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Driven harmonic oscillator

Summary Quantization of harmonic oscillator driven by external classical force.
“In” and “out” states. Matrix elements and Green’s functions.

A quantum harmonic oscillator driven by an external classical force is a simple
physical system which allows us to introduce several important concepts, such as
Green’s functions, “in” and “out” states, and to formulate the problem of particle
production.

3.1 Quantizing an oscillator

A harmonic oscillator driven by a given external force J(¢) satisfies the classical
equation of motion

§=—w’q+J(1)

which follows from the Lagrangian
) 1, 1
L(t,q,9) = 5612 - szqz +J(1)g.
The corresponding Hamiltonian is

2 2.2
14 w~q
—+ — —J(t)g, 3.1
>+ L) (3.1

and the Hamilton equations of motion are

H(p, q) =

g=p, p=—w’q+J(1). (3.2)

Note that the Hamiltonian depends explicitly on the time ¢ and therefore the
energy of the harmonic oscillator is not conserved.

In quantum theory the coordinate ¢ and the momentum p become the operators
g (t) and p (1) satisfying the equal time commutation relation (g, p] = i. (From
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34 Driven harmonic oscillator

now on, we use the units where & = 1.) In the Heisenberg picture these operators
satisfy the Heisenberg equations which are obtained by replacing ¢ and p in (3.2)
by the corresponding operators:

dg . dp 25

— =p, — =—wqg+J(). 3.3

7 ' q+J(1) (3.3)

It is convenient to introduce two Hermitian conjugated operators @~ () and
a*(r) instead of p(¢) and §(7):

i = 5 [a0+ S0 a0=[2[an- 0]

These operators, called the annihilation and creation operators respectively, satisfy
the commutation relation

[&_(t), &+(t)] =1 (3.4)
at every moment of time 7.

Exercise 3.1
Using the commutation relation [g, p] = i, verify that [a (1), a* ()] = 1.

The equations of motion for the operators a™¥(z) follow immediately from (3.3):

P jwa” + ! J(1) (3.5)
—a = —iwa +—=J(1), .
dt V2w

d.. . ., 1

—a" =iwa" — ——J(1). (3.6)

dt V2w

They are readily integrated to give
. - .
a (1) = [&i; + ﬁ/g) e J(t/)dt’] e, (3.7)

I ro .
at(t)= [21.* —— [ e dt/:l e, 3.8
T = aT (1 = 0) are the operator-valued constants of integration.

where a; =

Exercise 3.2
Derive solutions (3.7) and (3.8).

Substituting

(@ —at) (3.9)
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J(t)

0 \/T 1

Fig. 3.1 The external force J(f) and the “in”/“out” regions.

into (3.1), we find the following expression for the Hamiltonian in terms of the

creation and annihilation operators a*,

D) at+a
H=—(ata +aat)— ——J(t
> )= =0
) at+a”
=—(2ata +1)— ———J(1). 3.10
5 ( )=~ 0 (3.10)

3.2 The “in” and “out” states

To simplify the calculations, we assume that the external force J(t) is nonzero
only during a time interval 7 > ¢ > 0. The regions t <0 and 7 > T, where the
oscillator is unperturbed, are called the “in” and “out” regions respectively (see
Fig. 3.1). Our purpose is to determine the relation between the states of the
oscillator in these regions.

It follows from (3.7) and (3.8) that

a~(n=age™, at(t)= a+e"‘” - (3.11)
in the “in” region. Correspondingly in the “out” region we have
a—(f) =ag,e ™, at() =ale (3.12)
where

Al [ T ior "l . .
Gy = Gy, + —\/_2—_;)—/0 I ydl = ag +Jy, At =al+ g (3.13)

It is obvious that both pairs of the time-independent operators a and a, satisfy
the commutation relation [a~, a*] = 1. Substituting (3.11) and (3.12) into (3.10),
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we find that the Hamiltonian

1
w ?1+?1_+—> for t <0,

in**in 2

H= (3.14)

.t A 1
0] aoutagut—i—E) for t > T,

does not depend on time in the “in” and “out” regions.

Hilbert space It is well known how to construct the Hilbert space of quantum
states for the unperturbed oscillator. We assume the existence of the unique
normalized vector |0) for which a~ |0) = 0. This vector corresponds to the ground
(vacuum) state. One can then prove that the orthogonal normalized vectors

1
/\+ n
ny =——=(a 0), 3.15
) M( )" 10) (3.15)
describing the excited states for n > 1, form a complete basis in the Hilbert space.
In other words, all possible quantum states of the oscillator are of the form

W)y =3¢, n), 2 IlP=1 (3.16)
n=0 n=0

This is a standard result and we omit its proof. Details can be found e.g. in
the book by P. A. M. Dirac, Principles of Quantum Mechanics (Oxford, 1948).
Ultimately, the agreement between the theory and experiment determines whether
a particular Hilbert space is suitable for describing a physical system; for a
harmonic oscillator, the space spanned by the orthonormal basis {|n)}, where
n=0,1, ..., is adequate.

In the case under consideration there are two regions where the external classical
force vanishes. Therefore, two annihilation operators, Zzi; and ag,, define two
different vacuum states — the “in” vacuum |0;,) and the “out” vacuum |Qg):

&1; |Oin> =0, &(:ut |Oout> =0.

It follows from (3.14) that the vectors |0;,) and [0,,,) are the lowest-energy states
for t < 0 and for ¢ > T respectively. One can easily see that the vectors |0;,) and
|04y} are different: The state |0,,;) is an eigenstate of the operator a,, with zero
eigenvalue, while

A5y 04) = (ag, + Jo) [01) = Jo |03n)

that is, the vector |0;,) is an eigenstate of the same operator with the eigenvalue
Jo. (We recall that the eigenstates of the annihilation operator with nonzero eigen-
values are called the coherent states.) Conversely, a; 0;,) =0 and a; |0yy) =

—‘,O Ioout>'
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Using the creation operators &;I: and a7, we can build two complete orthonor-
mal sets of excited states,

1

A n 1 A n
i) = T (@) 100) s [now) = N (ad) Opw), n=1,2,...

out

It is easy to verify that
. 1
B g = o (045 ) Img), 1=0;

. |

A o) =0 (045 ) o) 12T,
Hence, the vectors [n;,) are the eigenstates of the Hamiltonian (3.14) for ¢t <0
(but not for t > T), and |n,,) are its eigenstates for r > T. For this reason it is
natural to interpret |n;,) as “n-particle states” of the oscillator for ¢ < 0, while for
t > T the n-particle states are |n,,,).

Remark: interpretation of the “in” and “out” states We work in the Heisenberg
picture where quantum states are time-independent and operators change in time. In this
picture the physical interpretation of a constant state vector i) depends on time. For
example, we have found that the vector |0;,) is no longer the lowest-energy state for
t > T. This happens because the energy of the system changes due to the external force
J(1). In the absence of this force, a; = a_,, and the state |0,,) describes the vacuum state

out
at all times.

Relation between “in” and “out” states Both sets of states {|n;.}} and
{|nou) } form separately a complete basis in the Hilbert space. Therefore the vector
0,,) can be written as a linear combination of the “out” states,

n

|0in> = ZAnlnout>' ‘ (317)
n=0

The coefficients A, satisfy the recurrence relation

Jo
A, 3.18
vr+1 ( )

An-H =

Exercise 3.3
Derive the recurrence relation (3.18) from (3.13).

It is easy to see that the solution of (3.18) is

n
_ "0
A, = mAO.
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The constant A, is fixed by the normalization condition (0,1 04,) = 1. To compute
Ay, we consider the normalization

(OulO) = 35 1A = 10 3 P00 = el =
=0 n=0 ’

and hence
1
|Ag| = exp [—5 |Jo|2] .

The unimportant phase of A, remains undetermined.
Thus, the state |0;,) can be expressed in terms of the “out” states as

o]

o) = exp 3 1o | X T (3.19)

n=0

or, equivalently,
1 A
00 = exp [ 3 Mol -

Hence for ¢ > T the state vector |0;,) describes the coherent state of the harmonic
oscillator, which is an eigenstate of ag, with eigenvalue J.

It follows from (3.19) that the initial vacuum state is a superposition of excited
states for ¢ > T. In particular, the probability of detecting the oscillator in an
excited state n 18

2n
A, = el ol
If we interpret a state with the occupation number n as describing n particles,
then one concludes that the presence of the external force J1 (¢) leads to the particle
production.

3.3 Matrix elements and Green’s functions

The experimentally measurable quantities are expectation values of various Her-
mitian operators such as (0j,]§(#) [0j). Unlike the expectation values, “in-out”
matrix elements, e.g. (O] §(2) |0;,) , cannot be directly measured and they are in
general complex numbers. However, as we shall see in Chapter 12, such matrix
clements are sometimes useful in intermediate calculations. Therefore we shall
now calculate the expectation values and the matrix elements for various operators
for ¢ < 0 (the “in” region) and t > T (the “out” region).
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Greanpha Ll First.we_compute the expectation value of the Hamiltonian H(7)
for the “m” vacuum state |0;,). It follows from (3. 14) that

~ w
(Ol (D) 100) =5

for t <0 and
011010, = Ol 5+ 100 = (5 + )

for t > T, where the relations in (3.13) have been used to express d, in terms
of &,

It is now apparent that the energy of the oscillator becomes larger than the
zero-point energy 2w after applying the force J(z). The constant lJOI is expressed
in terms of J() as

1 T T .
ot = 5 [ [ dundne® T (1) T (5)-
2w Jo Jo
Example 3.2  The occupation number operator, defined as

R a Iy
N(t) = at(na (= {?i‘al“_ for t<0,

alag, for t=T,

has the expectation value

o000 =112 o (27 (3.20)
The in-out matrix element of N(1) is
(Oou| N (1) 1032) =0
fort<Oand t>T.
Example 3.3 The expectation value of the position operator,
q(t)y= \/155 (Ef(t)+&+(t)), (3.21)

is equal to zero,

(0,1 (2 <0)]0;,) =0, (3.22)




40 Driven harmonic oscillator

for t < T. It follows from (3.12) and (3.13) that

> T) — a;mefiwt — (&;} +‘]0) e—lwt,
at(t>1 =(a;+J5) e,
and therefore

1 . . T ¢ r—t
(0] (1) 104y) = —= (Jope ™" + Jge™™") = / not=1) ;nar  (3.23)
0 w

V2w

fort>T.
Introducing the retarded Green’s function for the harmonic oscillator,

sinw(t—1")

G (1, 1) = 0(t—1t), (3.24)

results (3.22), (3.23) can be rewritten as

+o0
(1) = f J()G o (1, 1)d1 . (3.25)

—00

Example 3.4 The in-out matrix element of the position operator g is

Ooul §(1 < 0)10i) _ €7 (Ogue| @55 10in) _ L

= =—Jy R

<00ut|oin> V2w <Oout|0in> 2w
<Oout| &(t = T) |0in> _ e—iwl <00ut| é\Z(;u’[ Ioin> — JO eiiwt (326)

<00ut|0in> B V2w <00u1|0in> V2w .
In general, these matrix elements are complex numbers. Noting that

1 . i r . /
L pertor = [T gttt ar,
5o 20 o ()

and introducing the Feynman Green’s function

ie-iw|t~t’)
Gp(t, 1) = ———nu (3.27)
20
result (3.26) can be rewritten as
(0ol 4(010:) _
outl 987 [in/ f J(YGe (1, 1)dr . (3.28)
<Oout|0in> oo

Other matrix elements, such as (0,,|g(¢;) g (%) |0;,). can be calculated
similarly.

.
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Exercise 3.4

Verify that for ¢,, 1, > T

g 0 1 —iw(ty—
<Oinlq(t2)q(tl) 10,,) :Z—e (2-11)
@

T T
[ dn [ dtI (67 (1) G (11,1) G (3.1
and

<00utl é (tZ) & (tl) IOiH) _i
<Oout| Oin> _2(1)

e—im(tz—t])

T T
+ [ dty [ and () () Ge (1, ) G (1,15).
0 4]
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