satisfy the com-
mutation relations

[(0)&;’ (0>ng] = 8p.

Below we shall use mostly time-independent operators ©®4a, so we skip the cum-
bersome superscript () and denote them simply by ax.

The Hilbert space for the system of oscillators is constructed, as usual, with the
help of the operators a. In particular, the vacuum state |0, ..., 0) is the unique
eigenvector of all annihilation operators a, with eigenvalue 0:

az0,...,0)=0fora=1,...,N.

The state |ny, n,, ..., ny) with occupation numbers n, for each oscillator g, is
defined by :
v (@)
Inl,...,nN>=|:n ol j||0,0,...,0>, (42)
a=1 VvV na!
and the vectors |ny, ..., ny), with all possible choices of occupation numbers 7,

span the whole Hilbert space.

4.2 From oscillators to fields

A classical field is described by a function, ¢ (X, t), characterizing the field
strength at every moment ¢ and at each point X in space. One can interpret a
field as an infinite set of oscillators g; () <= ¢,(7) “attached” to each point
x. Note that the oscillator “position” ¢, () “takes its values” in the configuration
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space, i.e. in the space of the field strength. The spatial coordinate x plays the
role of index labeling the oscillators, similarly to the discrete index i for the
oscillators ¢;.

Using this analogy, we treat the scalar field ¢ (x, 1) as an infinite collection of
oscillators. Replacing the sums over the discrete indices i by the integrals over
the continuous indices x in (4.1) we find that the action for the scalar field must
be of the form

HM=%fd{/me@J%Jﬁ%J%¢@0¢@JMM&w} (43)

where the function M is yet to be determined. This action must be invariant
with respect to the Lorentz transformations and to the spacetime translations (the
Poincaré group). The simplest Poincaré-invariant action for a real scalar field
¢ (x, t) is obtained if we set

M(x,y)=[-A+ mz] S(x—y). (4.4)

Then action (4.3) becomes
S101= 5 [ <[ (2,0) (0,8) - m??)
- % / d*x dt [<2>2 — (V)2 — m2¢2], (4.5)

where n*” = diag(1, —1, —1, —1), x% = and (x!, 2, x3) = x. It is obviously
translationally invariant, and Lorentz invariance is the subject of the next exercise.

Exercise 4.2
Verify that the action (4.5) does not change under the Lorentz transformations:

oM =AY, (1) > d(x 1) = ¢ (%,7), (4.6)
where the matrix A* satisfies
T]“VAQLAE = naﬁ'

Calculating the functional derivative, we find that the scalar field satisfies the
equation of motion

Egbi(i,_t)' = b (X, 1)~ Ad (x, 1)+ m> (x, 1) =0. (4.7)

Exercise 4.3
Derive equation (4.7).
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It is clear from (4.7) that the “oscillators” ¢ (x, 1) = ¢,(t) are “coupled.” To
see this, note that the Laplacian A¢ contains the second derivatives of ¢ with
respect to the spatial coordinates and, in particular,

a2¢x r~ ¢x+5x - 2¢x + ¢x—5x
dx2 (8x)? )
Therefore the behavior of the oscillator ¢, depends on the nearby oscillators at
points x & 6x.
To decouple the oscillators, we use the Fourier transform,
d’k
X, 1) =

Substituting (4.8) into (4.7), we find that the complex functions ¢y (¢) satisfy the
following ordinary differential equations,

M Xy (1), (4.8)

d2
Egd’k(l) + (kz +m?) ¢y (1) =0, (4.9)
and thus describe an infinite set of decoupled harmonic oscillators with frequencies

(l)k =/ k2+m2

It is easy to verify that in terms of ¢, (7) the action (4.5) takes the following form

s=3 [ dra¥ (b~ by, (4.10)

Exercise 4.4
Show that for a real scalar field ¢ (x, ¢) the relation (¢, )" = ¢_, must be satisfied.

4.3 Quantizing fields in a flat spacetime

To quantize the scalar field, we first need to reformulate the classical theory in
the Hamiltonian formalism. Noting that the action is an integral of the Lagrangian
only over the time (but not over space), we conclude that for the system described
by the action (4.5) the Lagrangian is

1 1
o) = [ L% £=30"d ¢, - 5m ¢,
where £ is called the Lagrangian density. Taken at a given moment of time, the
Lagrangian is a functional that depends on the field configuration. Therefore, the
canonical momenta are defined as the functional derivatives of the Lagrangian

with respect to the generalized “velocities” ¢ = dp /o,

7%, 1) = oL [¢]

=shmn T &N
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The classical Hamiltonian is then

H= / 7 (x, 1) (X, 1) dox*—LL% f d x| F (V) il y, N

and the Hamilton equations of motion are

op(x,1)  6H

il e R
om(x,t) 6H B
Yt Ad(x, 1) —m*P(x,1). (4.12)

Remark: Lorentz invariance We have noted previously that the Hamiltonian formal-
ism is better suited for quantization. Although the Lorentz invariance is not manifest in the
Hamiltonian formalism, this does not mean that the resulting quantum theory breaks this
invariance. If the classical theory is relativistically invariant, then the resulting quantum
theory is also relativistically invariant.

To quantize the scalar field, we introduce the operators (}(x, t) and 7 (X, t)
and postulate the standard commutation relations

(b0, #n]=dx-y): (*.13)
(6.0, d.0] =150, 73.01=0

Substituting

&SR G
(277_)3/2 elk y’ﬂ'k/(t) (414)

into these commutation relations, after some algebra we find the following result
for the mode operators:

A 3 . A
b= [ G b, Fan=|

[&k(t), frk,(t)] —is(k+k).

Note that the plus sign in 8(k+k’) indicates that the variable conjugate to (;bk is
T = (7r)". This is also evident from the action (4.10).

Remark: complex oscillators For the real scalar field ¢, the variables ¢y () are com-
plex and each ¢, may be thought of as a pair of real-valued functions, b= q,‘)f(l) + id):(z)
satisfying the constraints d)ﬂ = d),(:) and (j)(fl)( = —qb,(f). Accordingly, the operators é’)k are
not Hermitian and (q?)k)T = ‘2’-1« In principle, one could rewrite the theory in terms of the
Hermitian variables, but it is more convenient to keep the complex ¢y.

s

Substituting (4.14) into the Hamilton equations (4.12) we obtain

X = 0l (4.15)
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Similarly to Section 4.1, it is convenient to introduce the creation and annihilation
operators,

=% (s ) a0 =) = [ (a5 @19

which satisfy the commutation relations

[y (1), ah(n]=25 (k—K), [a (1), a0 ()]= [a) (1), a5 (D] =0, (4.17)

and obey the equations

d
Eaf(t) = +iw, o (7).

The general solution of these equations is
af (1) = Qafe o, (4.18)

where the time-independent operators (O)&f obviously also satisfy the commuta-
tion relations (4.17). Below we will mainly use these time-independent operators
and will omit the superscript () for brevity.

The Hilbert space is built in the standard way. We postulate the existence of
the vacuum state |0) which is annihilated by all operators &, that is, a, 10) =0
for alt k. The state with the occupation numbers r; in every mode K is

()"

k

Ing, ny, )= | [ ==
s /!

where s = 1, 2, ... enumerates the excited modes and |0) = |0, 0, ...). The vector
(4.19) corresponds to the quantum state in which n; particles have momentum ki,
n, particles have momentum k,, etc. The vectors |ny, ny, ...y with all possible
choices of n, form the complete orthonormal basis in the Hilbert space.

The Hamiltonian (4.11) can be rewritten as

10), (4.19)

.1 A .

H= 5/ d3k [’kaﬂ'_k + wi(bkd)_k] . (420)
Equivalently, we may express H in terms of the creation and annihilation opera-
tors:

o TN e R |
i =/d3k7k (axaf +aag) :/d3kwk[a,jak +5800)1. (4.21)

Exercise 4.5
Derive equations (4.20) and (4.21).
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4.4 The mode expansion

Taking into account (4.18) we find from (4.16) that

(al:e—iwkt + atkeiwkt) .

N 1
() =

k( ) \/2’(1),;
Substituting this expression into (4.14) gives the following expansion of the
field operator ¢ (X, 1) in terms of the time-independent creation and annihilation
operators,

4’k 1

e~iwkt+ik-xa—+eiwkt—ik'xa+ , 4.2
Qm)3? 2wy k k] (4.22)

¢ (x,1) =
where we have replaced —k by k in the second term. The obtained expression is
called the mode expansion of the quantum field (?) (x,1).
This observation suggests an alternative quantization procedure without explic-
itly introducing the operators (Ai)k and 7. We can begin immediately with the
field operator expansion

Pk 1 Lo s
@ 2 (g (e ai +v(De™ "] (4.23)

and postulate the commutation relations for the time-independent operators ay
and &,

dx, 1) =

ag. i) =8 (k—K); lag . ap) = [y &0 ] =0 (4.24)
Because the field operator satisfies (4.7), the mode functions vy (f) must obey the
equation

By + wivg =0, (4.25)
where wi — k2 + m?. Substituting (4.23) together with

~ 3(’2) (y» t) d3k 1 . % kys— 17 —ikynt

T (y’ t) = ot = (277)3/2 ;7'5 [vk(t)e ay + vk(t)e ak] (426)
into (4.13), we find that the canonical commutation relations are compatible with
(4.24) only if the normalization conditions,

i (DU (1) — (D) vy (1) = 2i, (4.27)

are satisfied. The expression on the left-hand side is the Wronskian of the two
independent complex solutions vy (f) and vi(#) of equation (4.25), and therefore
does not depend on time. Substituting the general solution of equation (4.25),

1 i —iw
Uk(t) = ——;)—I: (ake“"k' + Bke kt) ) (428)




4.4 The mode expansion 49

into (4.27), we find that the constants of integration o) and B must obey
| = 1B =1. (4.29)

This condition does not suffice to determine the two constants of integration, ay,
and By. Therefore the operators @, and 21;{ are not yet unambiguously defined.
To resolve this ambiguity, let us calculate the Hamiltonian. Substituting (4.23)
and (4.26) into (4.11), and using v (¢) given in (4.28), we obtain

I:I:/ d3k(l)k [aﬁﬁi&;&:kﬁ-akﬁk&iﬁ&fk
+ (lea” +184) (i + 36 (0)) } (4.30)

where we have used oy = a@_y and By, = B_y. It is obvious from (4.30) that
the vector |0), defined by the conditions g, |0) =0 for all k, is an eigenvector
of the Hamiltonian only if o, 8, = 0. Combined with (4.29) this condition tells
us that

ay = eiak, Bk = O,
where ) are the irrelevant constant phase factors which we set to zero. Thus, the

vector |0) can be interpreted as the vacuum state with the minimal energy only if
the mode functions in the expansion (4.23) are taken as

1
~ @k

The obtained result is in complete agreement with (4.22).

ekt (4.31)

v (1) =

Remark: positive and negative frequency modes The modes v} (1) oce™+' and v, (¢)
e's" are usually referred to as the positive and negative frequency modes respectively.
Alternatively, these solutions are called positive and negative energy solutions. This rather
confusing terminology has no particular meaning and is of historical origin. In “first
quantized relativistic theory” the field was interpreted as the wave function of a relativistic
particle. Therefore the solution v} (r) oc e+ was regarded as describing particles with
positive energy,

(1)

Hv*(f) = ik
V(1) =i ar

= hovg(1),

and the solution v, (1) & "' as corresponding to negative-energy states. However, this
interpretation does not make sense in a quantum field theory where particles always have
positive energy.
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4.5 Vacuum energy and vacuum fluctuations

Vacuum energy It is easy to see from (4.21) that the total energy of the field
in the vacuum state |0) is

E,= (0| A |0) = %5@)(0) / Lo, (4.32)

This energy is divergent: there is an infinite multiplicative factor 8(0) in (4.32)
and in addition the integral

/d3kwk=/ 4k m? + k2dk
0

diverges as k* at the upper limit of integration.

The origin of the divergent factor 53)(0) is easy to understand: It is simply the
infinite volume of space. Indeed, the factor 5®)(0) arises from the commutation
relation (4.17) when we evaluate 5 (k—k’) at k =K' (note that 83 (k) has
the dimension of 3-volume). For a field in a finite box of volume V, the vacuum
energy is (see (1.11)):

1 1 v
Ey=~ %—-—-—«fd3k .
0 2?“”‘ 2 2m)? “k

Comparing this expression with (4.32), we find that the formally infinite factor
53)(0) arises when the box volume V' goes to infinity. In this limit, the vacuum
energy density is equal to
E, 1 dk
lim —

v 7 = 5 “—""—‘(277)3 Wp, (433)

and it also diverges at |k| — oo. This ultraviolet divergence arises because the
number of “oscillators” with large momentum grows as k? and each of them has
zero-point energy wy /2 ~ k/2.

In a flat spacetime there is a simple recipe to circumvent the problem of the
vacuum energy divergence. The energy of an excited state |n;, ny, ...) can be
computed using equations (4.17), (4.21) and taking into account that

e, @5)" = n(@)" '8 (k=K.

As a result we obtain
E(n),ny,...)= EO—I—/ PR (Zns‘é (k—ks)) wp =Ey+)_n,wy .
5 R

Thus the total energy is always a sum of the divergent vacuum energy Ey and a
finite state-dependent contribution. The absolute value of the energy is relevant
only for the gravitational field. If we neglect gravity, then the presence of the




4.6 The Schrodinger equation for a quantum field 51

vacuum energy cannot be detected in experiments involving only transitions
between the excited states. Therefore, we can postulate that the vacuum energy
E( does not contribute to the gravitational field and simply subtract E, from the
Hamiltonian. After this subtraction, the modified Hamiltonian becomes

IA{ = / d3kwk&:&;,
and the vacuum is an eigenstate of the Hamiltonian with zero eigenvalue:
H |0) = 0.

Vacuum fluctuations The subtraction of the vacuum energy density does
not, however, remove the vacuum fluctuations of the quantum fields. To estimate
the magnitude of fluctuations, let us calculate the correlation function

£ (Ix—y)) = (0| b (x,7) $(y,1)]0).

Substituting the mode expansion (4.22), we obtain

1 rﬁsi}giklx—_yﬁk L .o
S (X=YD) = o kx—y| &’

where the integration over the angles was performed. It follows that the typical
squared amplitude of the scalar field fluctuations on scales L ~ 1/k is of order

~— (4.34)

k~Lt 12 /14 (mL)?

Thus, the amplitude of the vacuum fluctuations 8¢, decays as L™! for L < m ™!
and as L™/2 for L > m™'. This result is already familiar to us from Section 1.4
(see (1.13)).

1K
St = — —
z 472 w,

4.6 The Schridinger equation for a quantum field

So far we have been working in the Heisenberg picture. However, the fields can
also be quantized using the Schrédinger picture. Let us begin with the Schrodinger
equation for an ensemble of harmonic oscillators. Their Hamiltonian is obtained
from action (4.1) in the standard way:

1 1
H=> > :p,-z-f-i > M9,
i i,j

In the Schrodinger picture, the operators p;, g; are time-independent and act on the
time-dependent wave function [¢/(¢)). The Hilbert space is spanned by the basis
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vectors g1, -+ 4N) which are the generalized eigenvectors of the coordinate
operators g;. In this basis a state vector |(r)) can then be decomposed as

() = [ dar-.dayh @ o g Dl )

where
W (qrs---sdn> D) = gyl (D) -

The momentum operators p; act on the wave function ¥ (g1, ---» 4N> t) as deriva-
tives —id/dg;. The Schrodinger equation then takes the form

. 1 &
A _ g = Ly (=8 My | ¥ (4:35)
Z( Jaqiaqj J J

To generalize this Schrodinger equation to the case of quantum scalar field,
we replace the oscillator coordinates g; by field values ¢, = ¢ (x) and the wave
function ¢ (g, - - -» qn- 1) becomes a wave functional ¥[¢ (X), 1] defined in the
space of the field configurations ¢ (X) (recall that the spatial coordinate X plays
here the role of the index i). The wave functional has a simple physical interpreta-
tion, namely, the probability of measuring a particular spatial field configuration
¢ (x) at time 1 is proportional to v (x), 1.

The Schrodinger equation for the scalar field is obtained from (4.35) by replac-
ing the partial derivatives d/dq; by functional derivatives 6/ 8¢ (x) and the sums

over discrete indices i by an integral over the spatial coordinate X:

a1l 1 W (o, 1]
=3 ] 55 mse0m

at 2
+ % / Pxd’yM (x,y) ¢ () ¢ ) ¥, 1.

i

For the kernel M (x,y) given in (4.4), this equation is relativistically invariant i
although this invariance is not immediately manifest from the form of the equation.

In quantum field theory, the wave functionals and the functional Schrodinger ;
equation are rarely used. We wrote this equation here mainly for illustrative
purposes and will proceed to use the Heisenberg picture and the basis of the ’
Hamiltonian eigenstates in the following chapters. \

Remark: canonical quantum gravity The use of the wave functional is inevitable in
canonical nonperturbative quantum gravity. In this theory the metric is quantized and
the role of generalized coordinates of the gravitational field is played by the spatial part
of the metric g (x). In the coordinate basis, the wave functional ¥ depends on g (x)
and the matter field configuration ¢ (x), that is, W [gy. ¢]. This wave functional is

e
S
SegtElag.
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constrained to respect three-dimensional diffeomorphism invariance. In addition, it obeys
the Schrodinger-like equation which takes an unusual form,

HY gy, d] =0, (4.36)

where H is a constraint quadratic in momenta conjugate to g;. This constraint generates
the dynamics in classical gravity and therefore it plays the role of the Hamiltonian. One
can crudely understand why the “Hamiltonian” vanishes by considering a closed universe
where the positive energy of matter is exactly compensated by the “negative energy” of
the gravitational field. Equation (4.36) is called the Wheeler-DeWitt equation.

The most remarkable feature of canonical quantum gravity is the disappearance of time
in the fundamental theory and hence an explicit breaking of the spacetime diffeomorphism
invariance. This invariance and the concept of time are recovered only at the quasiclassical
level. Note that the time-dependent Schrodinger equation for the matter fields can be
obtained from (4.36) assuming a quasi-classical background metric. The wave functional
W [g,, ¢] describes the availability of the corresponding three-geometries, which are the
“building blocks” for the four-dimensional quasiclassical spacetimes.

Unfortunately, at present the canonical quantum gravity remains only a formal scheme.
In spite of many years of effort, this scheme has not yielded reliable physical results
which could highlight the nonperturbative aspects of quantum geometry.



