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Reminder: classical and quantum theory

Summary Action principle. Functional derivatives. Lagrangian and Hamilto-
nian formalisms. Canonical quantization. Operators and vectors in Hilbert space.
Schrddinger equation.

2.1 Lagrangian formalism

Quantum theory is built by applying a quantization procedure to a classical theory.
The starting point of a classical theory is the action principle.

The action principle The state of a classical system is described by a (set of)
generalized coordinate(s) ¢(f). The variable ¢ is a “symbolic combined notation,”
which includes all degrees of freedom of the system. For a system with N degrees
of freedom we have ¢ = {q;, ¢3, ... gy} A field theory describes systems with
an infinite number of degrees of freedom. For example, the configuration of
a classical real scalar field at a given moment of time is characterized by a
function ¢ (x). In this case ¢(t) = {¢, (r)}, where the spatial coordinate x can be
considered as an “index” enumerating the infinite number of degrees of freedom
of the scalar field.

The classical trajectory g(f) connecting the states at two moments of time 7,
and ¢, is an extremum of an action functional!

Sa01= [ L(.q(0). (). ) dr. 2.1)

I
The function L (t,q, g, ...) is called the Lagrangian. In the case of a field the-
ory, the Lagrangian is a functional too. Different Lagrangians describe different
systems. For a harmonic oscillator with unit mass and frequency @ we have

1
A .2 2 2
L(g ) =3(0"-q"). (2.2)
! See Appendix Al.l for more details concerning functionals.
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14 Reminder: classical and quantum theory

If w is time independent this Lagrangian has no explicit time dependence.
Equations of motion The requirement that the function g(t) extremizes the
action leads to a differential equation for g(). Let us derive this equation for the
action
5]
Slq] = /, Lt q,4)dt. 2.3)
1
If the function g(¢) is an extremum of the action functional (2.3), then a small
variation 8¢(7) of the trajectory g(f) changes the value of S[g] only by terms
which are quadratic in 8¢4(7). In other words, the variation

8S[q.8q] = S[q+8q]—S[q]

does not contain any first-order terms in 8g. To obtain the differential equation
for ¢(t), let us compute 8S:

85 [g; 8q] = S[q(1) +84(n] — S[q(1)]

nTaL(t, q,§ dL(t,q,q) ..
_ (" [_%q,.i)gq(t)+ _S_é_g_ﬂﬁq(t)} dt+0 (54)
f q q
oL|?  n[dL  d L 5

If we impose the boundary conditions ¢ (1) = g, and ¢ (t,) = g, and require that
the perturbed trajectory also satisfy them, then 8¢ (#;) = 8¢ (#,) = 0. Hence the
boundary terms in equation (2.4) vanish and we obtain

65—/'2 L(t,q,q) dIL(t.q.9)
R, dg dt  dg

The requirement that 8S is second order in 6¢ means that the first-order terms
should vanish for any 8¢(¢). This is possible only if the expression inside the
square brackets in equation (2.5) vanishes. Thus we obtain the Euler-Lagrange
equation

} 8q(ndt+ 0 (847 . (2.5)

1

oL(t,q.q) ddL(1.q,9) _

dq e g

which is the classical equation of motion for a system with the Lagrangian

L(t, q, ). Note that in a field theory, where L (¢, g, ¢) is also a functional, the

derivatives with respect to g and § in equation (2.6) are replaced by the functional
derivatives (see below).

0, (2.6)

Example 2.1 For the harmonic oscillator with Lagrangian (2.2), the Euler—
Lagrange equation reduces to

j+wlq=0. (2.7)
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Generally the path g(7) that extremizes the action and satisfies the boundary
conditions is unique. However, there are cases when the extremum is not unique,
and sometimes it does not even exist.

Exercise 2.1
Find the solution of equation (2.7) satisfying the boundary conditions ¢ (t;) = g, and
g (t,) = g, Determine when this solution is unique.

2.1.1 Functional derivatives

The variation of a functional can always be written in the form

5 = / g ()8q(t)dt+0(6q) (2.8)

The expression denoted by 8S/8¢(¢) in (2.8) is called the functional derivative
(or the variational derivative) of S[q] with respect to g(t).

Comparing the definition in (2.8) with (2.5), we find that the functional deriva-
tive of the functional S[g¢] given in (2.3) is

8S _9L(t.q.q) dIL(t.q.q)

= 2.9
0q (1) dq dt g 29)
Example 2.2 For a harmonic oscillator with the Lagrangian (2.2) we have
88
t t 2.10
S0 = @0 =), 2.10)

It is important to keep track of the argument ¢ in the functional derivative
85/8q(t). A functional S|g] generally depends on the values of g at all moments
of time t. Discretizing the time interval t, >t > ¢ as t; = t; + &k, where k is
integer, we may approximate the function ¢ (¢) by its values at points ¢;. Then the
functional S [g(¢)] can be visualized as a function of many variables g, = g (¢;) .

Sla(H]="S(q1. 9,93, -- )"

In the limit & — 0, the properly normalized partial derivative of this “function”
with respect to one of its arguments, say g, = ¢ (#;), becomes the functional
derivative 8S/8¢(t,). Clearly the derivative 6S/8q(¢;) is in general different
from 8S/84 (t,) and therefore 6S/8¢ (¢) is a function of 7.

For a functional S[¢] of a field ¢ (x, t), the functional derivative with respect
to ¢ (x, ) retains both the arguments x and 7 and is written as 6S/8¢ (x, ).

To calculate the functional derivatives, one has to convert the functionals to
an integral form. When the original functional does not contain any integration,
the Dirac & function must be used. (See Appendix Al.1 to recall the definition
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and the properties of the 0 function.) Below we demonstrate how the functional
derivative is calculated in a few simple cases.

Example 2.3 For the functional

Algl= [ ¢di
the functional derivative is
8A[q] 2
—22 =3g" ().
8q(t)) :

Example 2.4 The functional
Blq] =3vq(1) +sin[g(2)]
= f [350 —1)/q() +8(1 —2)sin q(t)] dt

has the functional derivative
8B [q] _ 38(t—1)

520 = 2/ +68(t —2) cos[q(2)].

Example 2.5 For the functional

Sid] =5 [ dxde(V4)

which depends on a field ¢ (x, 1), the functional derivative is found after an
integration by parts:

65 [¢4]
—_———=—Ad(x,1).
The boundary terms have been omiited because the integration in S[¢] is per-
formed over the entire spacetime and the field ¢ is assumed to decay sufficiently

rapidly at infinity.

Remark: alternative definition The functional derivative may equivalently be defined
with the help of the & function:
SAlql _d

570~ ds Alg()+s8(t—1))].

s=0

One can prove that this definition is equivalent to (2.8).
Because the & function is a distribution, the definition above can be understood in a
more rigorous way as

dalql _ lim 4

= lim | Ale.0)

s=0
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where ¢,(¢), n=1,2, ... is a sequence of functions that converges to g(t) +s8 (f—1,) in
the sense of distributions.

Second functional derivative A derivative of a functional is a functional
again. Therefore we can define the second functional derivative via

828 _ @ { 8S }
6q (1) 8q(ry) — 8q(1) | 8q(r) ]

Exercise 2.2
Calculate the second functional derivative
8°Sq]
8q (1) 8q(t,)
for a harmonic oscillator with the action

S[q] = / l(zf—wzqz) dt.

2.2 Hamiltonian formalism

The starting point of a canonical quantum theory is a classical theory in the
Hamiltonian formulation. The Hamiltonian formalism is based on the Legendre
transform of the Lagrangian L (¢, ¢, ¢) with respect to the velocity §.
Legendre transform Given a function f(x), one can introduce a new variable
p instead of x,
df
=0 (2.11)

and map the function f(x) to a new function

g(p) = px(p)— f (x(p)).

Here we imply that x has been expressed through p using (2.11); the function
f(x) must be such that p, which is the slope of f(x), is uniquely related to x. The
function g(p) is called the Legendre transform of f(x). A nice property of the
Legendre transform is that when applied to the function g(p), it restores the old
variable x = dg(p)/dp and the old function f(x).

The Hamiltonian To define the Hamiltonian, one performs the Legendre
transform of the Lagrangian L (t, g, ¢) replacing ¢ by a new variable

L (2, q, ¢
p=b2d) 212)
g
called the canonical momentum. The variables ¢ and g remain as parameters
and the ubiquitously used notation d/dg means simply the partial derivative of
L(t, q, g) with respect to its third argument.
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Remark If the coordinate g is a multi-dimensional vector, g = g;, the Legendre transform
is performed with respect to each velocity g; and the momentum vector p; is introduced.
In field theory there is a continuous set of “coordinates,” so we need to use a functional
derivative when defining the momenta.

Assuming that equation (2.12) can be solved for the velocity g as a function of
t, g and p,

g=v(p;q.1), (2.13)

one defines the Hamiltonian H(p, q, t) by

H(p’ q, t) = [pq —L (t’ q, Q)]i]=v(p;q,t) . (214)
In the above expression, g is replaced by the function v{p; ¢, t).

Remark: the existence of the Legendre transform The possibility of performing the
Legendre transform hinges on the invertibility of equation (2.12) which requires that
the Lagrangian L (¢, g, ¢) should be a suitably nondegenerate function of the velocity 4.
Many physically important theories with constraints, such as gauge theories or Einstein’s
general relativity, are described by Lagrangians that do not admit an immediate Legendre
transform in the velocities. In those cases (not considered in this book) a more complicated
formalism is needed to obtain an adequate Hamiltonian formulation of the theory.

The Hamilton equations of motion The Euler-Lagrange equations (2.6) are
second-order differential equations for ¢(z). In the Hamiltonian formalism they
are replaced by first-order differential equations for the variables ¢(f) and p(t).
Due to the definition (2.12), we can recast (2.6) as

dp _ iL(1.q.9) 215

dt dq g=v(p;q,1) ’

where the substitution ¢ = v must be carried out after the differentiation dL/dq.
The other equation is (2.13),
dq

- =v(pian). (2.16)

Using the Hamiltonian H(p, g, t), defined in (2.14), we can rewrite the above
equations in a more symmetrical form. As a result of straightforward algebra, one
has

dH 9 dv  dL IL dv aL
e (-l =pr =
dq  dq ad dq dqdq dq
oH d dv  dL dv

= (L) = v pe — o =

op  dp dp g dp
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and hence equations (2.15)—(2.16) become

9H oH
h=—t (2.17)

=% dq

These are the well-known Hamilton equations of motion.

Example 2.6 For a harmonic oscillator described by the Lagrangian (2.2), the
canonical momentum is equal to p = ¢ and the corresponding Hamiltonian is

) 1 1
H(p.q)=pq—L=5p"+ 0" (2.18)
The Hamilton equations are then

g=p, p=-wq

The action principle The Hamilton equations follow from the action principle

Su L9, p(0] = [ [pa—H(p. q. D) dr. (2.19)

where the Hamiltonian action Sy is a functional of two functions ¢(7) and p(r)
which must be varied independently to extremize Sy.

Exercise 2.3

(a) Derive equations (2.17) by extremizing the action (2.19). Determine the boundary
conditions which must be imposed on p(r) and g(¢).

(b) Verify that the Hamilton equations imply dH/dt = 0 when H(p, g) does not depend
explicitly on the time .

(c) Show that the expression pg — H evaluated for the classical trajectory (on-shell) is
equal to the Lagrangian L (g, g, ).

2.3 Quantization of Hamiltonian systems

In quantum theory we replace the canonical variables g(¢), p(t) by noncommuting
operators g(f), p(t) for which one postulates the equal-time commutation relation

[a(), p(D] = 4()p(r) — p(Na(1) = iR 1. (2.20)

(We shall frequently omit the identity operator 1 in formulae below.) Relation
(2.20) reflects the impossibility of simultaneously measuring the coordinate and
the momentum with unlimited accuracy (Heisenberg’s uncertainty relation). Note
that the commutation relations for unequal times, for instance [g (¢;), p(t,)], are
not postulated but are derived using the equations of motion.

Exercise 2.4
Simplify the expression §p*G — p*§* using the commutation relation (2.20).
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The problem of operator ordering Consider the following classical Hamiltonian
H(p. q) =2p°q. Since pg # gp, it is not a priori clear whether the corresponding
quantum Hamiltonian should be p?§ + gp®, or perhaps 2pgp, or some other
combination of the noncommuting operators p and g. The difference between the
possible Hamiltonians is of order % or higher, so the classical limit 7 — 0 is
the same for any choice of the operator ordering. The ambiguity in the choice of
the quantum Hamiltonian is called the operator ordering problem.

The operator ordering needs to be chosen by hand in each case when it is
not unique. In principle, only a precise measurement of quantum effects could
unambiguously determine the correct operator ordering in such cases.

Remark For frequently used Hamiltonians of the form
1
H(p., q) = 5-p"+ Ulq)
m

there is no operator ordering problem.

2.4 Hilbert spaces and Dirac notation

The non commuting operators § and p can be represented as linear transformations
(“matrices”) in a suitable vector space (the space of quantum states). Since relation
(2.20) cannot be satisfied by any finite-dimensional matrices,” the corresponding
space of quantum states is necessarily infinite-dimensional and must be defined
over the field C of complex numbers.

Infinite-dimensional vector spaces A vector in a finite-dimensional space
can be visualized as a collection of components, e.g. a = (ay, a,, a3, a4), Where
each a; is a (complex) number. A vector in infinite-dimensional space has
infinitely many components. An important example of an infinite-dimensional
complex vector space is the space L? of square-integrable complex-valued func-
tions (q) for which the integral

+o0 5
[ w@Pdq

converges. One can check that a linear combination of two such functions,
M (q) + Ay, (g), with constant coefficients A; and A, € C, is again an ele-
ment of L2. A function ¢ € L? can be thought of as a set of infinitely many
“components” i, = (), where the “index” g is continuous.

It turns out that the space of quantum states of a system with one degree of
freedom is exactly the space of square-integrable functions (q), where g is a

2 This is easy to prove by considering the trace of a commutator. If A and B are arbitrary finite-dimensional
matrices, then Tr [A, B] = TrAB — TrBA = 0 which contradicts equation (2.20). In an infinite-dimensional
space, this reasoning no longer holds because the trace is not well-defined for an arbitrary operator.
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generalized coordinate of a system (for example, position of a particle moving in
one dimensional space). In this case the function Y(q) is called the wave function.
In the case of two degrees of freedom the wave function depends on both coor-
dinates g; and g, characterizing the state of the corresponding classical system,
¥ =4 (q1, g)- In quantum field theory, the “coordinates” are field configurations
¢(x) = ¢, and the wave function depends on infinitely many “coordinates” ¢,;
in other words, it is a functional, ¥ [¢(x)].

The Dirac notation Linear algebra is used in many areas of physics, and
the Dirac notation is a convenient shorthand for calculations in both finite- and
infinite-dimensional vector spaces.

To denote vectors in abstract linear space, Dirac proposed to use symbols such
as |a), |x), [A) ..., which he called “ket”-vectors. Then the symbol 2 |v) —3i |w),
for example, denotes a linear combination of the vectors |v) and |w).

Dual space In a vector space V one can define linear forms, which act on a
vector to produce a (complex) number; f: V — C. A linear form is called covector
or “bra”-vector and denoted by (f|. A complex number produced by linear form
(f| as a result of acting on a vector |v) is denoted by (f|v) (the mnemonic rule
is: “bra”-vector acting on “ket”-vector makes a “bracket”, which is a complex
number). The fact that a form is linear means that

(fl(@]v) +Blw)) = a(f|v) + B(f|w),

where a and B are arbitrary complex numbers. In the space of all linear forms
one can define the multiplication by a complex number and a sum of two linear
forms in a natural way as

(a(f1+B (gD v) = a(f|v) +B(glv),

valid for any vector |v). Then the space of all linear forms becomes a vector space
called the dual space. At this stage one still has to distinguish the dual space from
the original linear space because they have a different mathematical origin. For
the reader familiar with differential geometry we point out that the dual space is
an analog of the space of one-forms.

Hilbert space A linear space of quantum states must possess an extra struc-
ture, namely, a Hermitian scalar product. A scalar product maps any two vectors
lv) and |w) into a complex number (lv),|w)). A complete, separable vector
space® with a Hermitian scalar product is called a Hilbert space. The Hermitian

3 A normed vector space is complete if all Cauchy sequences converge in it; then all norm-convergent infinite
sums always have a unique vector as their limit. The space is separable if there exists a countable set of vectors
{le.)} which is dense everywhere in the space. Separability ensures that all vectors can be approximated
arbitrarily well by finite combinations of the basis vectors.
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scalar product satisfies the usual axioms, while the hermiticity means that

(lv) , [w)) = (jw), [v))",

where the asterisk * denotes the complex conjugate.

The scalar product allows us to establish a one-to-one correspondence between
“bra”- and “ket’-vectors. We say that the “bra”-vector (v| corresponds to a “ket”
vector |v) if

(vlw) = (v), [w))

for any vector |w). The scalar product of two “bra”-vectors (w| and (v| can then
be defined as

(w], () = (Jv), [w)) ,

and the dual space also becomes a Hilbert space. Because the original Hilbert
space and its dual space are isomorphic, we can “identify” them from now on and
consider |v) and (v| as simply different symbols designating the same quantum
state. The scalar product (|v), |w)) can then be always written in somewhat more
concise form as (v|w).

Exercise 2.5
Verify that the “bra”-vector a* (v|+ 8* (w| corresponds to a “ket”-vector a |v) + B |w).

2.5 Operators, eigenvalue problem and basis in a Hilbert space

Operators An operator A maps a vector space to itself; it transforms a vector
|v) to the vector |w) = A |v). For example, the identity operator 1 does not change
any vectors: 1|v) = |v). In quantum theory it is enough to consider only linear
operators for which

A(alv)+Bw)) = ad |v) +BA|w) .

The product of two operators A and B is defined in a natural way as

(A-B) vy = A (ia|v>)
for any vector |v). Generically, operators do not commute with each other, that
1S,
[A, B]=AB—BA+#0.
The notation (v| A |w) denotes the scalar product of the vectors |v) and Alw)
and the quantity (v| A |w) is also called the matrix element of the operator A
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with respect to the states |v) and |w). Acting on a “bra”-vector (v| the operator
A produces the “bra”-vector (| A, such that

(0l A) ) = (o] A )

for any |w).
Let us consider a “ket”-vector

|g) = Alv).

To the “ket”-vectors |g) and |v) there correspond the “bra”-vectors (g| and (v|
respectively. Generically, (g| # (V| A, and the vectors (g| and (v| are related by
another operator A',

(gl = (v| AT,

which is called the Hermitian conjugate of operator A. Because (g|w) = (w|g)*
we have

(o] AT ) = (Gl A |v>)*. 2.21)

It is easy to see that the operation of Hermitian conjugation has the following
properties:

(A+B)=AT+B"; (AT =1*AT; (AB)'=B'A".

The following subsets of all operators play a particularly important role in a
quantum theory: Hermitian operators for which AT = A, skew-Hermitian operators
satisfying BY = —B, and unitary operators: Uio=00"=1.

Eigenvalue problem Given an operator A one can consider the equation

Alv) =vv). (2.22)

The vector |v) # 0 satisfying this equation is called an eigenvector of the operator
A corresponding to the eigenvalue v.

According to quantum theory the result of any measurement of some quantity
corresponding to an operator A is always an eigenvalue of this operator. Therefore,
observables must be described by operators with real eigenvalues. Setting |w> =
|v) in equation (2.21) and assuming that |v) is an eigenvector of an operator A we
find that if this operator is Hermitian, AT = A, then its eigenvalues are always real.
This motivates an important assumption made in quantum theory: the operators
corresponding to all observables are Hermitian.

Remark The operators of position g and momentum p must be Hermitian, g = ¢ and
ph= p The commutator of two Hermitian operators A, B is anti-Hermitian: [A Bl =
—[A B] Accordingly, the commutator of g and p contains the 1mag1nary unit . The
operator pg is neither Hermitian nor skew-Hermitian: (pq) =gp=pg+ inl #+ +pg.
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Eigenvectors of an Hermitian operator corresponding to different eigenvalues
are always orthogonal. This is easy to see: if |v;) and |v,) are eigenvectors of an
Hermitian operator A with eigenvalues v, and v,, then (v, | A = v, (v;] because
vy is real. Consequently,

<U1|;4 [vy) = vy (v1]vp) = vy (vy]vy)

and (vy|vy) =0 if v; # v,.

Basis in Hilbert space In an N-dimensional vector space, one can find a
finite set of linearly independent vectors |e;), ..., |ey) and uniquely express any
vector |v) as a linear combination of these vectors,

N
lv> = Z Uy len> .
n=1

The coefficients v, are called the components of the vector |v) in the basis
{le,)}. In an orthonormal basis satisfying (e, |e,) = 8,,,, the scalar product of
two vectors |v), |w) is expressed through their components v, w, as

N
(vlw) = 3 vyw,.
n=1

By definition, a vector space is infinite-dimensional if no finite set of vectors
can serve as a basis. In that case, one might expect to have an infinite countable

basis |e;), |e;), ..., such that any vector |v) is uniquely expressible as
vy =Y v,le,). (2.23)
n=1

However, the convergence of this infinite series is a nontrivial issue. For instance,
if the basis vectors |e,,) are orthonormal, then the norm of the vector |v) is

<v|v> = (Z v;kn <em|) (Z Uy Ien>> = Z |Un|2' (224)
m=1 n=1 n=1
This series must converge if the vector |v) has a finite norm. Therefore, for
example, the sum Y%, n?le,) does not correspond to a vector that belongs
to a Hilbert space. The coefficients v,, must fall off sufficiently rapidly so that
the series (2.24) is finite and only in this case is it plausible that the infinite
linear combination (2.23) converges and uniquely specifies the vector |v). This
does not hold in all infinite-dimensional spaces. However, as we have already
mentioned, the required properties, known in functional analysis as completeness
and separability, are fulfilled in a Hilbert space. When defining a quantum theory,
one always chooses the space of quantum states as a separable Hilbert space. In
some instances we have to “enclose” the system inside a large finite box and only
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then will a countable basis {|e,)} exist. Once an orthonormal basis is chosen,

any vector |v) is unambiguously represented by a collection of its components

(v1, vy, ...). Therefore a separable Hilbert space can be visualized as the space of

infinite sets of complex numbers, |v) = (v, v,, ...), such that the sums Do |v,l|2
o0

converge. The convergence guarantees that all scalar products (v|w) =32 v w,
are finite.

Example 2.7 The space L? of square-integrable wave functions ¥(q) defined
on an interval @ < g < b is a separable Hilbert space, although it may appear to
be “much larger” than the space of infinite rows of numbers. The scalar product
of two wave functions i, (q) and ¥,(q) is defined by

b
(s = /a Wi (9)a(q)dg,

and the canonical operators p, g can be represented as linear operators in the
space L? that act on functions §(g) as

Bi(g) > —ih%, 71 9(@) > ¥ (q). (2.25)

It is straightforward to verify that the commutation relation (2.20) holds.

Remark When one considers a field ¢(x) in an infinite three-dimensional space, the
corresponding space of quantum states is not separable. Therefore, to obtain a mathe-
matically consistent theory, we need to enclose the field inside a finite box and impose
appropriate boundary conditions.

Decomposition of unity Let {|e,)} be a complete orthonormal basis in a
separable Hilbert space. Then any vector |v) can be written as

oo

W)=Y vnlen) = 3 (enl) len) = {3 len) (enl ) 1)
n=1 n=1

n=1

Hence, the identity operator 1 can be decomposed as

i = Z |en> <en| .
n=1

The symbol |e,) (e,| must be interpreted as the operator which acts on a vector
|v) according to the rule

[v) = (len) (ex]) v) = (e, V) |ey) -

It projects a vector |v) onto the one-dimensional subspace spanned by |e,,). Thus,
the identity operator 1 can be written as a sum of projectors onto orthonormal
basis vectors.
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The choice of basis in Hilbert space corresponds to a choice of a certain
representation in quantum theory (for example, coordinate or momentum repre-
sentation). The decomposition of unity is very useful for establishing the relation
between different representations (“coordinate systems”).

Remark One must carefully distinguish the symbols (w|v) and |w) (v|. The first one is
a number, while the second is the operator which acts on the “ket”- and “bra”-vectors as

(Iw) (v} |g) = (vlg) lw) and (g| (lw) (v]) = (g|w) (v| respectively.

2.6 Generalized eigenvectors and basic matrix elements

We can build a basis in a Hilbert space if we take all eigenvectors of a suitable
Hermitian operator. This operator must have a discrete spectrum because its
eigenvectors must form a countable set.

In calculations, however, it is often more convenient to use as a basis in Hilbert
space the eigenbasis of the major operators ¢ and p. The position operator has a
continuous spectrum and its eigenvalues are all possible generalized coordinates
g. Therefore, it turns out that the operator g has no eigenvectors which belong
to a separable Hilbert space. It is possible, however, to extend a Hilbert space
to a larger vector space and introduce the “generalized vectors” |g) that are the
eigenvectors of operator g. Assuming the completeness of the basis {|g)} we can
expand a vector |{) as

) = [ day(a)la). (2:26)

Note that i) belongs to the Hilbert space while the generalized vectors |g) do
not. This is very similar to the situation in the theory of distributions (generalized
functions), where for example the delta-function, 6(x —y), is well-defined only
when applied to some function f(x) from the space of base functions.

Since the operator § is Hermitian, its different eigenvectors |q;) and |g,) are
orthogonal:

(411g2) =0 for q; # q,.

The generalization of the decomposition of unity for the case of continuous g
must be

i=[dqla)al. (227)

Substituting this decomposition into (2.26) we obtain

|4) =/dq¢(q)i|q> =qudq/ ¥(q) (Q’Iq)\q’)=/dq’tlf(q’) 7)
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and hence the identity
¥(q) = [ daw(9)lq'lq)
must be satisfied for an arbitrary i (¢). This is possible only if

(q'lq)=8(¢q' - q).

Thus, the basis {|g)} is normalized on the delta-function and in particular (g|q) =
8(0) is undefined. Generally, the matrix elements such as (q] A lg’) are also
distributions.

The basis {|p)} of generalized eigenvectors of the momentum operator p is
constructed in a similar way and has the same properties as the basis {lo)}.

Below we will use the commutation relation (2.20) to calculate the basic matrix
elements for the position and momentum operators.

The matrix elements (q,|p|q,) and (p,|§|p,) To determine (g1 P 1qn) let
us consider the matrix element of the commutator [§, p):

(a1l1a. P92) = a11ah ~ palax) = (a1 — @) (1| Plan) -

Taking into account the commutation relation (2.20) we find that on the other
hand

(1l1q Pl1g2) = {q| ih|gy) = ihd (¢, — @) .

Therefore the matrix element {q,|p|q,) = F (91- q;) must satisfy the equation

ihd (q; — q2) = (91 —a2) F(q1, ). (2.28)

To solve this equation for F(q,, ¢,) we cannot simply divide both sides by ¢, — ¢,
because the expression obtained, x~'8(x), is undefined. Therefore we first apply
the Fourier transform to (2.28). Introducing the variable 4 = q) — g, and taking
into account that

[ 8@errag =1,
we obtain
ih= [ gF (a1, 41— q)e""9dg = i%f F(q1, 91— q) e""dg.
Integration over p gives

hip+C(q) = / F(qy,q,—q) e 'Pdq,

where C (g,) is an undetermined function. The inverse Fourier transform yields

1 l. L9
F(q, q) = E/(hPﬁLC)epqu: [—lha‘f‘c(fh)]a(‘h“‘b)’
1
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and hence
"CTh1dr) = F1R0" cqr =43 ) ¥ g1 Oty —4d) R22y)
where the prime denotes the derivative of 6(g) with respect to ¢ = q; — ¢,. The
function C(q, ) cannot be determined from the commutation relation alone because
the replacement of the operator p by p+ c(g), where ¢ is an arbitrary function,
does not destroy the commutation relation. The above transformation changes the
matrix element (q;|p|g,) by the term c¢(q,) 6 (g, — q,) and therefore the term

proportional to d (g; — ¢,) in (2.29) can always be removed by redefinition of the
operator p. Thus the final result for {q;|p|q,) is

(@11 Plap) = —ihd' (g1 — q2) . (2.30)

Remark Note that for a given p the term C(gq,)6(q; — ¢,) in (2.29) can be removed
by redefining the basis vectors |¢) themselves. Multiplying each |g) by a g-dependent
phase,

|3) =7 q).
we obtain
(@11 P182) = hc'(9)8 (9, — q2) — ihd' (g, — ¢,) + C (1) 6 (g, — @) -
The function ¢(q) can always be chosen such that C(q,)8(q, — ¢,) is canceled.

Because ¢ and p enter the commutation relation on the same “footing” (up to the
sign) the matrix element {p;| g |p,) can be immediately inferred by interchanging
q <— p in (2.30) and changing the sign:

(P11d1p2) = ihd" (py — p) - (2.31)
The matrix elements (p|q) To calculate {p|g), we consider the matrix element
(plpla) =p(plq). (2.32)

On the other hand, we have

plpla) = ol | [ darlan) @il | 1oy = [ day pla) (arl pla) = ih% (pla).

(2.33)
where we have substituted the expression in (2.30) for {(q,| p|q). Comparing
(2.32) and (2.33) we obtain

p{plg) = ihai (rlq) -
q

Similarly, considering the matrix element (p| g |q), one derives

4(pla) = ih~- (pla) .
P
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Integrating these equations, we find

gy =Ciprewn[ -], (ol =cx@exe| 52 .

respectively. The above solutions are compatible only if C,(p) = C,(g) = const,
and thus

(plg) = Cexp [—i-pﬁ(zjl ; (2.34)

where the constant of integration C is determined (up to an irrelevant phase factor)
by the normalization condition C = (27rk)~!/2 (see Exercise 2.6). Thus, the final

result is
exp [_52_61] . (2.35)

. _ 1
Exercise 2.6

Let |p), |g) be the 6-normalized eigenvectors of the momentum and the position operators,
ie.

pley =pilpy. (P =8(pi—p2)s

and the same for §. Show that the coefficient C in equation (2.34) satisfies |C| =
(2mwh)~12.

2.7 Evolution in quantum theory

Heisenberg picture In the limit 1 — O the expectation values of the position and
momentum operators must satisfy the classical equations of motion. Therefore the
simplest way to implement the time evolution in quantum theory is to postulate
that the state vector of the system is time-independent, while the operators g (t)
and p () satisfy the “Hamilton equations of motion™:

L= panron. o
where p, § are substituted into dH/dq, 0H/dp after taking the derivatives. The
syppmesiaosNothacigbthandside ate well:defined if._the _Hamiltovian H _is.a

polynomial function in p and g. The operator ordering induces the terms which
are proportional to i and hence does not influence the classical limit. Most non-
polynomial functions can be approximated by polynomials and therefore below we
shall not dwell on the mathematical details of defining the operator H = H (P, ¢, t)
for a general case.

Of course, ultimately the correct form of the quantum equations of motion is
decided by their agreement with experimental data. Presently, in most cases a

oH . .
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theory based on the “classical equations of motion” for the D, q operators is in
excellent agreement with experiments.
It is convenient to rewrite the equations

dg oH . . dp  oH . .
49 _%7 s, Lo 237
= ap(pq) - aq(pq) (2.37)

in a purely algebraic form. Using the identities (see Exercise 2.7):
A n a L Of L o L Of .
G fp. =i (3.9, [b.f.DI=—-ih~(P.9),
op dq

the equations (2.37) become:

dq i N dp i[. »

a9 _ ! H] _=———[,H], 2.38

dt h [q dt n P (238)
They are called the Heisenberg equations of motion.
Exercise 2.7
(a) Using the canonical commutation relation, prove that

(@, q"p") = ilng"p"~".

This relation can symbolically be written as
famant r O aman
[.4"P") = ihoe (§7P") -
p

Derive the similar relation for p,

A oaman . d amAan
[, p"q"] = ~ih—= (P"q") -
q
(b) Suppose that f(p, q) is an analytic function in p, g given by a series expansion
that converges for all p and ¢. The operator f (P, ) is defined by substituting the
operators p, g into that expansion (the ordering of g and p must be somehow fixed).

Show that
3
(. f(P.9)] = iha—ij-f . 9)- (2.39)

Here it is implied that the derivative /dp acts on each p with no change to the
operator ordering, e.g.

Exercise 2.8
Show that an operator A = f (p, g, t), where f (p, ¢, t) is an analytic function, satisfies
the equation

i

- [A, H] + iy (2.40)

d -
—A=—
dt ot
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So far we have considered the time-dependent operators g(1), p(r) that act
on fixed state vectors [if); this description of quantized systems is called the
Heisenberg picture.

Schridinger picture An alternative way to describe the time evolution in
quantum theory is to refer the time dependence to the state vector assuming that
the operators are time-independent. In fact, what is relevant for the measurements
is not the operators themselves, but only their eigenvalues and the expectation
values. It turns out that the time evolution of the expectation values can be
entirely encoded in [1)(r)). Let us consider for simplicity an operator which does
not depend on time explicitly, that is, A = f(p, §). The general solution of
equation (2.40) is then

A(r) = exp [% (r—1t5) H] Agexp [—% (t— zo)ﬁ} , (2.41)

where AO = A (1)) = const, and for an arbitrary quantum state |tpy) the time-
dependent expectation value of A(7) is

(A1) = (ol A() Ih) = (o eh1=10) A= RIII=10) |y y

This relation can be rewritten using a time-dependent state

(1)) = &= #1010 [y (242)
and the time-independent operator 210 as

(A(D) = (D] A [9(1)) .

The description of dynamics using evolving state vectors and time-independent
operators is called the Schrddinger picture.

Taking the time derivative of (2.42), we find that the state vector |(1)) satisfies
the Schrédinger equation,

) gy, (2.43)

The above quantization procedure is equally well applicable to nonrelativistic
mechanics, to solid state physics (a very large but finite number of degrees of
freedom), and to relativistic field theory (infinitely many degrees of freedom).
In the case of a system with local symmetries, some complications (mainly of
technical nature) arise, but the general idea of quantization remains the same. It is
clear that the Schrodinger equation (2.43) is simply a way to implement the Hamil-
tonian dynamics in quantum theory and it can be either relativistically invariant
or not, depending on the Hamiltonian of the physical system. If the Hamiltonian
H describes a relativistic system, then the corresponding Schrodinger equation
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is also relativistically invariant. For example, in field theory the Hamiltonian
depends on infinitely many degrees of freedom and, as we will see later, equation
(2.43) becomes a functional differential equation. The relativistic invariance
of this equation is not manifest and is only revealed with extra effort. This is
related to the fact that the quantization procedure is based on the commutation
relations which are naturally implemented only in the Hamiltonian approach,
where Lorentz invariance is also not manifest.

Remark: Schridinger equations The use of a Schrodinger equation does nor neces-
sarily imply nonrelativistic physics. There is a widespread confusion about the role of the
Schrédinger equation vs. that of the basic relativistic field equations: the Klein—Gordon
equation, the Dirac equation, or the Maxwell equations. It would be a mistake to think
that the Dirac equation and the Klein—Gordon equation are “relativistic forms” of the
Schrodinger equation (although some textbooks say that). This was how the Dirac and
the Klein-Gordon equations were discovered, but their actual place in quantum theory
is quite different. The three field equations named above describe classical relativistic
fields of spin 0, 1/2 and 1 respectively. These equations need to be quantized to obtain a
quantum field theory. Their role is analogous to that of the harmonic oscillator equation: they
provide a classical Hamiltonian for quantization. The Schrédinger equations corresponding
to the Klein—Gordon, the Dirac and the Maxwell equations describe quantum theories of
these classical fields. (In practice, Schrédinger equations are rarely used in quantum field
theory because in most cases it is much easier to work in the Heisenberg picture.)

Remark: second quantization The term “second quantization” is frequently used to
refer to quantum field theory, whereas “first quantization” means ordinary quantum
mechanics. However, this is obsolete terminology originating from the historical devel-
opment of QFT as a relativistic extension of quantum mechanics. In fact, a quantization
procedure can only be applied to a classical theory and yields the corresponding quantum
theory. One does not quantize a quantum theory for a second time. It is more logical to
say “quantization of fields” instead of “second quantization.”

Historically it was not immediately realized that relativistic particles can be described
only by quantized fields. At first, fields were regarded as wave functions of point par-
ticles. Old QFT textbooks present the picture of (1) “quantizing” a relativistic point
particle to obtain the Klein—-Gordon or Dirac equations, which are sometimes mistakenly
identified with the relativistic generalization of the Schrédinger equation; and (2) “second-
quantizing” the “relativistic Schrédinger wave function” to obtain a quantum field theory.
The confusion between Schrédinger equations and relativistic wave equations has been
cleared, but the old illogical terminology of “first” and “second” quantization persists. It
Is unnecessary to talk about a “second-quantized Dirac equation” if the Dirac equation is
actually quantized only once.

The modern view is that one must describe relativistic particles by fields. Therefore one
starts right away with a classical relativistic field equation, such as the Dirac equation (for the
electron field) and the Maxwell equations (for the photon field), and applies the quantization
procedure (only once) to obtain the relativistic quantum theory of photons and electrons.




