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The subject of electric and magnetic energy in the presence of matter (dielectrics and

magnetic materials) is one that has confused generations of physicists. One reason is that

many books treat this subject incorrectly, including Griffiths and Jackson. I suspect Landau

and Lifshitz (The Electrodynamics of Continuous Media) do it right, but I haven’t checked.

Where the books go wrong is that they try to analyze the energy balance without regard

for thermodynamic considerations. See Griffiths, Introduction to Electrodynamics, 3rd ed.,

p. 191, or Jackson, Classical Electrodynamics, 3rd ed., p. 165.

In this problem we concentrate on the electric case, because the analysis is somewhat

simpler than the magnetic case, but the practical applications tend to be magnetic. Even

if not practical, the electric case is good practice before trying to understand the magnetic

case. First some background from electrostatics.

If you have a piece of dielectric, and you bring in some charge from infinity into the

neighborhood, then the electric field of the charge polarizes the molecules in the dielectric

and creates a nonzero polarization P (defined as the dipole moment per unit volume) inside

the dielectric. See Fig. 1. The polarization creates its own electric field that adds to the

field of the external charge, creating a total electric field. The individual dipoles that create

P respond to the total electric field, so it may not be an easy problem to calculate P, given

the external charge distribution, since the solution must be self-consistent. Nevertheless,

given some external (or “free”) charge distribution, there is some definite P set up inside

the matter and some definite total E (electric field) that results everywhere in space.

The electric field produced by the dipoles can be computed if P is given. It is the field

produced by the “bound” charged distributions, of which there is a volume distribution ρb

and a surface distribution σb (that is, at the surface of the dielectric), where ρb = −∇ · P

and σb = n̂ ·P, where n̂ is the outward normal to the surface.

A linear dielectric is one in which P is proportional to E (this is the total electric field,

not just that produced by the external charges). In SI units, we write

P = ε0χE, (1)

where χ is the electric susceptibility.
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For any dielectric, linear or nonlinear, we define the displacement by

D = ε0E + P, (2)

which implies the Maxwell equation,

∇ ·D = ρf , (3)

where ρf is the charge density of the external or free charges.

A standard analysis presented (correctly) in all the books concerns the amount of work

δW that must be done to bring up some additional increment in free charge δρf , given some

ρf that is already present and the fields P, E and D that are produced by it. This work is

δW =

∫
d3x δρf (x)Φ(x), (4)

where Φ is the electrostatic potential, so E = −∇Φ. This is just simple electrostatics. Now

using ∇ ·D = ρf and hence ∇ · δD = δρf , we can use integration by parts to turn Eq. (4)

into

δW =

∫
d3xE · δD. (5)

This is also done correctly in all the books.

All we have done is compute the work required to change the external charge distribu-

tion by a small amount. You might be more interested in finding the total work required

to bring in the whole external charge distribution, not just a small increment. The books

correctly point out that this is a hard problem in general, especially for nonlinear dielectrics,

because of the difficulty of the self-consistent calculation of P. So, they say, let’s look at

linear dielectrics.

Here is what they now say. For a linear dielectric, Eqs. (1) and (2) imply

D = εE, (6)

where

ε = ε0(1 + χ). (7)

Thus, D, E and P are all proportional to each other, and, in particular,

δD = εδE. (8)

Thus,

δW =

∫
d3x εE · δE = δ

∫
d3x

ε

2
E2, (9)
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or, assuming that W = 0 when E = 0,

W =

∫
d3x

ε

2
E2 =

1

2

∫
d3xE · D. (10)

Precisely speaking, this result is incorrect, because when you bring in some small

increment in external charge δρf , you change the thermodynamic state of the dielectric, in

particular, its temperature. Since the susceptibility χ or dielectric constant ε are in general

functions of temperature, they also change. Thus, one must add a term (δε)E to Eq. (8),

and one can no longer add up the small increments to get the answer (10). Alternatively,

one could hold the dielectric in contact with a heat reservoir so its temperature (and hence

χ and ε) remains constant, but then when you bring in the external charge, heat flows into

or out of the system, and this heat must be included in the energy balance.

1. In this problem we consider a parallel plate capacitor. See Fig. 2. We assume that

the spacing between the plates is small compared to the linear dimensions of the plates

themselves, because this allows us to ignore fringe fields. Thus, by symmetry, E, P and

D are all in the same direction (up, in the figure), and we can describe them by their

magnitudes E, P and D. A certain free charge density σf is spread uniformly over the

lower plate, with and equal and opposite charge density on the upper plate. By Gauss’ law,

σf = D. Notice that σf = D is a parameter under experimental control. Φ is the potential

difference between the upper and lower plate. Since P is uniform in the dielectric, the

bound volume charge density ρb vanishes, but the bound surface charge density is nonzero.

The bound surface charge layer lies adjacent to the free charge layer and partially cancells

it, reducing the electric field and hence the potential between the plates below the value it

would have (for equal σf ) in the absence of a dielectric.

We take the dielectric to be a polar gas, such as HCl, in which the molecules are small

dipoles. We do not assume that the response is linear, meaning that electric fields may

be large or temperatures low. The polar molecules tend to align in the electric field, but

thermal agitation tends to knock them out of alignment, so for fixed electric field, the net

alignment (hence P) is a decreasing function of temperature. The average polarization of

a dipole in a given electric field can be computed by statistical mechanics, which gives the

Langevin equation, but we will not need this.

In class and the notes we have considered this system, and we decided that the first

law of thermodynamics takes the form,

dQ = dU + P dV − V E dD,
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for infinitesimal, reversible processes. Don’t confuse the pressure P with the polarization P

(easy, since in this problem we don’t use the pressure). Here V is the volume of the dielectric,

which in this problem will not change (hence the P dV term will be zero). The last term is

the same as Eq. (5), with the integral carried out over the volume of the dielectric, but with

an opposite sign since in thermodyanamics we talk about the work done by the system, not

the work done on the system.

(a) Suppose the charge on the plates is held fixed, but the the dielectric is heated. Does

E increase or decrease? Use physical reasoning to get your answer.

(b) Suppose the dielectric is thermally isolated, and some extra charge is added to the

plates (hence D increases). Does the temperature of the dielectric go up or down? Hint:

Consider cross derivatives of the free energy F = U − TS to get the answer. I was not able

to justify this answer by any obvious “physical” reasoning, but perhaps you can do better.

(c) In this part assume for simplicity that the dielectric is linear. Consider an initial state

in which there is some charge on the dielectric. Plot this as a point in the E-D plane. Sketch

an isothermal curve starting at this point, as D is increased. Then sketch other isothermal

and/or adiabatic curves, forming a Carnot cycle. The cycle should convert thermal energy

into electrical energy (charge is placed on the plates at one potential, and removed at a

higher potential).


