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Notes 42

Scattering of Radiation by Matter

1. Introduction

In the previous set of Notes we treated the emission and absorption of radiation by matter.

In these Notes we turn to the scattering of radiation by matter. As before, the material system

in question can be almost anything (atom, molecule, nucleus, etc), but when it is necessary to be

specific we shall for simplicity assume that it is a single-electron atom. The formalism is easily

extended to other types of material systems.

We shall see that in a certain sense the emission and absorption of radiation are special cases

of the scattering of radiation, in which the frequency of the initial photon is close to a resonance

frequency of the material system (the Einstein frequency connecting two energy eigenstates). In

such cases it is partly a matter of preference how one should view the process, but in some respects

the scattering point of view is more fundamental and elegant.

2. Applications

The applications of the theory developed in these Notes are very broad. Almost any situation

in which radiation passes through a gas affords an example of the physics we shall describe here. For

example, in infrared and Raman scattering experiments radiation is passed through an molecular

gas and the absorption spectrum or scattering cross section is measured, providing a primary source

of information about the structure of molecules.

Another example involves radiation passing through the Earth’s atmosphere. The atmosphere

is mostly transparent to sunlight, but there is some scattering, especially at the higher (blue) fre-

quencies. This is Rayleigh scattering, which we shall consider later. The higher frequencies are more

strongly scattered because they are closer to certain resonances in the ultraviolet. As we shall see,

the cross section for Rayleigh scattering rises rapidly as a function of frequency as we approach a

resonance. This is the reason the sky is blue: When we look at a part of the sky away from the sun,

the blue light we see is sunlight scattered by the air along our line of sight.

The Earth in turn radiates thermal radiation in the infrared that must pass through the at-

mosphere to reach outer space where it escapes. This radiation has a frequency range that covers

the vibrational transitions of most simple molecules, so it is strongly scattered by several types of

molecules such as the greenhouse gases CO2, H2O and CH4. Thus an infrared photon leaving the

Earth’s surface must diffuse through the atmosphere in a random walk, a process that is much slower

than passing straight through. The greenhouse gases act like a blanket, keeping the Earth warm.
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The oxygen and nitrogen that are the major components of the atmosphere do not scatter infrared

radiation, because they are homonuclear diatomic molecules which because of symmetry do not have

a permanent electric dipole moment. Notice that the atmosphere makes it easy for radiation to get

in at optical frequencies, and difficult to get back out at infrared frequencies.

There are many examples in astrophysics where the scattering or absorption of radiation by

matter is important. For example, sunlight passing through the cooler outer layers of the sun’s

atmosphere produces an absorption spectrum (the dark Fraunhoffer lines) that give information

about the chemical species occurring in the sun and the physical conditions in its atmosphere. Similar

information is available for other stars. For another example, transport of energy by radiation is

important in the interior of stars, in which photons undergo repeated (Thomson) scattering by free

electrons in the plasma and slowly diffuse upward toward the surface. In many stars such as the sun

this radiative transport dominates the energy transport at certain radii (at other radii convective

transport is dominant).

The interaction of photons with matter is also important in nuclear physics. In the Mössbauer

effect, for example, gamma ray photons emitted in the decay of a nucleus are used to excite other

nuclei, lifting them from their ground state into an excited state. The resonance is very narrow,

however, and the photon can be shifted out of resonance by a Doppler shift involving only small

velocities. The Mössbauer effect provided the first clear experimental demonstration of the red shift

that photons suffer on climbing out of a gravitational field. This effect implies that clocks run at

different rates in different regions of a gravitational field. It is one of the conceptual corner stones

of general relativity.

3. The Scattering Problem

We shall consider the reaction

A+ γ → B + γ′, (1)

in which an atom in state A interacts with an incident photon γ, which leaves the atom in state B

and produces the scattered photon γ′. We will write λ = (kµ), λ′ = (k′µ′) for the modes of the

incident and scattered photons, where µ is a polarization index, as described in Sec. 38.12. We will

assume that λ 6= λ′, since otherwise there is no scattering. If A = B, the scattering is elastic (the

initial and final atomic states are the same), and by conservation of energy we have ω = ω′, where ω

and ω′ are the frequencies of the photons with modes λ and λ′. If A 6= B, the scattering is inelastic,

and we have ω 6= ω′. In this case the final atomic state B may either be higher or lower in energy

than the initial state A, depending on circumstances.

There is one photon in both the initial and final states. We will write the initial state |i〉 and
the final state |n〉 in a variety of ways,

|i〉 = |A〉a†λ|0〉 = |A〉|λ〉 = |Aλ〉,

|n〉 = |B〉a†λ′ |0〉 = |B〉|λ′〉 = |Bλ′〉.
(2)
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We use the index n to label a variable final state, as we did in our presentation of time-dependent

perturbation theory in Notes 32; as usual, we will have to sum over collections of final states to get

physically relevant probabilities. The energies of the initial and final states are

Ei = EA + h̄ω,

En = EB + h̄ω′,
(3)

where EA and EB are the energies of the two atomic states, so the Einstein frequency connecting

the initial and final states is

ωni =
En − Ei

h̄
= ωBA + ω′ − ω, (4)

where ωBA = (EB − EA)/h̄.

The problem will be to compute the differential cross section dσ/dΩ′, where Ω′ refers to the

direction of the outgoing photon (in mode λ′). The differential cross section is a function of the

modes of the initial and final photons λ and λ′ and the two atomic states A and B.

4. The Transition Amplitude Vanishes at First Order

We will take the Hamiltonian for the interaction of the matter with the radiation to be H =

H0 +H1 +H2, where

H0 =
p2

2m
+ U(x) +

∑

λ

h̄ωλ a
†
λaλ, (5a)

H1 =
e

mc
[p ·A(x) + S ·B(x)], (5b)

H2 =
e2

2mc2
A(x)2. (5c)

The potential U(x) allows us to describe any single-electron atom (not only hydrogen).

The transition amplitude in first order time-dependent perturbation theory is given by

Eq. (32.32), which we reproduce here:

c(1)n (t) =
2

ih̄
eiωnit/2

(sinωnit/2

ωni

)

〈n|H1|i〉. (6)

This equation is written in the general notation of Notes 32. For the present application, we identify

states |i〉 and |n〉 with the states in Eq. (2), so that ωni is given by Eq. (4), and we identify H1 with

the term H1 in Eq. (5b). We ignore H2 in Eq. (5c) since for the moment we are only working to first

order. Then the matrix element in Eq. (6) becomes

〈n|H1|i〉 =
e

mc
〈Bλ′|[p ·A(x) + S ·B(x)]|Aλ〉. (7)

The fields A and B have Fourier series (40.20) and (40.22) in terms of the modes of the field. If we

write out these series, suppressing all factors except the creation and annihilation operators, then

they have the structure,

A,B =
∑

λ1

(

aλ1
. . . a†λ1

)

, (8)
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where we are careful to use the index λ1 as a dummy variable of summation, so as not to confuse it

with the indices λ and λ′ of the incident and scattered photons.

Now focusing on the field part of the matrix element (7), we see that the annihilation operator

aλ1
does not contribute to the transition amplitude, because it acts on a state with a single photon,

|Aλ〉, and either produces a state with zero photons (if λ1 = λ) or annihilates it (if λ1 6= λ). In either

case, the resulting state is orthogonal to the state |Bλ′〉, and gives zero when the scalar product is

taken. Similarly, the creation operator a†λ1
in the Fourier series (8) acts on the single photon state

|Aλ〉 and produces a two-photon state, which is necessarily orthogonal to any one-photon state such

as |Bλ′〉. Again, the field part of the scalar product vanishes. Thus we find

〈n|H1|i〉 = 0, (9)

and there is no contribution to the scattering amplitude at first order of time-dependent perturbation

theory. We must go to second-order to find a nonvanishing contribution.

5. Second-Order Time-Dependent Perturbation Theory

This is the first time we have had an application of second-order time-dependent perturbation

theory, so we shall return to the formalism of Notes 32 and develop the theory at second order, using

the notation of those Notes. In particular, the Hamiltonian is H = H0 +H1, without any term H2

as we have in Eq. (5c) above. The second-order contribution to the transition amplitude cn(t) in the

interaction picture is given by Eq. (32.30) in the general case in which H1 in the Schrödinger picture

is allowed to depend on time. For our scattering application, H1 is time-independent, so we can do

the time integrations appearing in Eqs. (32.27). The integral in the first order term in Eq. (32.27a)

was done already in Sec. 32.7, with the result shown in Eq. (32.32) and reproduced above in Eq. (6).

As for the integrals in the second order term in Eq. (32.27b), we first do the t′′ integration, finding,

c(2)n (t) =
1

(ih̄)2

∫ t

0

dt′
∑

k

eiωnkt
′

(eiωkit
′ − 1

iωki

)

〈n|H1|k〉〈k|H1|i〉. (10)

Recall that the sum on k is a sum over “intermediate states” that came from the insertion of a

resolution of the identity between the two Hamiltonian factors in Eq. (32.27b). We combine the

phase factors in Eq. (10), using the identity,

ωnk + ωki = ωni, (11)

and then we do the t′ integration,

c(2)n (t) =
1

(ih̄)2

∫ t

0

dt′
∑

k

1

iωki
(eiωnit

′ − eiωnkt
′

)〈n|H1|k〉〈k|H1|i〉

=
1

(ih̄)2

∑

k

1

iωki

[(eiωnit − 1

iωni

)

−
(eiωnkt − 1

iωnk

)]

〈n|H1|k〉〈k|H1|i〉. (12)
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Of the two major time-dependent factors in the square brackets in Eq. (12), the first one,

eiωnit − 1

iωni
= 2eiωnit/2

sinωnit/2

ωni
, (13)

is the same time-dependent factor that appears in the first order term c
(1)
n (t) shown in Eq. (6).

Notice that this factor is independent of k and can be taken out of the sum in Eq. (12). When

squared to produce a probability, this factor produces a quantity proportional to time multiplied

times a function of frequency that gets narrower as time gets longer,

sin2 ωt/2

ω2
=

π

2
t∆t(ω), (14)

where

lim
t→∞

∆t(ω) = δ(ω). (15)

See Eqs. (32.42) and (32.43). The fact that the result is proportional to time is essential for getting

a transition rate (a probability per unit time), and the emerging δ-function in the limit t → ∞ is

necessary for energy conservation, as explained in Notes 32. In fact, as explained in Sec. 32.13, we

do not really have to take t to ∞, it need only be long enough for certain initial transients to die

away. These transients are related to the artificiality of the initial conditions, and are nonphysical.

The initial conditions for the scattering problem considered in these Notes contain an artificial

element, as did the initial conditions in the potential scattering problem considered in Sec. 32.12.

That is, we are assuming that at t = 0 the atom is known to be in the state A and the field consists

of a single photon in mode λ. This mode is a plane wave that fills up all of space, including the

region occupied by the atom. It would be impossible to set up such initial conditions experimentally,

since there is no way for a light wave to get into the region occupied by the atom without interacting

with it. A more realistic set of initial conditions would be a wave packet made up out of single

photon states that initially is remote from the atom and not interacting with it. To treat such wave

packets, however, would require a more sophisticated formalism than we are using here, so we will

stick with the initial conditions we have chosen. The price we pay, however, is the appearance of

initial transients without physical significance.

The second major time-dependent term inside the square brackets in Eq. (12) is just such a

transient. This term, when squared, does not produce something proportional to time, but rather

just gives bounded oscillations that go to zero in the limit t → ∞ after we divide by time. Thus,

they do not contribute to the transition rate. This is because the frequency ωnk occurring in that

term is not independent of k. The same is true for the cross terms that arise when the sum of

the two major time-dependent terms in Eq. (12) is squared. Thus, if all we are interested in is the

transition rate and not the initial transients, we can drop the second major time-dependent term in

Eq. (12).

The result is an effective transition amplitude at second order that is proportional to the time-

dependent factor (13), the same factor that occurs at first order. Combining the first and second
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order terms, we obtain an effective transition amplitude,

ceffn (t) =
2

ih̄
eiωnit/2

( sinωnit/2

ωni

)

[

〈n|H1|i〉+
∑

k

〈n|H1|k〉〈k|H1|i〉
Ei − Ek

]

, (16)

where we have taken the denominator ωki appearing in Eq. (12) and written it as −(Ei − Ek)/h̄.

The result is the “energy denominator” seen in the second order contribution in Eq. (16). Recall

that we had such energy denominators also in second-order bound state perturbation theory (see

Notes 21). We drop the zeroth order contribution δni to the transition amplitude since for our

scattering problem n 6= i (since λ 6= λ′).

6. The Photon Scattering Amplitude at Second Order

For our application the notation H1 of Notes 32 and Sec. 5 must be replaced by H1+H2, given

by Eqs. (5). In particular, we must make this replacement in the transition amplitude (16). For

example, the first order matrix element in Eq. (16) is replaced by

〈n|H1 +H2|i〉. (17)

The Hamiltonian in Eq. (5) is ordered in powers of the fine structure constant α ≈ 1/137, as is

most easily seen in atomic units where e = m = h̄ = 1 and 1/c = α. Thus, the H1 term in the

matrix element (17) is of order α. This term, however, vanishes, as we found in Sec. 4. To compute

the transition amplitude to order α2, we must keep the H2 term in the matrix element (17), and

interpret the H1 in the second order term of Eq. (16) as the H1 in Eq. (5b), dropping H2 since this

will contribute only at third or fourth order of α. Thus, the effective transition amplitude for our

scattering problem, valid through order α2, is

ceffn (t) =
2

ih̄
eiωnit/2

( sinωnit/2

ωni

)[

〈n|H2|i〉+
∑

k

〈n|H1|k〉〈k|H1|i〉
Ei − Ek

]

, (18)

where now H1 and H2 are given by Eqs. (5) and states |i〉 and |n〉 are given by Eqs. (2). One term

involves H2 taken in first order perturbation theory, and the other involves H1 taken twice at second

order perturbation theory.

7. H2 in First-Order Perturbation Theory

We begin with the term

〈n|H2|i〉 =
e2

2mc2
〈Bλ′|A(x)2|Aλ〉. (19)

Squaring the Fourier series (40.20) for A, we obtain a product series with the structure,

A(x)2 ∼
∑

λ1λ2

(aλ1
. . . a†λ1

) · (aλ2
. . . a†λ2

), (20)
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where we suppress all factors except the creation and annihilation operators. This allows us to

concentrate on the photon part of the matrix element (19). We see that there are four types of

products of creation and annihilation operators that occur inA2. The product of the two annihilation

operators aλ1
aλ2

does not contribute to the transition amplitude, since it acts on the single photon

state |Aλ〉 producing zero. Likewise, the product of the two creation operators a†λ1
a†λ2

does not

contribute, since it acts on |Aλ〉 creating a three-photon state that is orthogonal to the one-photon

state |Bλ′〉. The product of the annihilation operator times the creation operator, aλ1
a†λ2

, does

contribute, however, as long as λ1 = λ and λ2 = λ′. That is, the photon destroyed by aλ1
must

be the incident photon, and the one created by a†λ2
must be the scattered photon. Taking into

account the other factors in the Fourier series, this product of operators corresponds to the product

of polarization vectors ǫ̂λ · ǫ̂∗λ′ and the product of phase factors eik·x−ik′·x. Similarly, the product

of the creation operator times the annihilation operator a†λ1
aλ2

contributes as long at λ1 = λ′ and

λ2 = λ, and in this case the product of polarization vectors is ǫ̂
∗
λ′ · ǫ̂λ and the product of phase

factors is e−ik′·x+ik·x.

Thus out of the double infinite series (20) for A2, only two terms contribute to the transition

amplitude, and both have the same product of polarization vectors and the same phase factors.

The contributions of these two terms are equal. It is now easy to do the photon part of the matrix

element, leaving only an atomic matrix element. The result is

〈n|H2|i〉 = 2× e2

2mc2
2πh̄c2

V

1√
ωω′

(ǫ̂ · ǫ̂′∗) 〈B|ei(k−k
′)·x|A〉, (21)

where the leading factor of 2 comes from the fact that we have two identical terms, and where we

have made the abbreviations, ǫ̂ = ǫ̂λ, ǫ̂
′ = ǫ̂λ′ .

In the following we shall use the dipole approximation, in which ei(k−k
′)·x = 1. As explained in

Notes 41, this approximation is equivalent to a/λ ≪ 1, where a is the size of the atom and λ is the

wave length of the radiation. This is an excellent approximation for atoms at optical frequencies,

where the ratio a/λ is less than 10−3. This causes the atomic matrix element in Eq. (21) to become

simply 〈B|A〉 = δBA. We see that the H2-term only contributes to elastic scattering. Altogether,

the matrix element becomes

〈n|H2|i〉 =
(e2h̄

m

)2π

V

1√
ωω′

(ǫ̂ · ǫ̂′∗) δBA. (22)

We have written the result in such a form that the first factor can be dropped if we are working in

atomic units.


