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Near-exact fo rmulation

of transport theory

OUR TREATMENT of transport processes in the preceding chapter left much {0 be
desired. We assumed the existence of a relaxation time r and had only approxi-
mate means of caleulating this quantity. More important, we did not treat
the effects of collisions in a detailed way. Thus we neglected correlations
between molecular velocities before and after a collision, i.e., persistence of
velocity effects. We shall now formulate the problem in a more rigorous and
satisfactory way without using the concept of a relaxation time. The procedure
will be to write down an equation for the distribution function f(r,v,f) directly
in terms of the scattering cross section o for binary collisions between the mole-
cules. The solution of this equation provides, in principle, a solution of the
physical problem. Since the equation is quite complicated, the task of solving ‘
it is not easy, and approximation methods must again be used. Nevertheless,
despite increased complexity, there is an important advantage in formulating
the problem in this way. The reason is that the point of departure of the
theory is an equation which is fairly rigorous. Hence general theorems can be
proved and systematic approximation procedures developed. On the other
hand, if one starts from the simpler formulations of the preceding chapter, it is
difficult to estimate the errors committed and to know how to correct for
certain effects (like persistence of velocities) in a systematic way.

14.+ 1 Description of two-particle collisions

We begin our discussion by considering in detail collisions between two mole-
cules. Throughout this chapter we shall assume that if the molecules are not
monatomic, their states of internal motion (e.g., rotation or vibration) are
unsafiected by the collisions. Thus the two molecules under consideration can
be treated as simple particles with respective masses m, and ma, position vectors
r1 and ry, and velocities v; and »,. The interaction between these particles
depends then in some way on their relative positions and velocities. (If the
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particles also have spins, we assume for the sake of simplicity that their inter-
action does nel depend on their spins.)

The eollision problem can be much simplified by an appropriate change of
variables. Conservation of the total momentum implies the relation

miv, + mav; = P = constant (14-1-1)

Thus the velocities v;(t) and vy(f) are not independent, but must always satisfy
the relation (14-1-1). The other quantity of physical interest is the relative

velocity
v, —ve =V (14-1-2)
One can then use (14-1-1) and (14-1-2) to express v; and v, in terms of P
and V. Thus
(m1 + mg)v1 =P + sz}
(ml + 'l"l’tz)’l?g = P — le
or v =c+ m# VI
: (14-1-3)
Vg = € — —”'-" VS
me
N P w1+ Mate 1.
where €= e m, T ms {(14-1-4)
is the time-independent velocity of the center of mass; i.e.,
_dr.
7
where . = wﬂ (14 i. 5)
my + Ma

is the position vector of the center of mass. In addition, we have introduced
the quantity
M

_Mae 4.1-6
my + me (1 )

M =
which is ealled the “reduced mass” of the particles.
The total kinetic energy K of the particles becomes by (14 1-3)

K = dmuw? + dmav? = F(m1 + mo)e® + +ulV? (14-1-7)

Consider now a collision process. Denote the velocities of the two par-
ticles before they interact with each other in the collision process by v1 and v:;
denote their respective velocities after the collision by v,’ and vs’. In terms of
the new variables the situation is described in a particularly simple way. The
center-of-mass velocity ¢ remains unchanged as a consequence of conservation
of momentum. The relative velocity changes from the value ¥ before the
collision to the value ¥’ after the collision. We assume the collisions to be
elastic so that the internal energies of the molecules remain unchanged. Then
the kinetic energy K remains unchanged in a collision, and it follows, by
(14-1-7), that V2 also remains unchanged so that |[V'| = |V]. Hence the only



04/07/2005 08:56 FAX 1 510 643 8497 Physics Dept UC Berkeley doo3 /032

Fig. 14°1-1 Geometrical construction based on (14-1-8) arnd illustrating an
elastic collision process. Consider the original momenta p, = mv and

P2 = Mat; represerited by the vectors A_é and aﬁ, respectively. Their vector
sum yields the total momentum P = (m; + mgle = .A—ﬁ, which remains un-
changed in time. Divide this vector AB in the ratio m,: m, to locate the

point O; then A0 = mic and OB = mae. Henee the vector O_Q represents pV.
Draw a sphere about O of radius 0Q. Then the final relative velocity must

be such that the vector pV' = ﬁa’ terminates somewhere on this same
sphere (although not necessarily in the same plane AB@Q). The final

momenta p;’ ahd p.’ are simply given by the vectors A_Q\’ and LTB Their
directions with respect to the original vectors p, and p, are then immedi-
ately apparent from the diagram.

effect of a collision is that P changes its direction without changing its magni-
tude. The collision process can thus be described by merely specifying the
polar angle ¢ and azimuthal angle ¢’ of the final relative velocity ¥’ with
respect to the relative velocity ¥ before the collision.

It is simplest to visualize the relationship between the veloeities before
and after the collision by considering the corresponding molecular momenta
P1, p: before and p.’, p,' after the collision. By (14-1-3) one has at all times

Py = mic + uV .
T e — gV (14-1-8)

The geometrical relationships are illustrated in Fig. 14-1-1.

Onre can correspondingly visualize (classically) the positions of the particles
at all times, In addition to the center-of-mass position vector r; of (14-1-5)
we introduce, corresponding to (14 -1-2), the relative position vector

rr—r=R (14-1-9)
Then, analogously to (14-1-3), one has
r*=r—-r. = mil
(14-1-10)
r*=r—r= _?‘%2

Thus the position r, of the center of mass moves with the constant velocity ¢ of
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Laboratory system Cenier-of-mass system

Fig. 14-1+2 Classical trajectories for two colliding particles illustrated in
the laboratory system and in the reference frame moving with their center
of mass (. :

(14-1-4). In the frame of reference which moves with the center of mass, the
collision process is described very simply: The position vectors ri* and ro*
of the particles relative to the center of mass are, by (14-1-10), at all times
oppositely directed, and their magnitudes have a fixed ratio so that

mln* = —‘mzrz*

The vector R joining the particles passes always through their center of mass.
If the force exerted on molecule 1 by molecule 2 is denoted by F. 12, it follows by
(14-1-8) that

dp, _ dR _

@ =P~ e
Hence the motion R(f) of molecule 1 relative to molecule 2 is the same as if it
had a mass u and were acted on by the force Fy;. The discussion of the two-
particle problem is thus reduced to the solution of a simple one-particle prob-
lem. With respect to particle 2 the scattering process appears as shown in
Fig. 14-1.3.

(14-1-11)

Fig. 14:1'3 Scattering process relative 10 molecule 2 regarded as fixed.
The polar scattering angle is denoted by ¢'. Classicelly, various scattering
angles ¢ correspond to different values of the impact parameter b, the dis-
tance of closest approach of the molecules if there were no interaction
between them.
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14- -2 Scattering cross sections and symmetry properties

Molecules having initially veloeities »; and v; can get scattered in their relative
motion through various angles 8’ and ¢’ (depending classically on the value of
the initial impact parameter b). If the only information available are these
initial veloeities v, and vs {(and quantum mechanieally this is all the information
one can possibly have, since simultaneous determination of the impact parame-
ter & would be impossible in prineiple), then the outcome of the scattering
process must be described in statistical terms. This can be done in terms of
the quantity ¢’ defined so that

o' (01,09 — v/, )’) d* d®vy’ = the number of molecules per

unit time (per unit flux of type 1 molecules incident with

relative velocity ¥ upon a type 2 molecule) emerging after {(14-2-1)
scattering with respective final velocities between v,’ and

vy’ + dv,’ and between »y’ and v’ + dv,'.

Anglogously to (14-1-3), one has
v =¢+LV  and v/ =¢ - L (14-2.2)
m; My

where, by virtue of conservation of momentum and energy, ¢ = ¢ and
|F’| = |F|. Thus ¢’ must vanish unless vy’ and v;’ are such that these condi-
tions are satisfied. Indeed, in terms of the variables ¢ and ¥, the scattering
process is completely deseribed in terms of the equivalent one-body problem of
relative motion of Fig. 14-1-3, where ¥ is specified completely in terms of the
polar and azimuthal angles 8 and ' with respect to ¥. Hence one can define
a simpler but less symmetrical quantity, the differential scattering cross section
¢ already introduced in (12-2-1), by the statement that

(V") @@’ = the number of molecules per unit time (per unit

flux of type 1 molecules incident with relative velocity ¥V

upon a type 2 molecule) emerging after scattering with final (14-2-3)
relative velocity V' with a direction in the solid-angle range

dQ’ about the angles ¢" and ¢’.

Here o depends in general on the relative speed |¥| = |F’| and on the angles
# and ¢'; i.e., it depends on the magnitude and direction of #”. By the defini-
tions (14-2-3) and (14-2-2), ¢ is related to ¢’ by

a(V') d’ = j; . f L' (v, 02 — 01, v)) divy dPuy’ (14-2-4)

where the integration is over all values of ¢’ and of |F’|. (The integration is,
of course, trivial, since ¢’ = 0 unless ¢’ = ¢ and |[F*| = |F].)
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Remark It is useful to express “the ve]omty :a.nge d”v; d’vg m terms of wthe
vanables e and V "One ha,s : .

o @i, de = |J’| d»c V. (14 -2 5) .
whe:re J ! i the Ja,coblan of the tr&nsforma.tmn (14 1 3) But ‘ ’ ’
- MQ& o ) . a(ulz,”:z} !
. . . d”l: dvz: _~ a{ V’J dszVz 1 m_ L dcs dV
'~ . ‘.("vm-; "‘x :' ;“

4 Where we have used (14 i 6) The tra.nsformat.ion (14 2 5) i ]ust the co
’ a.bsolute va.lue of & ‘product of th.ree guch t.erms, c-orrespcmdmg to z, y a.nd
- components “Hence one getsmmplv . .

d’vl davé‘

sa’inila,rly;,aﬁeuha;' e ~

. : , d‘ﬂx d v =

Now ¢ = c, furﬁhermore 444 and V. d1ﬂ'er on.ly«,m dlreetton ‘but not in ‘magni-- ’
_tude, and since volume eleruenta remain unchanged underzaunple rotatmns of

. coordma.tes A d’V Henee (14 2. 6) a.nd (14 2 - a]solmply ’

e ’ ’ i ‘ ’ (1428)

LT EE SV A R TR
. o - B [ A . Lo g,‘»»ﬁi,

VS

The probability ¢’ has various useful symmetry properties which imply
connections between 2 given collision process and related processes. The
interactions between the molecules are basically electromagnetic in origin.
The equations of motion must therefore have the following very general
properties:

1. The equations of motion must be invariant under reversal of the sign
of the time from { —» —t. Under such a time reversal, which implies of course
a corresponding reversal of all the velocities, one obtains the ‘“‘reverse’ collision
in which the particles simply retrace their paths in time. Thus one must have
the following relation between scattering probabilities

o'(v1,0s — v/, 0e") d¥v) divy’ = o’ (— v, — vy’ — —vy,—v2) dPvy dPue
or by (14-2.8)

o (0,0 — v 0y) = o'(—v,—vd = —v1,— D) (14-2-9)

‘ "Remark I the partmles had spin and the m‘t.eractmn hehween them Were‘w .
: ‘ Spm-dependent then time reversa.l would also necess:ta.te sumultaneous Tever- -
- sal of all spins. Equation (14-2-9) would therefore not be valid as it stands,
but would still hold 1f averaged ‘over ali poasfble chrectlons of the initial and
final spins. .
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2. The equations of motion must be invariant under the transformation
which reverses the sign of all spatial coordinates so thatr — —r. TUndersucha
“space inversion,” the signs of all velocities also change, but the time order does
not. Thus one must have '

O"(‘Dl,vz—> Ul’,‘vz’) = 0”('—‘01,—1)2 =¥ —1}1', '-172') (142 10)

It is of particular interest to consider the so-called “inverse” collision
which, by definition, is obtained from the original collision by interchanging the
initial and final states. Whereas in the original collision the particles collide
with velocities vy and v, and emerge with velocities »,” and #»’, in the inverse
eollision precisely the opposite takes place; i.e., the particles collide with veloci-
ties v, and vy’ and emerge with velocities v; and v, (see Figs. 14-2-1 and
14-2-2). The inverse collision can be obtained from the original collision by
considering the operation of time reversal followed by the operation of space
inversion which changes the sign of all spatial coordinates. Successive applica-
tion of (14-2-9) and {14 .2-10) shows that the collision probabilities for the
original and inverse collisions are also equal; i.e., by applying the operation of
space inversion to the right side of (14-2-9), one obtains by (14-2-10)

O"(‘!)]_,‘l}z —r ’Ul',‘Uz') = D”(ﬁl’,‘vg’ — 1)1,1.?2) (14 2. 11)

i
Original collision Reverse collision Inverse collision

Fig. 14-2-1 Figure illustrating related collisions between hard spheres.
The scattering cross sections are the same for all these collisions.

Original collision Reverse collision I'nverse collision

Fig. 14-2-2 Figure illustrating classical relative orbits for related collisions.
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1 4« . 3 Derivation of the Boltzmann equation

We are now in a position to make use of our knowledge of molecular collisions
to derive an explicit expression for D¢f in the Boltzmann equation (13-6-1),

Df = Dof (14-3-1)

In order to calculate Dcf, the rate of change of f caused by collisions, we shall
malke the following assumptions:

a. The gas is sufficiently dilute that only two-particle collisions need be
taken into account.

b. Any possible effects of the external force F on the magnitude of the
collision cross section can be ignored.

¢. The distribution function f(r,v,{) does not vary appreciably during a
time interval of the order of the duration of a molecular collision, nor does it
vary appreciably over a spatial distance of the order of the range of inter-
meolecular forces.

d. When considering a collision between two molecules one can neglect
possible correlations between their initial velocities prior to the collision. This
fundamental approximation in the theory is called the assumption of *‘melecu-
lar chaos.” Tt is justified when the gas density is sufficiently low. Then the
mean free path { is much greater than the range of intermolecular forces, and
two molecules originate before their encounter at a relative separation which is
of the order of I and thus sufficiently large that a correlation between their
initial velocities is unlikely.

Focus attention on molecules located in the volume element d¥r located
between r and » - dr, and consider the collisions which occur there in the time
between { and ¢ + di. (Here dr is taken to be large compared to the range of
intermolecular forces and di to be large compared to the duration of a collision.
Nevertheless, they can be considered infinitesimally small with respect to
variations in f by virtue of the assumption (¢).) We are interested in calculat-
ing how collisions cause a net change D¢f(r,v,f) d3r d%v d! in the number of
such molecules with velocity between v and » + dv. First, the molecules in
d*r can be thrown out of this velocity range by virtue of collisions with other
molecules; we denote the resulting decrease in time di of the number of such
molecules by De¢©f(r,v,f) d*r d®v dt. Second, molecules in dr whose velocity
is originally not in the range between v and » 4 dv can be thrown nto this
velocity range by virtue of collisions with other molecules; we denote the
resulting increase in time d¢ of the number of molecules thus scattered into
this velocity range by Do f(r,v,l) d°r d*v df. Hence one can write

Def = —De=f + De™®f (14-3-2)

To calculate D¢'=)f, we eonsider in the volume element d?r molecules with
velocity near » (call these 4 molecules) which are scattered out of this velocity
range by virtue of collisions with other molecules (call them A, molecules)
which are in the same volume element d% and which have some velocity vi.
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The probability of occurrence of such a collision where an A molecule changes
its velocity from v to one near ¢/, while an A, molecules changes its velocity
from v, to one near v, is by (14-2-1) described in terms of the scattering
probability «'(v,»; — v’ ,0') d*%" d',". To obtain the lofal collision-induced
decrease D¢™OF d®r dPv df in time dt of the number of molecules located in d*r
with velocity between v and » + dv one must first multiply o’ d%" d3»,’ by
the refative flux |[v — vy|f(r,0,0) d*v of A molecules incident upon an 4, mole-
cule and must then multiply this by the number of A, molecules f(r v1,) d?r d¥v,
which ean do such scattering. Then one has to sum the result over all possible
initial velocities v, of the A, molecules with which A can collide and over all
possible final veloeities »* and v, of the scattered A and 4, molecules. Thus
one obtains:

Do f(r,v,8) dir d'v dt = j ., j , ]
[[v — wilf(rw,8) d0llf(r,o1,t) B dPoille’ (v01 — v,01") &%’ divy]  (14-3-3)

Here we have used the fundamental assumption (d) of molecular chaos in
writing for the probability of simultaneous presence in d*r of molecules with
respective velocities near v and v1 an expression proportional to the simple
product

f(r,of) d¥v « f(r,v4,t) dPvy

which assumes the absence of any correlations between the initial velocities v
and v, so that these are statistically independent.

We now turn to the calculation of De®f. Considering again the same
volume element d?r, we ask how many molecules will end up after collisions
with a velocity in the range between » and v + dv. But this involves precisely
a consideration of what we ealled “inverse collisions’ in Sec. 14-2. Namely,
we should like to consider all molecules in d% with arbitrary initial velocities
v’ and v,’ which are such that, after collision, one molecule acquires a velocity
in the range of interest between v and v 4+ de», while the other acquires some
velocity between vy and vy + dvi.  This scattering process is described by the
scattering probability ¢'(v',v2' — v,v1). The relative flux of molecules with
initial velocity near v’ is [v* — vy'[f(r,v",t) d*’, and these molecules get scattered
by the f(r,vy/,2) 4°r d*v,’ molecules with velocity nearv,’. Hence one can write
for the total increase in time dt of the number of molecules located in d3r with
veloeity between v and » 4 dv the expression

D flro,t) dr dPo di = Ll fm, fn,

[l — o |f(r,0 8 d*')f(r, 0y ,0) d*r d%)’ o' (v" v/ — v,00) dPo dPvy] (14-3-4)
where the integrations are over all the possible initial velocities v' and »,’ of
the molecules, and over all possible final velocities v, of the other molecule whose
velocity does not end up in the range of interest near v.

By (14-3-2), D¢f is then obtained by subtracting (14-3-3) from (14-3-4).
Note the following simplifying features. By (14 2-11) the probabilities for
inverse collisions are equal so that

o' (v, o1’ — vv1) = o' (v,v; — v',0))
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Furthermore, we can introduce the relative velocities
V=v—wv, Vi=v — v (14-3-5)
‘Then the conservation of energy for elastic collisions implies that
Vi=1v=v

In order to save writing, it is also convenient to introduce the abbreviations

P e, By (14:3:6)
Then (14-3-2) becomes

Def = [ [ [ (1 ~ 10Ve' i — ©00) dioy do’ doy! (14-3-7)

One can use (14-2-4) to express this result in terms of ¥’ and the solid-angle
range d’ about this vector. Using (13-2-8), the Boltzmann equation (14-3-1)
for f(r,v,t) can then be written in the explicit form

> %+"'g+£'i= j;” o A — ff)Vedd dv, (14-3-8)

m dv

where ¢ = o(V").

14 - 4- Equation of change for mean values

Consider any function x(r,v,t) which describes a property of a molecule that
has a position r and a velocity v at time ¢. Asin (13- 1-4), the mean value of
x 18 defined by

xrd) = oo [ @0 S XY (14-41)

where n(r,t) is the mean number of molecules per unit volume. We should
like to derive an equation which describes how {x) varies as a function of {and r.
This can be done in two ways, either by analyzing the situation directly from
the beginning, or by starting from the Boltzmann equation (14-3-8). Since
both approaches are instructive, we shall illustrate them in turn.

Direct analysis Consider the fixed volume element 4%, located between r
and r + dr, which contains n(r,?) d3 molecules. In a time interval between
¢t and ¢ 4 dt the total mean value (n d®r x) of the quantity x for all molecules
in d® increases by an amount

% (nx> dar dt = Aint + Aflu:l: + Acol (144'2)

Note that » can always be taken outside the averaging brackets, since it does
not depend on ». The quantities A represeni various contributions to be
described presently.
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1. There is an intrinsic increase A;,. in the total mean value of x due to
the fact that the quantity x(r,v,f) for each molecule in d*r changes. In time dt,
each molecule changes position by dr = » dt and velocity by dv = (F/m) di;
hence the corresponding change in x is given by

ax Ox ox Fa
Edt + axavudt + dv, m di
Here . and », denote the respective cartesian components of the vectors r and
v, and we have adopted the ‘‘summation convention’ that a summation from 1
to 3 is implied whenever a Greek subscript occurs twice. Hence the intrinsic

increase in the mean value of x in d?r is given by

At = {(n d3r DX dty = n d°r dt {DX) (14-4-3)
_ Ox  Fadx _ 3x Jox | F 9y .
where Dx=gitvag-tma =5t o tm e 44D

9. There is an increase A in the total mean value of x in d*r due to the
net fux of molecules which enter the volume element d’r in time di. By an
argument, similar to that in Sec. 13-2, the increase in the mean value of x
caused by molecules entering the element of volume in time d¢ through the face
£, is the mean value contained in the volume v, dt dz, dzs, 1.e., (nx[vy di dx, dzs]).
The decrease in the mean value of x caused by molecules leaving through the
face £; + d=z, is correspondingly given by

{nxv; di dzs dzs) + a% {nxv, dt dz, dzs) dz,
1

By subtracting these two expressions one obtains for the net increase in the
mean value of x due to molecules entering and leaving through these two faces
the contribution

a
_— 3
7z, {nxvy di dr)
Adding contributions from all other faces one gets thus

Apuz = — %(nv,x) dt dir (14-4-5)

o dt

Fig. 14-4-1 Figure illustrating a
two-dimensional projection of the
volume element d°r.

p———————

-

L4

x, + c;!:r:1 T
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3. Finally, there is an increase Aeq in the total mean value of x in d%
because of collisions between molecules in this volume element. In such a
collision where a molecule with velocity v collides with another one of velocity
vy, and the molecules then emerge with respective final velocities »’ and »/', the
change in x is equal to

Ax =x"+x' —x~x (14-4-6)
where
X = x("y”,t); X = X(rrt’ht) 4.
xr = x(l",‘v’,t), X1’ = x(r,‘vl’,t) (14 4 7)

The number of such collisions ig again given by
[lo — w|f(rp0) dio)le’ d%" d3o//l[f(r,v1,0) dPr d%0)]

where we have used the assumption of molecular chaos. Thus 4.q is obtained
by multiplying this number by Ax and summing over all possible initial
velocities » and v; of the molecules and over all their possible final velocities.
This result must then be divided by 2, since in the above sums over molecular
velocities each colliding pair of molecules is counted twice. Thus one has

A = F d¥r dt [[[] d% d*v, d¥%' do'ff1Ve" Ax (i4-4-8)
By (14-43), (14-4-5) and (14-4-8), Eq. (14-4-2) then becomes
d i)
> 5 (m0 = 2Dx) — 7= (wex) + €(x) (14-4-9)

where @(x) denotes the rate of change of x per unit volume due to collisions;
by (14-4-8) and (14-2-4) it can be written

A 1
> e = = =5[f & doy 4 iV Ay (14:4-10)

Note again that # can always be taken outside the averaging angular brackets
since it does not depend on ». Equation (14-4-9) is sometimes called
"Enskog’s equation of change.”

Analysis based on the Boltzsmann equation To find the equation satis-
fied by (x) defined in (14-4-1), we multiply both sides of the Boltzmann equa-
tion (14-3-8) by x and then integrate over all velocities v. Thus we get

fdv Df x = [ d® Def x (14-4-11)
where fdsvafodavaal;x+fdavv-g—':x+fd3v£-%x {(14-4-12)

and where €(x) = [d* Deof x = [[f d®v d®v,dQ' (f'fY’ — ff))Vox (14-4-13)

Let us now transform the integrals in (14-4-12) into quantities which are
averages, i.e., into integrals which involve f itself rather than its derivatives.
Thus we have

faodx= [an] 20 —f%] =2 [avopy— [ans %
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gince the order of differentiation with respect to t and integration over v can be
interchanged. Hence

[awZyx =2 onix) — (‘?;;) (14-4-14)

The second integral in (14 -4-12) can be similarly rewritten. To avoid con-
fusion, we express the vector quantities in terms of their cartesian components
denoted by Greek subscripts and again use the summation convention. Keep-
ing in mind that r, v, ¢ are to be considered as independent variables, one has

a 9
fd“vu-a—'rx = [davvaéx
a a
= fdsﬂ I:a—:c—u (Uafx) - Uaf%jl
= %fd*va.,x — fdava,,g*x—

x

or f divv a—'f = ‘%u (n(vax)) — n <va g—:) (14-4-15)

Finally, since we assumed the force F to be independent of velocity, one gets

[awE Ly o (ol

m av,,
a2
o] - aelen
Since f — 0 as |[v.] — «, this becomes simply

[ pox =25 (14:4.10)

Hence (14-4-12) is obtained by adding the expressions (14-4.14) through
(14-4-16). The resuls is

> [ @ Drx = & () + 52 (mlox)) — mDx)  (14-4:17)

where Dy is defined in (14-4-4).
We now turn to the evaluation of the collision term {14-4-13). This is
by (14-2-4) most symmetrically written in the form

e(x) = [J1f d* d*ord’ d'o)’ (Y — ff) Vo' (vor— oo dx(rot)  (14-4:18)

The high symmetry of this expression can be exploited by interchanging v and
v, as well as v’ and v,’. This leaves ¢’ unchanged so that one obtains

e(x) = [[f] & d*vr &% do) (ffy’ — ff)Va'x(ront) (14-4-19)
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Adding (14-4-18) and (14-4-19) then yields
elx) = 3/{J ddv div, d®' o)’ (F'fY — Jf)Ve'lx + xi] (14-4-20)

with x and x; defined in (14-4-7).

But one can exploit a further symmetry by interchanging v and v/, as
well as v, and vy. This leads to the inverse collision which leaves o' also
unchanged. Thus one can write

11§ div dbey d®’ divy’ fif2' Vo lx + xl
= [ d*v dPv, &% dPvy' f1Ve'Ix" + x1'] (14-4-21)
where x’ and x,’ are defined in (14-4-7).
Substituting (14-4-21) in (14-4-20) then yields

e(x) = L[{ff d*v d*n d¥’ din,’ ffiVe' Ax
or

> e(x)

where Ax = x' +xi' —x — 1 is the total change in the quantity x in the
collision between two molecules. Substitution of (14-4-17) and (14-4-22)
into (14-4-11) leads then again to Eaq. (14-4-9).

3i7S dv ddo, d f1Ve Ax (14.4-22)

14:- 5 Conservation equations end hydrodynamics

The equation of change (14-4-9) becomes particularly simple if x refers to a
quantity which is conserved in collisions between molecules so that Ax = 0.
Then €(x) = 0 and Eq. (14-4-9) reduces simply to*

%(ﬂx) + "62_.1 {nvax) = n{(Dx} (14-5-1)

The fundamental guantities which are conserved in a collision are, first, any
constant, in particular the mass m of a molecule. Furthermore, each com-
ponent of the total momentum of the eolliding molecules is conserved. Finally,
assuming the internal energies of all molecules to remain unchanged in col-
lisions, the total kinetic energy of the colliding molecules is also conserved.
These conservation laws lead then to five corresponding cases where Ax = 0
in (14-4.6). These are

conservation of mass x =m (14-5-2)
conservation of momentum X = My, +=123 (14-5-3)
conservation of energy x = ymv? (14-5-4)

One then obtains by (14-5-1) five corresponding conservation laws satisfied by
the gas.

* This equation'and all subsequent considerations of this section are very gemeral.
They depend only on the conservation laws, not on the assumption of molecular chsos and
the consequent special form (14.4.10) of &{x) involving ff: as a simple product.
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Conservation of mass Putting x = m, Eq. (14-5-1) leads immediately to
O nm) + 2 (nmvgy = 0 (14-5-5)
at 9%q “

Here n is independent of » and can be taken outside the angular averaging

brackets. Also by {(13-1-5), {v) = u, the mean velocity of the gas. Further-
more, the mass density of the gas, i.e., its mass per unit volume, is given by

p(r,t) = mn(r,t) (14-5-8)
Hence (14-5-5) becomes simply
a a
> £+a_m_(pua) =0 (14-5-7)

or using the vector notation of the divérgence,
% + 9 (ou) =0 (14-5-8)

This is the so-called “equation of continuity” of hydrodynamics. It expresses
the macroscopic condition necessary to guarantee the conservation of mass.

Conservation of momentum By (14-5-3) we put x = mv, so that Eq.
(14-5-1) becomes

d d
31 (nmv,y + 2. {nmo.p,) = n{m Dyv,) (14-5.9)
By the definition (14-4-4),
Foov, F, _F,
D= . " m " m

Hence (14-5%9) becomes, using (14-5-7),

3 )
5 ) + Iz, (plvary)) = ol (14-5-10)
where =k (14-5-11)
m

is the force per unit mass of the fluid.
The second term in (14-5-10) is usefully expressed in terms of u and the
peculiar velocity U. By (13-1-6),

v=u—+U
and  ©2,) = {(ta + Uad(uy + Uy)) = (tatty + Uy + ucUy + Uatiy)
or (Vo) = Ualty + {UU5) (14-5-12)
since alg) = alU) = 0

Furthermore, we define the “pressure tensor’” P., by
Poy = p(UU.), P,a = P., (14-5-13)
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This definition agrees with that of (13-1-7). By (14-5-12) and (14-5-13),
Eq. {14-5-10) then becomes

2 (o) + g (o) = — 222 gy (14-5.14)

- This is the Euler equation of motion of macroscopic hydrodynamics. It can
be put inte more tra,nsparent form by rewriting the left side of (14-5-14) as

au., .,
+p + Uy 7 612 (Pua) + pue a_$:

= 1, [gf + aa (pua)] +p [au" -+

u.,a

_ duT
G| =o+e
Here the first square bracket vanishes by the equation of continuity (14-5-7);
furthermore, we have defined the “substantial derivative” of any function
é(r,t) by o

= 9¢ o¢ 5
= ar + Ua az. (14-5-15)
This measures the rate of change of the function ¢ if one considers oneself
moving along with the mean velocity u of the fluid. Hence (14.5-14} becomes

> p%= — ax"*+ oFy! (14-5-16)

This expresses physically the fact that the rate of change of mean momentum
of any element of fluid is due to the stress forces (including the ordinary
pressure) of the surrounding fluid, as well as to the external forces acting on
the fluid.

We could, similarly, go on to use (145 4) to derive the hydrodynamie
equation for energy conservation, but we shall not do this here.

The conservation equations (14-5-7) and (14-5-16) are rigorous con-
sequences of the Boltzmann equation (14-3 .8). Nevertheless it is clear
that, in order to obtain from them practical hydrodynamic equations, one must
find explicit expressions for quantities such as the pressure tensor P.,. Of
course, (14-5-13) provides a prescription for calculating this quantity in terms
of molecular quantities, but this requires finding the actual distribution fune-
tion f which is a solution of the Boltzmann equation {14-3-8). Hydrodynamie
equations can thus be obtained to various orders of approximation. Details
are discussed in the references.

14.- 6 Example: simple discussion of electrical conductivity

Before turning to detailed applications of the theory of this chapter to the
solution of problems of physical interest, we shall show how the present
formulation of the theory can also be useful in discussing situations in less
rigorous terms. As an example, we shall give a semiquantitative treatment of
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electrical conduectivity which, although almost as simple as the elementary
arguments of Chapter 12, will bring out several new features of physical
gignificance.

Consider the case of ions of mass m and charge e which move in a neutral
gas consisting of molecules of mass m,. Let the number of ions per unit
volume be 7, the number of neutral molecules per unit volume be n;. The
temperature is T, and a small uniform electric field & is applied in the z direc-
tion. We should like to find the electrical conductivity s of the ions.

This situation was already discussed in Secs. 12-6, 13-4, and 13-8. Here
we shall consider the collision processes in somewhat greater detail. We are
interested in finding the electrical current density of the ions

J: = enu, (14.6-1)

Since & depends on neither r nor ¢, it follows that neither » nor the mean ion
velocity u depends on position r or on the time ¢ once a steady-state situation
has been reached. One can immediately write the equation for the mean
momentum balance for the ions contained in a unit volume by using the equa-
tion of change (14-4-9). The direct physical argument is that the [rate of
change of mean momentum of these ions] must be equal to [the mean external
force exerted on these ions by the electric field] plus [the mean rate of momen-
tum gain of these ions due to collisions]. In symbols

a
nm ;:’ = ne§ + e(mv,)

In the steady state 8u,/0! = 0 so that this condition becomes simply
net + €(my.) =0 (14-6-2)

To caleulate the mean rate of ion-momentum gain caused by collisions,
we note first that, when two ions collide, their total momentum is conserved.
Hence there is no mean change of ion momentum caused by collisions between
ions. Thus €(mer.) is due entirely to momentum changes suffered by ions in
collisions with neutral molecules.

The mean number of such ion-molecule collisions per unit time is approxi-
mately given by

T—I = T?O'imn]_ (14:‘63)

where ¥ is the mean relative speed between an ion and a molecule and oin i8
the total scattering cross section for scattering of an ion by a molecule. Here
one can put approximately, as in (12-2-11),

(14-6-4)

m

szﬁ=ii+v_ﬁ=3kT(l+i)=§@
m s

where we have used the equipartition theorem and introduced the reduced
mass '

mmy
e 4-6:5
# m -+ my (14-6-5)
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We calculate next the mean momentum gain (p) of an ion in an ion-mole-
cule collision. By (14-1.3) we can write the ion velocity » in terms of the
velocity ¥ of an ion relative to the molecule with which it collides and the
velocity ¢ of their center of mass. Thus p = mv = me + g¥V. The momen-
tum change of the ion in this collision is then

Ap = m(v' — v) = w(F' — V) = pf(cos & — 1)V + V,’] (14-6-6)

Here we have resolved ¥V’ into components parallel and perpendicular to V.
The relative velocity V' after collision is such that |V*| = |¥F| and that it makes
an angle 8" with respect to ¥. On the average, ¥’ will have no components
perpendicular to ¥V so that (¥V,"y = 0. Furthermore, if the collision is like
that between hard spheres, all scattering angles ¢ are equally probable so that
cos 8’ = 0 on the average. (See Problem 12.4.) Hence on the average
{14-6-6) gives, for the mean momentum gain of an ion per collision,

ap) = —w(V) = —lv — »y)
or (Ap) = —uu (14-6-7)
if we assume that the neutral molecules are at rest with respect to the container
walls so that their mean velocity u; = 0.
It is of interest to compare {Ap) with the mean momentum mu of the ions.
(In the present problem, u has, of course, only a nonvanishing component in
the z direction.) Then (14-6-7) can be written

= = _ ™1 .6
(Ap) = — tmu, = =T m (14.6-8)
where £ denotes the fractional mean momentum loss of an ion per coilision.
This shows that if m < m,, then £ = 1; the ion loses then, on the average,
practically all its forward momentum in each eollision with the much heavier
molecule. On the other hand, if m 3> m,;, then £ = m,/m; the ion loses then,
on the average, only a relatively small fraction m,/m of its forward momentum
in each collision with the much lighter molecule. In the latter case, collisions
with molecules are, of course, not very effective in reducing the electrical con-
ductivity of the ions. The factor £ of (14-6-8} shows that an ion after a
collision may have a velocity which depends strongly on its velocity before the
collision, particularly if m >> m,. Hence this factor takes into account the
persistence of velocity effects which we ignored in the preceding two chapters.

The mean rate of collision-induced momentum gain of an ion can then be
computed by multiplying the mean number r—! of ion-molecule collisions per
unit time by the mean momentum gain {Ap) per collision. By (14-6-8) the
moementum balance (14-6-2) becomes simply

el — rYtmu,) =0 (14-6-9)
€T,

Hence u, = — =
z mE
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By (14-6-1) the electrical conductivity is then

y 2
ga=l=10T (14-6-10)

This differs from the previous expressions (12-6-8) or (13-4-10) by the factor £
which takes into account the persistence-of-velocity effects. Using (14-6-3)
and (14-6-8) one gets explicitly

net [ 3T ]_l (m)
el = —— — Fimlt1 —
m K o

ne? 1
10im ‘\/ 3ukT

Note that this depends only on the reduced mass of the ion and molecule. If
m << m, 8o that persistence-of-velocity effects are negligible, then p = m and
(14-6-11) reduces essentially to (12-6-9). But in the opposite limit, where
m > m,y, one gets p = my, and gl becomes independent of the mass of the ion.

The relation (14-6-11) exhibits the correct dependence on the various
parameters of the problem. In particular, it takes into account persistence-
of-veloeity effects and shows properly that ion-ion collisions have no appreci-
able effect on the electrical conductivity. A more careful evaluation of the
momentum-balance equation would lead to numerically more accurate results.
We leave this as an exercise in one of the problems at the end of the chapter.

or Ol =

(14-6-11)

14- . 7 Approximation methods for solving the
Boltzmann equation

To apply the transport theory developed in this chapter o a quantitative dis-
cussion of situations of physical interest, it is necessary to find approximate
solutions of the Boltzmann equation.

Df = Dof (14-7-1)

written out explicitly in (14-3-8). Our aim will not be to find the most exact
solutions accessible by means of elaborate approximation procedures, but to
show how results of good accuracy can be obtained by relatively simple
methods.

To find the distribution funetion f(r,v,t) which satisfies (14-7-1), we
assume again that we are dealing with a physical situation which is not too far
removed from equilibrium conditions. Then one expects that f(r,v,t} does not
differ too much from a Maxwell distribution f@(r v,f), which describes local
equilibrium conditions near a particular place and time; ie.,

fOrl) = n (%B); erime” (14-7-2)

where 7, 8, and u may all be slowly varying functions of r and ¢, but do not
depend on v. Since the dependence of f@ on v is thus the same as that for a
genuine equilibrium distribution, and since the collision term in the Boltzmann
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equation involves only integrations over velocities, it follows that f© has the
same property as a genuine equilibrium distribution of remaining unchanged
under the influence of collisions; i.e.,

Def© = 0 (14-7-3)

Of course, f® does not in general reduce the left side of the Boltzmann
equation (14-7-1) to zero. That is, Df(® = 0, unless n, 8, and u are independ-
ent of r and £.  Only then would f® be a genuine, rather than merely a local,
equilibrium distribution function satisfying the Boltzmann equation (14.7- 1}).

- To exploit the assumption that the situation is not far removed from equi-
librium, one can write f in the form

=71+ @), where & << 1 (14-7-6)

In the Boltzmann equation (14-7-1), the eontribution of the correction term
% to the left side can then be neglected compared to the contribution of F®.

Thus
Df = Df® (14.7-7)
The right side of (14-7-1) is given by (14-3-8) as
Def = [f d*v1 dQ (F'fy' — ff)) Ve (14-7-8)

Using (14-7-6), one has
i = JORO1 + @ + )
where we have neglected the small quadratic term ®&. Similarly, one has
P = JORO0 + & + &)
where we have used (14-7-4) to put f©’f,® = JOF @

Substituting these relations into {14-7-8), and using the fact that terms
involving only f*’'s lead to a vanishing eontribution to the integral (since
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Dgf® = 0 by (14-7-3)), one obtains

where Dgf = &2 . (14-7-9)
| £ = [f dvd? fOfHOVe AP (14-7-10)
with AP =0+ &' —&— P (14-7-11)

In terms of these abbreviations the Boltzmann equation (14-7-1) is then, by
(14-7-7) and (14-7 -9), reduced to the approximafe form

> Df® = £& (14712}

The functional form of <@ is known by (14-7-2); hence the left side of
(14-7-12) is a known function. The unknown function ® appears in (14-7-12)
only in the integrand of the right side. Finding the functional form of & which
satisfies the integral equation (14-7-12) is still not a trivial task. On the other
hand, this equation is linear in ® and very much simpler than the original
Boltzmann equation (14-7-1}).

TRy

Y e ; o o S ‘ :va ) . - " ‘"E;V7 w '},:‘ .
rk,'We can impdse one physical requirement which Helps to placesome .

thie possible form of ®: *-Lat'us requife tha the actual function =

*  f(r;o)t) e’ such that” the. quantities n(r2); wr ), and” B(FR) = ED)"han ;-
{14472y préserve their *usual; meaNIng: “denoting respeetively -the:mean- :

" gnuiaber of paviéles per unit volume; their mean: veloaity, and their mean -
' thermal kinetic energy. In more mathematical terms thi mesus that vo -
- xequire the followin relations, true in the equilibrium situation when L
‘:and T are independent of r sndt, to femain Valid even if these paraineters
o afelmesw]mmes) o
By (14-7+6), the first, tert f by iteelf satisfies-all thess relations. - Honco'it ™
follgyv&tf}at, to satisfy (14:7-13), the function must be such that «. -
o S a0 =0] ATy
 Jaeroae—wi=0)

v

- f

To determine the function ® which satisfies (14-7-12), one can assume
that it has some reasonable functional form which depends on g parameters
Ay, Agy Ay, . . . A, For example, one could assume that & is a function of
U = v — u of the form

3

3
o= Y alh+ Y anlilat (14-7-15)

A=1 Au=1

do21/032
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where the coefficients a, and g, are parameters. If one takes this assumed
form of ¢ and substitutes it into (14-7-12), one will in general find that £& is
not the same function of v as the left-hand side Df®. Hence no choice of the
parameters A4;, . . . ,A, will really fulfill the requirement that (14-7-12) be
satisfied for all values of ». Nevertheless, one’s guess as to the functional
form of € may not be too bad, provided that one makes an optimum choice of
the parameters 4, . . . ,4,. One systematic way of making this choiee is to
replace the task of satisfying Ig. (14-7-12) by the weaker requirement of
satisfying it only in an average sort of way. For example, if ¥(») is any func-
tion of v, then it follows by (14.7-12) that

Jdiv ¥ DfO = [ 43y ¥ £ {14-7-16)

Since one has integrated over v, both sides of this equation are independent of
v. Although (14-7-12) implies (14-7-18), the converse is, of course, not true;

e., if ® satisfies (14-7-16) for a given choice of the function ¥, it does not
necessarily satisfy the original equation (14-7-12). Only if (14-7-16) were
satisfied for all possible functions ¥, could one conclude that (14.7-16) is
equivalent to (14-7-12). Nevertheless, if one chooses some set of g functions

¥, . . ., ¥, and tries to satisfy the resulting ¢ equations (14-7-18) for all of
these, then one obtains ¢ simple algebraic equations for the ¢ unknown param-
eters Ay . . . A,. One would then expect that this choice of the A’s would

give a reasonably good solution of (14-7-12). Of course, the larger the
number g of parameters at one's disposal (and the corresponding number of
¥’s used to obtain independent algebraic equations (14-7-16)), the better can
one expect the solution to approximate the real solution of {(14-7-12). If one
assumes the functional form (14-7-15) for @, then the various “test functions”
¥ are most conveniently chosen to be functions of the form U, ThU,, . . . .
The method just described is then called the “method of moments.”

Note that (14-7-16) is equivalent to (i4-4-11); thus the condition
(14-7-16) implies physically the requirement that the mean value {¥) satisfies
the correct equation of change (14 -4-9).

) : "'Salutwn by use of o varmt:onal prmc:ple A partmula.rly powerfeui .
_~ method-of solving. (14-7-12) is. pm\nded by the use of & suitable vanatlonal =
N principle. - ‘Note that the lntegra.} in {14. 7 12} is lmear n ®rie., for a.ny two’

; }functions ‘IJ dand ¥

,e{q:+~If) ,ef1>+£\lv‘ o (14717)

Note also’ that ‘the mtegral in (14+7-16) has a lovely degree of gymmetry.
-~ Using (14 7-10) and- (14 2-4} it can be written in the symmetrlc form.

fd’av "If£§> f_”f d’v dip, do d’ﬁl'f‘“’fl‘")Va'(v n— v vl')‘I“ A@ (14 7 18)

. 'One can now proceed as we did'in transformmg the expressmn {144 ‘IS) into
- (14-4- 22) Flrst mterchange v and vy, a5 well as'v’ and #’. Then ¢ ag well
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. ‘ag &@ are imchanged k3 Thus (14 T 8) becﬁmes (we ormt the volume element& o
. im the 1nt.egra,la fcm the sa.ke”of bre\n«.try) ooy R . S

§ f qrm' = (Tf j« fwmwva'qq Acp
) Addtng th.ls to (14 'T 18} t.hen grvea
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14 . 8 Example: calculation of the coefficient of viscosity

Consider again the physical situation illustrated in Fig. 12-3-2 where the gas
has a mean velocity u.(z) in the z direction and a gradient du./dz = 0. Weare
interested in calculating the shearing stress P.,.

This situation is time-independent and only . depends on z. Hence the
local equilibrium distribution is simply that already used in (13-8-6); i.e.,

m\ .
f(")(r,v,t) =n (2_f) e—18m{ [va—uz (211 oy 2t oet)
where 8 and n are just constants. More compactly one can write this in the
form 7
K f(U) (I",‘U,t) = g(U) (14 -8 1)
where Uxz) = v, — u.(2), U, = ny, U, =uv, (14-8-2)
i
and gy =n (7;_'8) e—tmU2 (14-8-3)
'

Since there are no external forces so that F = 0, one has simply

af® g O, O
() — - — j— l J —_—
D Ve "9z Y oU, ( 82) Bmg{U)U.U. az

where we have put v. = U, by (14-8-2). Hence the Boltzmann equation
(14-7-12) becomes, using (14-8-3), '

(ﬁm ?;) qU)UU, = ([ &, d g(U)g(U)Vo 28 (14:8:4)
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It remains to determine how & depends on v, or equivalently on U, so
that it yields upon integration the left side of (14-8-4). This left side trans-
forms under rotation of coordinate axes like the product of the vector com-
ponents U.U.. The right side must, therefore, behave similarly. Thus we
are led to expect that ® has the form

& =AU U. {14-8-5)

where A, in general, might be some function of [U]. We shall, however,
assume that to a first approximation A is simply independent of [U|. To
determine the value of this one parameter A which gives the best solution, we
proceed by the method of (14-7-16). We shall multiply both sides of (14-8-4)
by the test function U.U., integrate over » (or equivalently U), and try to
satisfy the resulting equation by proper choice of A. This means that we dare
trying to satisfy, instead of (14-8-4), the equation

BM% [ BT gNUT2UL2 = 4 fff AU U, a2 g(U)g(U) Vo U, U. A(U.U.)
(14-8-6)

(Note that this choice of A is exactly equivalent to that given by the varia-
tional principle in {(14-7-27).)
The integral on the left is by (14-8-6) simply

j U g(U)U.2U 2
= (’;_f); f _’m e18n0y 4T, f _: e-¥mU. [ 2 477, f_‘“ﬂ e—18m. [J 2 dU,

or fd’Ug(U)U.zUJ = U202 =n (%’ 2

(14-8-7)

where the bars denote equilibrium values caleulated with the equilibrium func-
tion g; these can therefore be obtained by the equipartition theorem without
need of explicit calculation.

In the integral on the right side of (14-8-6) we shall first integrate over all
angles of scattering, i.e., over all d2’, and then integrate over U and Uy. Thus
we write this integral in the form

I= [] U U, g(NgUY U U J(U Uy (14-8-8)
where J(UU,) = [ 49 Vo A(U.U) (14-8-9)
Using (14.8.7), Eq. (14-8-6) then becomes simply
> n (%1) Bue _ ar (14-8-10)

Before evaluating I, note that the function ® of (14-8-5) satisfies, by sym-
metry, the conditions (14-7-14). Note also that the pressure tensor P., can
be immediately calculated from (14-8-5). By (13-1-17)

P,. = mf v jU U, = m[ d*U g(UY(1 + ®)U.U,
0+ mj U g®U, U, = Am| d&*U gU2U"
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where we have used the fact that the integral involving g(U) alone vanishes by _ E
symmetry. Sinee the last integral is just that of {14-8-7), one obtains
2 N

> P, = nm (g p: | (14-8-11) :

Thus the caleulation is completed once the integral I is evaluated, since A is
then known by (14-8-10).

Evaluation of the collision integral I We first evaluate the integral J
of (14-8-9). Since the integrand involves V' directly as well as in the cross
section o(V), we express U in terms of the relative velocity ¥ and the center-of-
mass velocity ¢. Thus

V=v—v,=U-U (14-8-12)
Also, since all molecules have the same mass m,
mv + mo, 1
B 2m 2 (v + v
or C=c—u=HU+U) {14-8-13)

where (is the center-of-mass velocity measured relative to the mean velocity u
of the gas. By (14-8-12) and (14-8-13) one finds, analogously to (14-1-3),

U= C+ 4V, U,=€C— 3}V (14-8-14)
After the collision one has similarly
U =C+ 3V, U, =C—-4iv’ (14-8-15)
since € remains constant. Now, by (14-7-11),
AUV = USUS + Uy'Us — UU: — UlUsse
Using (14-8-14), one obtains

USU, + U]gUlz = (Cz + ‘%Vz) (Cz + "%‘Vx) + (Cz - %’Vz) (Cz - %V,)
=20, + V.V,

Hence AaU.U,) = ¥(V.,V, — V.V.) (14-8-16)

Thus (14-8-9) becomes
J=3% [ [ sineay a VaVIV — V.V (14-8-17)

where & and ¢’ are the polar and azimuthal angles of ¥* measured with respect
to V as polar axis. This vector ¥V is, of course, fixed in the integration
(14-8-17) which is over the various directions of /. Imagine that ¥ is taken
to be along the { axis of a cartesian coordinate system £, 3, . Without loss
of generality one can then choose the £ axis, from which the angle ¢ is meas-
ured, to lie in the (¥,4) plane. Here &, &, { denote unit vectors directed along
the £, u, ¢ axes; similarly £, #, £ denote unit vectors directed along the labora-



04/07/2005 09:13 FAX 1 510 643 8497 Physics Dept UC Berkeley do27/032

542 secTion 148

N>

Fig. 14-8'1 Geometrical relationships between
the vector V before and the vector V' after a
collision. The % axis of the laboratory frame of
reference is also shown.

e

tory =z, y, z axes. The geometrical relationships are illustrated in Fig. 14-8-1.
Since |F’| = |¥|, one can write

V' = V cos 8’8 + V sin ¢’ cos ¢’ + V sin ¢’ sin ¢'h
Remembering that V{ = ¥ and that # L %, one then gets

V=V -5=V,cos + Vsin# coso §-2

V)=V -2=V,cos8 + Vsin®cosg’ £+4+ Veing cose -0 (14-8-18)

We shall assume that the forces between molecules depend only on the
relative distance between them. Then the differential scattering cross section
¢ is independent of the azimuthal angle ¢'; i.e, ¢ = o(V; #). The integral
(14-8-17) is then much simplified. Consider first the integration over o' from
0 to 2r. Since [sin¢ de’ = [cos ¢’ de’ = [ sin ¢’ cos ¢’ dp’ = 0, while
[ eos? ¢' dp' = [ sin? ¢’ d¢’ = =, use of (14-8-18) in (14-8-17) shows that all
cross terms cancel. Thus (14-8-18) yields

j:f" de' (VIVS — V.V) = 2aV,V.cos? @ + xVisin? /(% - £)(E - &) — 2« V.V,
(14-8-19)

To eliminate the vector , we note that the condition % L # can be
expressed in terms of £, 5, { components (i.e., in terms of direction cosines} as

5-2=0=(E-HE- D+ G- HGE-H + T-HE- 8
Since & L £, this implies that
ViE-g)E-8) = -V -8 8) = —V.V.
Hence (14-8-19) becomes )
S de VIV = V.V = <V V(20056 — sin? ¢ — 2) = —3xV.V,sin? ¢’
and (14-8-17) can be written in the form
> J = —3V.V.Voy (V) (14-8-20)
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EXAMPLE: CALCULATION OF THE COEFFICIENT OF VISCOSITY 543
where
> oo(V) = 2n fo " o(V,8) sin® 0’ d6' (14-8.21)

can be interpreted as the total effective scattering cross section which enters
the viscosity calculation.
One can now return to the integral (14-8-8), which becomes

= —3[[ U U, g(U)g(U) U UV, V.V (V)
or by (14-8-3)

_3

I= 2

3 -
n? (%L-S) f[ d*U doU, e @D U UV V. Ve (V) (14-8-22)

This integral depends again on the relative velocity V. Hence we again make
the transformation (14-8-14) to the variables ¥ and C. Analogously to
(14-2-6), one has d*U d*U, = d*C d*¥. Then (14-8-22) becomes

3 mpa\? 5 o
I __E,nz 2_-,,-) [f d3C d3V e Pm(CHEVY)

(c,c, + i V.V + ; eV, + % O,V,) V.V.Ve,

3 mB\? [= = 1
e — 2y —pmC'e 3 fm¥2 - 2

“n (%) [7, axcesner [ @ e (c,c,vkvz + VAV

1 1
+ 5 05V9Vz2 + E vazzvz) de(V)
By symmetry it is clear that three of the terms in the parentheses are odd fune-
tions of V, or V. and lead therefore, by symmetry, to a vanishing result upon
integration over ¥. Thus one is left with
.__izm_ﬁa" gmc: | © ~18mVIY 2T 2 K.

I=—=n (27) [7 aCerme [T aV eV AV Ve, (V) (14-8:29)

By Appendix A -4 one has simply

@ - ]
f_, d*C e—#mC = Ay ﬂ] e—fmC 02 40 = (m;ﬁ) (14-8-24)

Expressing ¥V in terms of spherical coordinates with £ as polar axis, one has
V,= Veos8, V.= Vein 0 cos ,and d° = V2dV sin § d8dp. Thus one gets

[ @ eemry 2y 2, (V) = .7 av e via ) J;7 @0 sin? 6 cos? 0
2r
fo de cos? ¢

NERy e

(14-8-25).
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J44 SECTION 14-8
where we have introduced the dimensionless variable
1V
s= iRV = =2
V2P

which physically expresses the relative speed V in terms of the most probable
speed ¥ of the gas in equilibrium. If o, did not depend on the relative speed of
the molecules, then the integral in (14-8-25) would, by Appendix A -4, be equal
to 3s,. More generally, let us define a mean effective cross section by

| 2 g, (T) = f ds e, (\/_) (14-8-26)
Then (14-8-25) becomes
1024r &,

A o—1Bm T 2 - esr .8.
[ 4 e ¥nTV 2V 2V e (V) = o (14-8-27)
Substituting (14-8-27) and (14-8-24) into (14 8-23) yields then
24 kT
I= " 14-8-28
> T 5+/r ( ) ’ ( )

Evaluation of the coefficient of viscosity Using (14 -8-28), the parameter
A is now given by (14-8-10) as

_ 5 \/1r 1 {m\ ou.
4 = 51 na, (H’) 52 (14-8-29)
Then one obtains by (14.8-11)
U
Pa= —n dz
where ‘ _
_ 5/x /mkT
> e s (14-8-30)

This completes the caleulation. It is, of course, apparent by (14-8-30)
that » depends only on the temperature, but not on the preassure.
Note that it is the cross section ¢, of (14-8-21), rather than the total cross

. 2x . . . . . -
section op = 27 fo o gin 8 d¢’, which enters this viscosity caleulation. The

extra sin? 8’ factor in the integrand implies that scattering angles near 90° are
weighted most heavily. The physical reason is clear; scattering through such
angles is most effective in cutting down the rate of momentum transfer responsi-
ble for the viscosity.

. lExampte Let us evaluai?e (14“8 30) for the specm.l case where th&moleculea )
.. can be Gonsxdered hard spheres of mdzus a. Then the total sca.ttermg eross. -
j«aeetwn is o i

n'o—“r(th)‘*==4wa" . . {1,4831)']‘

. f ) The diﬁerentla.l scattermg cross sectron for hard. spheres does no‘l: de‘pend on -
~_the scatisenng angle e (see Pmblem 12. 4). Thus
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PROBLEMS

R ,,m‘ of mterest % nute that (14+5: 33 is?r rger than a—.he reslt ‘of the =
' most elementary mea.n—free-pa.th caloula ‘ -

SUGGESTIONS FOR SUPPLEMENTARY READING

Relatively elementary discussions

R. D. Present: “Kinetic Theory of Gases,” chaps. 8 and 11, McGraw-Hill Book Com-
pany, New York, 1958,

E. A, Guggenheim: “Elements of the Kinetic Theory of Gases,” Pergamon Press,
New York, 1960.

A, Sommerfeld ‘“Thermodynamics and Statistical Mechanics,” chap. 5, Academic
Press, New York, 1956.

E. M. Kenna.rd "Kmet.lc Theory of Gases,” chap. 4, McGraw-Hill Book Company,
New York, 1938.

More advanced books

K. Huang: “Statistical Mechanies,” chaps. 3, 5, and 6, John Wiley & Sons, Ine., New
York, 1963.

K. M. Watson, J. W. Bond, and J. A. Welch: “Atomic Theory of Gas Dynamies,”
Addison-Wesley Publishing Company, Reading, Mass., 19865.

8. Chapman and T. G. Cowling: “The Mathematical Theory of Non-uniform Gases,”
2d ed., Cambridge University Press, Cambridge, 1952.

J. 0. leschfelder C. F. Curtiss, and R. B. Byrd, “Molecular Theory of Gases and
Liquids,” chaps 7 and 8, John Wiley & Sons, Ine., New York, 1954,

PROBLEMS

14.1 Consider the physical situation envisaged in Sec. 14 -6 where there are » ions per
wnit, volnme. each havine ohares 2 ond mage m.  Thess inbs ara froa +n e T—
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14.2

14.3

14.4

14.5

PROBLEMD

the sake of simplicity, that the scattering of an ion by a molecule can be approxi-
mated by the scattering of hard spheres of total cross section Gim. The neutral
gas has zero drift velocity, since it is at rest with respect to the container. By
carrying out the momentum balance argument of Sec. 14-6 exactly, derive an
expression for the electrical conductivity of the ions in this gas.

Consider again the physical situation described in Problem 13.6 where a mona-
tomic dilute gas at temperature T is enclosed in a container and is maintained
in the presence of a small temperature gradient in the z direction. The molecu-
lar mass is m, and the differential scattering cross section deseribing collisions
between molecules is a{(V,8’).

(g) Obtain an approximate form of the moleenlar distribution function.
Refer to the suggestion in Problem 13- 6 and note again that the physical situ-
ation of no mass motion requires that 4, = 0.

(b) Find an approximate solution of the Boltzmann equation and use this
result to find the coefficient of thermal conductivity of this gas. Express your
answer in terms of T, m, and the effective total eross section #,{T) defined in
(14-8-26).

(e) If the molecules can be considerad hard spheres of total scattering cross

section 7, calculate the thermal conductivity of this gas in terms of ou.
By comparing the general expressions derived in the case of a monatomic dilute
gas for its thermal conductivity & in Problem 14.2 and for its viscosity coef-
ficient 7 in {14-8-30), show that the ratio «/q is a constant independent of the
nature of the interactions between the molecules.

{a) Find the numerical value of this ratio.

(¥) Compare this value with the value which would be computed on the
basig of the simplest mean-free-path arguments.

(¢) Compare the value of this ratio predicted by the exact theory with
experimental values obtained for several monatomic gages. Appended are a few
values of atomic weights g, viscosity 9 (in gm em™ gec™?), and thermal conduc-
tivity « (in ergs cm— sec™* deg™) at T = 373°K

Gas "

=
=

Neon 20.18 3.65 % 104 5.67 X 108
Argon 39.95 2.70 X 104 2.12 X 103
Xenon 131.3 2.81 X 104 0.702 X 10°

The general expression (6-6- 24) for the entropy of a system guggests that the
quantity H defined in terms of the distribution function f(r,v,t) by

H=fdwflnf

is related to the entropy of the gas. By using for f the equilibrium Maxwell
velocity distribution verify that H = —8/%k, where S is the entropy per unit
volume of 8 monatomic ideal gas.
Use the definition

H=[dvfhf

to obtain a genersl expression for the time derivative dH/di. Make use of the
Boltzmann equation satisfied by f, and exploit the symmetry of the resulting

Physics Dept UC Berkeley

do31/032
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PROBLEMS 647

expression in a manner similar to that employed in evaluating the collision term
at the end of Sec. 14- 4.
(@) In this manner show that
dH 1
=1 f j’ d*v db, d' Ve(ln £ — In FfO (PR — ffD)

(6) Since for any y and =z,

by —Inz)(y—x >0

(the equal sign being valid only when y = x), show that d¥ /d¢t < 0 and that the
equals sign holds if, and only if, f'fi" = ffi. This is the so-called “Boltzmann
H theorem,” which proves that the quantity H always tends to decrease (i.e.,
the generalized entropy defined as — H/k tends to increase).
(¢} Bince in equilibrium it must be true that dH/dt = 0, show that when
equilibrium has been reached f'f,’ = ff,.
14.6 The equilibrium condition %\’ = ff, is equivalent to

hf+hf’=hf-+Infi

i.e., the sum of quantities before a collision must be equal to the sum of the
corresponding quantities after the collision. The only quatitities thus con-
served are, besides a constant, the three momentum components of a molecule
and its kinetic energy. Thus the equilibrium condition can only be satisfied
by an expression of the form

Inf= A4 B.mv. + B,my, + B.mv. + C(Zme?)

where the coeflicients 4, B., B,, B., and ( are constants, Show that this implies
that f must, therefore, be the Maxwellian velocity distribution (for a gas whose
mean velocity does not necessarily vanish).



