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The Casimir effect

Summary Zero-point energy in the presence of boundaries. Regularization and
renormalization. Casimir force.

The Casimir effect is an experimentally verified prediction of quantum field
theory. It is manifested by a force of attraction between two uncharged conducting
plates in a vacuum. This force cannot be explained except by considering the
vacuum fluctuations of the quantized electromagnetic field. The presence of the
conducting plates makes the electromagnetic field vanish on the surfaces of the
plates, causing a finite shift AE of the zero-point energy. This shift depends on
the distance L between the plates, and as a result there arises the Casimir force:

F(L) = —dL‘iL—AE(L).

This theoretical prediction has been verified experimentally.'

10.1 Vacuum energy between plates

A realistic description of the Casimir effect requires quantization of the electro-
magnetic field in the presence of conducting plates. To simplify the calculations,
we consider a two-dimensional massless scalar field ¢(z, x) between two plates
at x =0 and x = L, imposing the boundary conditions

¢, x)|,—0 = ¢, X) = =0,

which are supposed to be due to the presence of the plates. With these boundary
conditions the general solution of the classical equation of motion,

Fh—rp=0,

! For example, a recent measurement of the Casimir force to 1% precision is described in: U. Mohideen and
A. Roy, Phys. Rev. Lett. 81 (1998), 4549.
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becomes

dt,x)= Y (A,e i’ +Bnei“’"’) sinw,x, ,=

n=—00

|n| 7

L

(10.1)

In quantum theory only the modes present in (10.1) “survive” in the expansion
of the field operator ¢, which becomes

o 1 =2 si . .
o(t, x) = \/;Z o Z"x [a, e in! +21,’1Le"""’] . (10.2)
n=l| \Y n

The resulting zero-point energy per unit length between the plates is then

Lo irjoy = . > u f} (10.3)

gy = — =—) w,=-—=) n. .

7L 2L T2 =

Exercise 10.1

(a) Show that the mode expansion (10.2) yields the standard commutation relations
la,,a]=36,,.

(b) Derive (10.3).

Hinz: Use the identities which hold for integers m, n:

L L L
/ dx sin 7% sin 27X :/ dx cos T g TTX =8, (10.4)
0 L L 0 L L 2

10.2 Regularization and renormalization

The zero-point energy density & 1s divergent and must be first regularized and
then renormalized. A regularization means introducing an extra parameter (cutoff
scale) into the theory to make the divergent quantity finite unless that parameter
is set either to zero or infinity depending on the concrete regularization procedure
used. Usually there exist different possible ways to regularize the divergent quan-
tities. However, different regularization procedures (fortunately) lead to the same
final physical results. After a regularization, one obtains an asymptotic expansion
of the regularized divergent quantity at small (or large) values of the cutoff. This
asymptotic expansion may contain divergent powers and logarithms of the cutoff
scale, as well as finite terms. Renormalization gives a physical justification for
removing the divergent terms and leaves us with finite contributions responsible
for physical effects.

We shall now apply this procedure to (10.3). As a first step, we replace g, by
the regularized quantity

na

T o0
gy (L; a):E-EZnexp[—T], (10.5)
n=1
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where « is the cutoff parameter. It is easy to see that the series in (10.5) converges
for & > 0, while the original divergent expression i8 recovered in the limit a — 0.

Remark We regularize the series by exp(—na/L) and not by exp(—na) or exp(—nLa).
The motivation is that the physically significant quantity is @, = arn/L, therefore the
cutoff factor should be a function of w,.

A straightforward calculation gives

T 0
g (L; a):—i—ig&— ex
n=1

o] e (-2)

For small « this expression can be expanded in a Laurent series,

T i T T 1 a?
Loy T T T i—0() (006
(L) =g 5@ ~ a2 2412 T (L2> (10.6)

2L

As « —> 0, the first term here diverges as a2, the second term remains finite and
further terms vanish. The crucial fact is that the singular term does not depend
on the distance L between the plates and can be interpreted as the energy density
of the zero-point fluctuations in Minkowski spacetime without boundaries. This
zero-point energy density can be thought of as the limit of gy(L) as L — ©
and, as it is clear from (10.6), must be exactly equal to the first divergent term
in (10.6). On the other hand, we have agreed to ignore an infinite energy of
zero-point fluctuations in Minkowski space, assuming that this energy does not
contribute to any physically relevant quantities. This is the physical justification
for omitting the divergent contribution to (10.6).

Subtracting from (10.6) the vacuum energy density and removing the cutoff
(taking the limit o — 0), we obtain

Aéren(L) = lim [80 (L: )~ lim o (L; a)] = (07)
After we have decided to fix the normalization point and to attribute a “zero”
energy to vacuum fluctuations in Minkowski spacetime, there remains no more
freedom to renormalize the finite shift of the energy density due to the presence
of the plates. Therefore this energy shift is physical. The corresponding Casimir
force between the plates is

d

d Tr
Fe—d AR =— L (LAt = —5773
dL 77 (LBeren) = =747

where the negative sign tells us that the plates are pulled toward each other.
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A similar calculation in four-dimensional spacetime gives the Casimir force
per unit area between two uncharged parallel plates as

fe g
240

Remark: negative energy Note that the shift of the energy density in (10.7) is negative.
Quantum field theory generally admits quantum states with a negative expectation value
of energy.

Riemann’s zeta function regularization An elegant and quick way to cal-
culate the finite energy shift due to the plates is with the help of Riemann’s zeta
({) function defined by the series

()= ni (10.8)
n=1

which converges for real x > 1. An analytic continuation extends this function to
all (complex) x, except x = 1 where {(x) has a pole.
The divergent sum Y %° | n appearing in (10.3) is formally equivalent to the

series for {(x) with x = —1. The ¢ function obtained via analytic continuation is,
however, finite at x = —1 and is equal to?
1
—1)=——.
{(-)=—=

This motivates us to replace the divergent sum 3" | n in (10.3) by the number
—%. After this substitution, we immediately obtain the result (10.7).

At a first glance, this procedure may appear miraculous and lacking of physical
explanation of neglecting divergences, unlike the straightforward renormalization
approach. However, it has been verified in many cases that the results obtained
using the { function method are in agreement with more direct renormalization
procedures.

2 This result requires a complicated proof. See e.g. H. Bateman and A. Erdelyi, Higher Transcendental
Functions, vol. 1 (McGraw-Hill, New York, 1953).



