
Physics H190

Spring 2013

Homework 3

Due Wednesday, February 20, 2013

Reading Assignment: Please read the lecture notes for Wednesday, February 13, and make sure

you understand the Euler-Lagrange equations for classical fields.

At a later point (probably tomorrow) I will add a section to this homework assignment in which

I will discuss some of the questions that I have received.

1. A region of three-dimensional space is occupied by a medium with index of refraction n(x).

Let x0 and x1 be two points of space. Consider the space of paths x(λ), where λ is a parameter,

0 ≤ λ ≤ 1,

P = {x(λ)|x(0) = x0,x(1) = x1}. (1)

Consider the functional defined on paths in P ,

T [x(λ)] =
1

c

∫
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n(x)
ds

dλ
dλ, (2)

where c is the speed of light, and where s is the arc length along the path. Note that

ds
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. (3)

Compute the functional derivative,
δT (x(·)]

δx(λ)
, (4)

and by setting it to zero, obtain equations for the light ray connecting x0 and x1. Express the

equations of the path as a differential equation in which s is the independent variable, not λ.

2. In class and in the notes we worked out the equations of motion for y(x, t), which gives the

shape of the vibrating string. We assumed the string was undergoing only transverse motions, in

the y-direction.

Suppose the y-direction is vertical. Add a term to the Lagrangian to take into account the

gravitational potential of the string, assuming that g is the acceleration of gravity. What is the new

Lagrangian density? Work out the new equations of motion.

3. I will not ask for a question this week, but if you have one anyway you would like to send to

me, please do. It is not obligatory.

Answers to some questions.



– 2 –

Q1. My question for this week is about action extrema. You mentioned that the physical path is an

extremum of the action, and not necessarily the minimum. Could you give an example of a classical

system whose physical path is the maximum of the action? I initially thought a ball resting on a hill

(unstable equilibrium) would work, but the physical path action in that case is 0, while any other

path falling off the hill would have a positive action (L = T − V , T > 0, V = −T < 0, so integral of

L > 0 would be > 0). Also, I can’t think of a quantum system with a path of most action off of the

top of my head, but I’m sure there’s a good example for that as well.

A: The physical paths in the space of all paths connecting the given endpoints and end-times are

the ones that cause the action to be stationary, not necessarily extremum (maximum or minimum).

But many books state this principle incorrectly, saying that the physical path minimizes the action.

I think the student who asked this question must be thinking of physical paths only, since the

condition V = −T is conservation of energy when E = T + V = 0. But nonphysical paths need not

conserve energy. It is important to realize that most of the paths in the path space over which the

action functional is defined are not physical (that is, they do not satisfy Newton’s laws).

With that understood, we may ask when, if ever, the action actually is maximum or minimum,

instead of a saddle point or something else. Insofar as classical mechanics is concerned, it does not

matter, since the condition that the path be physical is merely that the first functional derivative of

the action should vanish.

But the question is of academic interest, and it turns out to be important in a semiclassical

analysis of the path integral. For Lagrangians of the kinetic-minus-potential type, it turns out that

the action along the physical path is actually a minimum if the elapsed time is not too long, but

after a certain amount of time it becomes a saddle. The action is never maximum for these types of

Lagrangians.

Q2. In the notes from Classical Mechanics, section 6, Hamilton’s principle defines the quantity

A[q(t)] as the action associated with the path q(t). What sort of physical significance (if any) does

the action hold? The physical path is a critical point of the action functional, but does the action

manifest itself physically?

A: The action appears as the phase associated with the path in the Feynman path integral. This

is too elaborate to explain here, but I can post a set of notes from Physics 221A for those who are

interested. You may also want to look at the book by Feynman and Hibbs on path integrals.

In addition, the action A[q(t)] when evaluated along a physical path is the generating function

for the time evolution of the classical system. Again, it would take too much space to explain this,

but this fact was known to Hamilton and generating functions are covered in advanced courses in

classical mechanics.

The short answer is that the action A[q(t)], for both physical and nonphysical paths (that

is, nonphysical from a classical standpoint), does have a physical significance, partly in classical
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mechanics and partly in quantum mechanics.

Q3. I was wondering if you could briefly discuss the usefulness of functional and Lagrangian me-

chanics for our purposes moving forward in the course. I think I would have an easier time wrapping

my head around the concepts given a sense of where they will become useful.

A: We are going to be looking at some relativistic quantum field theories, as is necessary for the

topic of quantum effects in gravity. The description of quantum fields begins with the Lagrangian

for the classical field. We are building up the pieces we need, from classical Lagrangian field theory,

to relativistic quantum field theory. Phenomena such as the Casimir effect and the Unruh effect

require this background.

Q4. After reading your notes I feel like I have a better understanding of quantization of fields and

zero field energy. However, I have trouble understanding what is the Langrangian. Is it equivalent to

the 2D or 3D version of the velocity or equation of motion? I am taking Physics 105 at the moment

and we have not gone over the Lagrangian just yet. I feel like the concept of the Lagrangian and

the action principle is somewhat confusing. In addition, I have trouble understanding why we would

have to minimize something. I assumed that minimization was only for photons and light paths.

If the Lagrangian is the equation of motion then why must there be minimization if any motion is

possible?

A: The Lagrangian (or Lagrangian density, in field theory) is a scalar that implicitly contains within

it all the equations of motion. This is explained in the notes on classical mechanics that I posted,

and, in the case of field theory, in my lecture notes from last Wednesday.

From a purely classical standpoint it is a mystery why the equations of motion (Newton’s laws)

should have a variational formulation. (That is, the physical paths are the ones that cause the action

to be stationary.) In spite of this, the variational formulation of classical mechanics is very useful.

For example, Lagrangians provide the easiest way of transforming the equations of motion from one

coordinate system to another. The real significance of the variational formulation of mechanics,

however, is to be found in the Feynman path integral in quantum mechanics.

As mentioned, we do not minimize the action to get the physical paths, we only require that

it be stationary (the first functional derivative must vanish). Variational formulations were first

discovered for light rays (photons), but it was later realized that they also exist for mechanical

problems. The Lagrangian is not the equation of motion, but the equations of motion (the Euler-

Lagrange equations) can be obtained from the Lagrangian.

Q5. Is it possible to arrive at the Lagrangian formulation of classical mechanics without using

Newton’s laws? Though the equations of motion can be derived form Hamilton’s principle, how is

the form of the Lagrangian (i.e. L = T −V ) determined? In Physics105, the Lagrangian formulation
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was presented mostly as just a different way to solve problems, and L is essentially defined as T −V .

Is there a more fundamental reason for the form of the Lagrangian?

A: The Lagrangian is not always T − V . There is an extra term if magnetic forces are present,

and, in any case, this form is only valid for nonrelativistic problems. In relativistic problems, T is

replaced by a term which is not the kinetic energy. This is explained in the notes I posted on classical

mechanics, although not in the sections I asked you to read. One can say that the Lagrangian is

whatever makes Hamilton’s principle work, for a given set of equations of motion.

A more fundamental approach relies on relativistic covariance. According to relativity theory,

there is no privileged Lorentz frame, and the equations of motion should be the same in all Lorentz

frames. This is most easily achieved by making the Lagrangian (more generally, the action) a Lorentz

scalar. Requiring the Lagrangian to be a Lorentz scalar is a severe restriction on the form of the

Lagrangian, which in many cases determines it almost uniquely. This is the case for particle motion

in electromagnetic fields, for example. Again, this is discussed in the notes on classical mechanics,

although not in the sections I asked you to read.

Relativistic covariance determines the Lagrangian for a charged particle in an electromagnetic

field almost uniquely. If we then assume that there is no magnetic field, and the electric field is

static, and if we assume the particle is slowly moving and take the low velocity limit of the relativistic

expression, then we get the Lagrangian L = T − V , where V = qΦ (q is the charge of the particle,

Φ is the electrostatic potential).

Q6. I had a question about last week’s lecture – how do you create a Lagrangian or a Hamiltonian

for a magnetic field, since there is not a scalar potential that can create it?

A: See the previous question and answer. In the low velocity limit, the Lagrangian for a particle of

charge q and mass m in an electromagnetic field described by scalar and vector potentials Φ and A

is

L =
m

2
|ẋ|2 − qΦ+

e

c
ẋ ·A. (5)

It was shown in lecture how this Lagrangian leads to the Hamiltonian,

H =
1

2m

(

p−
q

c
A
)2

+ qΦ. (6)

Q7. I was wondering if minimizing functionals are always unique. In the examples of path of light in

different media that we went over in class, there was only one path that minimized the time traveled,

and it seemed to me that functionals would be very practical if they had unique minimizing solutions.

Also, similarly, do functionals always have solutions?

A: Just like when you look for extrema of ordinary functions (even functions of one variable, like

y = f(x)), there may be more than one maximum or minimum (more generally, critical points), or
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there may not be any. It is true that the optics problems we considered in lecture had only one

solution.

Many books state state this incorrectly, saying that given endpoints and end-times, there is

a unique classical trajectory connecting the two. That this is not so is easily seen in some simple

examples, such as the particle in the box (for which there are an infinite number of trajectories,

given endpoints and end-times).

In the case of the harmonic oscillator, the trajectory is unique for most times, but for special

times (multiples of a half-period) there are either an infinite number of solutions, or none at all,

depending on the endpoints.

Q8. Can we generalize the notion of a derivative of higher order functions? We have a hierarchy:

parameter, function, functional, function of a functional, etc.

This is more like a math question than physics, but I was just curious.

A: Yes, there is the functional derivative, which was discussed in class and in the posted notes. It’s

important for this course. One can also define second, third, etc functional derivatives. For example,

the second functional derivative of a functional F [x(t)] can be denoted,

δ2F [x(·)]

δx(t) δx(t′)
. (7)

It is the generalization of the second partial derivative of an ordinary function of several variables,

∂2f

∂xi∂xj

, (8)

where f = f(x1, . . . , xn), in which the discrete indices i and j are replaced by continuous “indicices”

t and t′. The second functional derivative is discussed in the book.

Q9. In the lecture last week I was a little bit confused when we were dealing with the matrix that

represents δ2(f)/δ(xi)δ(xj). We said when some of the eigenvalues of this matrix are positive and

some of them are negative, then we have a saddle. But whenever I’ve dealt with saddles in the past,

I’ve used the relation that the double derivative of the function we’re looking at is equal to zero. So

wouldn’t a saddle mean that we’d have to in fact look at the 3rd order term? Or is this not the case

because we’re looking at partial derivatives with respect to two different variables?

A: You must mean the matrix in i and j shown in (8). I think you’re confusing a saddle (which

applies to functions of many variables, here f(x1, . . . , xn)) with an inflection point (a point of a

function of one variable, f(x), where f ′′ = 0). A saddle is where some of the eigenvalues of the

matrix (8) are positive, and some negative. I didn’t attempt to draw a saddle in lecture, because it’s

hard, but a mountain pass gives the right idea. The generalization of an inflection point to many

variables is a point at which some of the eigenvalues of the matrix (8) are zero.
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Q10. As I was reading your notes on the form of the Lagrangian for relativistic applications I was a bit

confused as to why we require a covarient formulation? What are the benefits of such a formulation

over a contravarient formulation?

A: Confusing point. The word “covariant” is used in two different senses in tensor analysis. It is used

to describe a certain transformation law for vectors (called covariant vectors), which is in contrast to

the contravariant transformation law (a different kind of vector, the contravariant vectors). But the

word “covariant” is also used to describe a set of equations that have the same form in all coordinate

systems (of some given class). For example, Maxwell’s equations are covariant (have the same form)

in all Lorentz frames.

Maxwell did not know this, he thought his equations were valid in only one frame, the frame of

the “ether.”

Q10. Why are some Lagrangians that we encounter in classical mechanics manifestly Galilean-variant,

whereas those in field theory are manifestly Lorentz invariant?

For example, consider the simple Lagrangian:

L =
1

2
mv2, (9)

where v is just ẋ. under the Galilean boost v → v + a (where a is some constant velocity), the

Lagrangian picks up additional terms:

L′ =
1

2
m(v2 + a2 + 2va), (10)

which breaks the symmetry; that is, L 6= L′. However, all the Lagrangians in field theory are

manifestly Lorentz invariant – one of the ways we can motivate the free field Lagrangian is to write

down the Lorentz invariant terms associated with the field. Shouldn’t we try to ensure the Galilean

invariance of our Lagrangians in classical mechanics?

A: I think this student must have meant, “Why are some Lagrangians that we encounter in classical

mechanics not manifestly Galilean-variant, whereas those in field theory are manifestly Lorentz

invariant?”

Actually, what we want is that the equations of motion should be the same after doing the

transformation (Galillean or Lorentz). If the Lagrangian is invariant, then the equations of motion

are the same, but there are changes to the Lagrangian that will not affect the equations of motion.

First, if a constant is added to the Lagrangian, that will not affect the equations of motion, because

adding a constant to the Lagrangian just adds a constant to the action, and doesn’t affect the

stationary paths. So the term (1/2)ma2 in (10) doesn’t affect the equations of motion, and can be

dropped.

Second, we can add the total time derivative of any function of q and possibly t to the La-

grangian, without affecting the equations of motion, that is, we can make the replacement,

L → L+
df(q, t)

dt
, (11)
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where
df(q, t)

dt
=

∂f

∂t
+

∂f

∂q
q̇. (12)

This is because the extra term causes the action to change by

∫ t1

t0

dt
df(q, t)

dt
= f(q1, t1)− f(q0, t0). (13)

This is constant (the same for all the paths in path space), and so does not affect the paths that

cause the action to be stationary. The term (1/2)(2mva) in (10) is of this form,

mva =
d

dt
(mvx). (14)

Altogether, we see that certain changes in the Lagrangian do not affect the equations of motion;

these are allowed under transformations when the equations of motion are supposed to be form-

invariant.


