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Notes 45

Introduction to the Dirac Equation†

1. Introduction

In 1927 Pauli published a version of the Schrödinger equation for spin- 1
2
particles that incorpo-

rates the interaction of the spin with a magnetic field. This equation is

ih̄
∂ψ

∂t
=

[ 1

2m

(

p− q

c
A
)2

− µ ·B+ qΦ
]

ψ, (1)

where the magnetic moment µ is related to the spin S as described in Notes 14. See Prob. 18.1(b)

and Eq. (18.27). Pauli understood that spin was in a sense a relativistic effect, and that his equation

amounted to a grafting of some relativistic corrections onto the nonrelativistic framework of the

Schrödinger theory. As such, he felt that his equation was neither deep nor elegant, and he hesitated

to publish it, hoping to find a proper and complete relativistic theory of the electron. In that effort,

however, he was anticipated by Dirac, who in 1928 published his work on his wave equation, which

we take up in these notes.

The Dirac equation is rightly regarded as one of the great monuments of modern physics. There

is considerable formalism involved in mastering it, but it is an essential part of relativistic quantum

mechanics, and we will take it one step at a time.

2. The Dirac Equation

Notes 44 describes the state of affairs when Dirac undertook his investigations of relativistic

wave equations. Recognizing that the negative probabilities of the Klein-Gordon equation were

related to the fact that the Klein-Gordon equation is second order in time, Dirac decided to find a

relativistic wave equation that was first order in time. Following Dirac, we write this wave equation

as

ih̄
∂ψ

∂t
= Hψ, (2)

that is, as a Schrödinger equation, but with some Hamiltonian H that is to be determined. We

search for the correct relativistic H , taking at first the case of the free particle.

Dirac reasoned that since his equation was first order in the time derivative, and since relativity

is supposed to treat space and time on an equal footing, it should also be first order in the spatial

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.



2 Notes 45: The Dirac Equation

derivatives. That is, it should be linear in the derivatives ∂/∂xi, or, equivalently, in the momentum

operators −ih̄ ∂/∂xi. Therefore he guessed that H would have the form

H = cα · p+mc2β, (3)

where α is a vector containing the coefficients multiplying the spatial derivatives and where p =

−ih̄∇ is the usual momentum operator. A factor of c has been split off α so that these coefficients

will be dimensionless. Dirac also added a constant term involving a coefficient β, with mc2 split off

so that β would also be dimensionless. The coefficients α and β are to be determined. Thus, the

Dirac equation for a free particle can be written,

ih̄
∂ψ

∂t
= −ih̄c

3
∑

k=1

αk
∂ψ

∂xk
+mc2βψ. (4)

The coefficients αk or α = (α1, α2, α3) cannot be ordinary numbers, because if they were α

would specify some privileged direction in space, which we don’t expect for a free particle. Therefore

Dirac assumed that the wave function ψ was some kind of multicomponent object or spinor,

ψ =







ψ1

...
ψN






, (5)

where the number of components N is to be determined. Then αk, k = 1, 2, 3, and β are N × N

matrices. The matrices αk form a “vector” of matrices α, much as the Pauli matrices σ do. You

must henceforth understand, when looking at the Dirac equation, that ψ is a spinor and α and β

are matrices, although usually we do not indicate this explicitly. Since the free-particle Hamiltonian

should be invariant under space and time displacements, the matrices αk and β must be constant,

that is, independent of x and t. Thus, they act on the spin degrees of freedom of the particle, much

as do the Pauli matrices in the nonrelativistic theory of a spin- 1
2
particle, and commute with purely

spatial operators such as x and p. Also, since the Dirac Hamiltonian should be Hermitian, the

matrices αk and β must also be Hermitian.

To determine the matrices αk and β, Dirac required that every solution of the Dirac equation

should also satisfy the Klein-Gordon equation. This is so that the classical energy-momentum

relation, E2 = m2c4 + c2p2, would be satisfied. Applying ih̄ ∂/∂t to Eq. (4) we obtain,

−h̄2 ∂
2ψ

∂t2
= H2ψ = −h̄2c2

∑

kℓ

αkαℓ
∂2ψ

∂xk∂xℓ
− ih̄mc3

3
∑

k=1

(αkβ + βαk)
∂ψ

∂xk
+m2c4β2ψ. (6)

In order that this agree with the Klein-Gordon equation (44.7), we must have

1

2
(αkαℓ + αℓαk) = δkℓ, αkβ + βαk = 0, β2 = 1, (7)

where we symmetrize the first equation in k and ℓ since the derivatives ∂2ψ/∂xk∂xℓ are symmetric.

The right-hand sides of Eqs. (7) are understood to be multiplied by the N × N identity matrix,
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which we write simply as 1. Notice that if we set k = ℓ in the first of these equations we get α2
k = 1,

k = 1, 2, 3, so all four Dirac matrices αk, β square to unity.

The conditions (7) are conveniently expressed in terms of anticommutators. That is, we rewrite

them as

{αk, αℓ} = 2δkℓ, {αk, β} = 0, {β, β} = 2. (8)

Equations (7) or (8) constitute the Dirac algebra, that is, the set of algebraic relations which the Dirac

matrices αk and β must satisfy. They amount to an encoding of the relativistic energy-momentum

relations in terms of matrices. The Dirac algebra is a special case of a kind of anticommuting algebra,

encoding the components of a metric tensor, that in mathematics is known as a Clifford algebra.

3. Finding the Dirac Matrices

To find Hermitian matrices αk, β that satisfy the Dirac algebra we note first of all that α2
k = 1

and β2 = 1, so the eigenvalues of all four matrices can only be ±1. Next, multiplying the middle

equation in Eq. (7) from the left by β and taking traces we find

tr(βαkβ) + tr(αk) = 0. (9)

But by cycling the order of matrices, the first term can be written

tr(βαkβ) = tr(β2αk) = tr(αk), (10)

which, when used in Eq. (9), gives trαk = 0. In a similar manner we show that trβ = 0. The Dirac

matrices are Hermitian and traceless. Since the trace is the sum of the eigenvalues, which must be

±1, the number of positive and negative eigenvalues must be equal. This means that the dimension

N of the Dirac matrices must be even.

The simplest possibility is N = 2. All 2 × 2 Hermitian matrices can be expanded as a linear

combination of the Pauli matrices σ and the identity with real coefficients, which can be used to

search for the expansion coefficients which will cause the Dirac relations (8) to be satisfied. It turns

out after an analysis that there is no solution to the Dirac algebra in terms of 2× 2 matrices.

The next simplest case is N = 4. Here Dirac was able to find a explicit solution for matrices

αk and β that satisfies his algebra. The solution can be written,

α =

(

0 σ

σ 0

)

, β =

(

1 0
0 −1

)

, (Dirac-Pauli) (11)

where the 4 × 4 matrices are partitioned into four 2 × 2 matrices, which are represented in terms

of Pauli matrices and the 2 × 2 identity matrix (indicated simply by 1). As indicated, Eq. (11)

constitutes the Dirac-Pauli representation of the Dirac algebra.
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4. Equivalent and Inequivalent Representations

Whenever we have an abstract set of algebraic relations that a set of matrices or linear operators

must satisfy, such as the Dirac algebra (8), and we find an explicit set of matrices or operators that

satisfy those relations, then we say that we have found a representation of those relations. Thus,

Dirac found a representation of his algebra by means of 4× 4 matrices. However, a representation,

once found, is not unique, because we can conjugate all the matrices by a fixed, nonsingular matrix

S. That is, if we make the replacements,

α → SαS−1, β → SβS−1, (12)

then the Dirac algebra (8) is still satisfied. This amounts to a change of basis in “spin space.”

However, since we want the matrices α and β to be Hermitian, we should restrict the matrix S to

be unitary.

Any two representations (speaking of matrix representations) of the same dimensionality that

differ merely by a change of basis are called equivalent. The implication is that equivalent represen-

tations are trivially related. But if two matrix representations of the same dimensionality are not

related by a change of basis, then they are said to be inequivalent.

In the case of the Dirac algebra, it can be shown that all 4× 4 representations are equivalent to

the representation (11) found by Dirac. Thus, we can say that to within a change of basis in spin

space, Dirac’s representation (11), the Dirac-Pauli representation, is unique. It is the representation

of the Dirac algebra of smallest dimensionality, and thus provides the simplest solution to the problem

of finding matrices that satisfy the Dirac algebra.

We remark that Dirac’s representation of his algebra is also irreducible. This means that there

is no change of basis that causes all the matrices to take on a block-diagonal structure (the same

block-diagonal structure for all matrices). If there were such a change of basis, then the blocks would

constitute a representation of the Dirac algebra by means of matrices smaller than 4 × 4, and we

have seen that there is no such representation.

In doing physical calculations in the Dirac theory it is never actually necessary to use explicit

representations of the Dirac matrices, such as the Dirac-Pauli representation (11). The same is

actually true of the Pauli matrices σ; it is never actually necessary to use the explicit forms of

the three Pauli matrices that all students of quantum mechanics memorize. Nevertheless, some

calculations are simpler in one representation or another. The Dirac-Pauli representation (11) of

the Dirac algebra is most useful in studying the nonrelativistic limit of the Dirac equation, and it is

the one that we will use the most. But we mention another representation, the Weyl representation,

that is useful for studying ultrarelativistic particles such as neutrinos. The Weyl representation is

α =

(

σ 0
0 −σ

)

, β =

(

0 −1
−1 0

)

, (Weyl). (13)

The explicit change of basis taking us from the Dirac-Pauli to the Weyl representation is

(αk)Weyl =W † (αk)D−PW, βWeyl =W † βD−PW, (14)
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where

W =
1√
2

(

1 −1
1 1

)

. (15)

There is another representation of the Dirac algebra in common use, the Maiorana representa-

tion, that makes the effects of time-reversal simple. We will not use the Maioriana representation

and so will not quote it.

We remark that the fact that the Dirac matrices are 4-dimensional has nothing to do with

the fact that space-time is 4-dimensional. The Dirac matrices act on spin space, not on space-

time. Conversely, while there are 4-dimensional matrices with space-time indices, such as a Lorentz

transformation Λµ
ν or the electromagnetic field tensor Fµν , these do not act on spin space.

5. Minimal Coupling

Equation (3) gives the Dirac Hamiltonian for a free particle, where now we take ψ to be a

4-component spinor and we have explicit representations for the matrices α and β. To incorporate

the interaction of the particle with an electromagnetic field we may use the minimal coupling pre-

scription, which is described at a classical level in Sec. B.17. In the present context it means that

we make the replacements,

H → H − qΦ, p → p− q

c
A, (16)

in Eq. (3), where q is the charge of the particle and Φ and A are the scalar and vector potentials.

This gives the new Hamiltonian,

H = cα ·
[

p− q

c
A(x, t)

]

+ qΦ(x, t) +mc2β. (17)

It is a guess that this is the correct Hamiltonian for a Dirac particle interacting with the electro-

magnetic field, but it is the simplest guess consistent with Lorentz covariance.

Notice that in coming this far we have made the simplest choice possible at each stage where

there was more than one possibility, including the representation of the Dirac algebra and the

minimal coupling prescription.

6. The Probabilty Density and Current

Let us now search for a conserved probability density and current. Following the steps we

used in the nonrelativistic theory, we begin by writing down the Dirac equation and its Hermitian

conjugate. We use the Hamiltonian (17), which includes the interaction with an electromagnetic

field via the minimal coupling prescription. The Dirac equation itself is

ih̄
∂ψ

∂t
= cα ·

(

−ih̄∇ψ − q

c
Aψ

)

+ qΦψ +mc2βψ. (18)
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When we take the Hermitian conjugate, the column spinor ψ is mapped into a row spinor,

ψ =







ψ1

ψ2

ψ3

ψ4






→ ψ† = [ψ∗1 ψ∗2 ψ∗3 ψ∗4 ] . (19)

In the following you must remember that ψ† is a row spinor, so that when it is multiplied onto a

Dirac matrix from the left it produces another row spinor. The Dirac matrices α and β are mapped

into themselves under Hermitian conjugation, since they are Hermitian, and the order of matrix and

spinor multiplication is reversed. Altogether, the Hermitian conjugate of the Dirac equation is

−ih̄∂ψ
†

∂t
= c

[

ih̄(∇ψ†) ·α− q

c
ψ†(α ·A)

]

+ qΦψ† +mc2ψ†β. (20)

Now we multiply Eq. (18) on the left by ψ† and Eq. (20) on the right by ψ, where complete

contractions in spinor indices is understood, so the results are scalars insofar as the spin indices are

concerned. The terms involving A, Φ and β are the same, so when we subtract these cancel. What

is left is

ih̄
(

ψ† ∂ψ

∂t
+
∂ψ†

∂t
ψ
)

= −ih̄c[ψ†
α · ∇ψ + (∇ψ†) · αψ], (21)

or,
∂ρ

∂t
+∇ · J = 0, (22)

where

ρ = ψ†ψ, J = cψ†
αψ. (23)

In this derivation multiplication of spin matrices times spinors is implied, as is the multiplication of

row spinors times column spinors. If this is not clear we can always write out the spin operations

explicitly, for example, Eqs. (23) can be written,

ρ =

4
∑

r=1

|ψr|2, Ji = c

4
∑

r,s=1

ψ∗r (αi)rs ψs. (24)

We have not only found a conserved probability density and current, but the density is nonneg-

ative definite, ρ ≥ 0. Recall that the conserved density in the theory of the Klein-Gordon equation

could take on any sign, and so could not be interpreted as a probability density. In deriving Eqs. (23)

Dirac felt that he had overcome one of the main difficulties of the Klein-Gordon equation.

Notice that in the nonrelativistic Pauli theory of a spin- 1
2
particle the wave function is a 2-

component spinor,

ψ =

[

ψ+

ψ−

]

, (25)

and the probability density is

ρ = ψ†ψ = |ψ+|2 + |ψ−|2. (26)
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It is the probability density of finding the particle, if we don’t care about the spin state. That is, it

is the probability density of finding a spin up particle, plus the probability density of finding a spin

down particle. We do not yet have a physical interpretation of the four components of the Dirac

spinor, but the similarity between Dirac’s ρ and the ρ in the Pauli theory is notable.

If we set

Jµ =

(

cρ
J

)

(27)

then the continuity equation (22) looks covariant,

∂µJ
µ =

∂Jµ

∂xµ
= 0. (28)

However, as remarked earlier in connection with the Schrödinger theory (see Sec. 44.6), to show that

Eq. (28) is covariant we must show that Jµ transforms as a 4-vector under Lorentz transformations.

That is a fairly large project that we defer until we have a better physical understanding of the

Dirac equation (it is covered in Notes 47).

7. Free Particle Solutions at Rest

To gain physical insight into the Dirac equation, we examine the simplest possible free particle

solutions, namely those for a particle at rest. We use the Dirac-Pauli representation for the Dirac

matrices. The free particle Dirac equation can be written,

ih̄
∂ψ

∂t
= −ih̄cα · ∇ψ +mc2βψ. (29)

But if the particle is at rest then the momentum vanishes, and ∇ψ = 0. Then the Dirac equation

becomes

ih̄
∂ψ

∂t
= mc2

(

1 0
0 −1

)

ψ, (30)

where the matrix shown is β [see Eq. (11)]. The four components of the Dirac spinor decouple in

this case, and the solutions are easy to write down. They are






1
0
0
0






e−imc2t/h̄,







0
1
0
0






e−imc2t/h̄,







0
0
1
0






e+imc2t/h̄,







0
0
0
1






e+imc2t/h̄. (31)

The first pair of these solutions have energy mc2, just what we would expect for a particle at

rest, with the usual custom in relativity theory of including the rest mass-energy in the reckoning

the energy of the particle. The second pair of solutions have energy −mc2. We see that the Dirac

equation, like the Klein-Gordon equation, possesses solutions of negative energy. There is no ready

interpretation of these solutions, and we will have to do some work to find their proper physical

meaning. As for the positive energy solutions, we note that if we ask for the free particle solutions

at rest of the Pauli equation, they are
(

1
0

)

,

(

0
1

)

, (32)
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with no dependence on space or time. These look very similar to the first two solutions (31) of

the Dirac equation, in fact they are the same if we ignore the third and fourth components of the

spinor and shift the origin of energy by mc2 to conform with the usual custom of reckoning energy

in nonrelativistic problems.

Do not let this example lead you to think that the first two components of the Dirac spinor are

identical to the two components of the Pauli spinor. This is true for the free particle at rest, but

not for other problems, including the free particle in some state of motion. Nevertheless, it is true

that the solutions of the Pauli equation that are the nonrelativistic limit of the Dirac equation do

coincide approximately with the upper two components of the Dirac spinor. We will examine this

point in a little more detail in a moment, and in considerably more detail in Notes 48.

8. Heisenberg Equations of Motion

To gain further insight into the physical interpretation of the Dirac equation, we examine the

Heisenberg equations of motion. See Sec. 5.5 for the basic theory of the Heisenberg picture. We will

write the Heisenberg equations of motion as

Ẋ =
∂X

∂t
− i

h̄
[X,H ], (33)

where H is the Hamiltonian and X is any operator. This is the same as Eq. (5.22), but without

the H subscripts. We will use the Hamiltonian (17), that is, the Hamiltonian of a Dirac particle

interacting with an electromagnetic field. We will write the kinetic momentum as

π = p− q

c
A(x, t), (34)

to distinguish it from the canonical momentum p. Then the Hamiltonian is

H = cα · π + qΦ +mc2β. (35)

Basic commutators are

[xi, xj ] = 0, [xi, πj ] = ih̄ δij , [πi, πj ] =
ih̄q

c
ǫijk Bk, (36)

where Bi is the component of the magnetic field. See also Prob. 5.1 and Eqs. (10.5) and (10.6).

First we let X = xi (a component of the position operator). The operator xi has no explicit

time dependence, and everything in H except π commutes with xi. Thus,

[xi, H ] = c[xi, αjπj ] = cαj [xi, πj ] = ih̄c αi. (37)

We use the Heisenberg equations of motion to define the velocity operator v, and we find

v = ẋ = cα. (38)

The velocity operator in the Dirac theory turns out to be a purely spin operator, which is a

surprise. In the Schrödinger or Pauli theory the velocity operator is v = π/m, or, for a free particle,
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simply v = p/m. It is a purely spatial operator in the nonrelativistic theory. In the relativistic

theory of the free particle we might have expected something like

v =
c2p

E
=

c2p
√

m2c4 + c2p2
(39)

which is the expression in classical relativity giving the velocity as a function of the momentum. In

any case, we might have expected the velocity to be a function of the momentum, and, hence, a

purely spatial operator.

It will take us some time to understand the physical meaning of this result, which is discussed

further later in connection with the Gordon decomposition of the current (see Sec. 49.10.) For

now we simply remark that the same interpretation of cα (as a velocity operator) also appears

in the probability current, J = cψ†
αψ [see Eq. (23)]. Recall that the probability current in the

nonrelativistic theory is Re(ψ∗vψ), and, in any case, the probability current has to have dimensions

of probability density (ψ†ψ) times a velocity.

Further strange features of the velocity operator in the Dirac theory emerge when we consider

making a measurement of the velocity. If we measure one component of the velocity, say, vx = v1, the

answers can only be the eigenvalues of the operator cα1. But we have seen that the eigenvalues of all

the Dirac matrices are ±1. Therefore, a measurement of vx yields only two results, ±c. Furthermore,

we cannot measure more than one component of the velocity simultaneously, since the commutator

[αi, αj ] is nonzero. In the Dirac theory the components of the velocity do not commute, so it is

impossible to measure the direction of motion of the particle.

Another strange feature of the velocity operator is that it does not commute with the free particle

Hamiltonian, so the velocity (or its expectation value) is not constant, even for a free particle. This

behavior is related to the Zitterbewegung, which we will consider in Sec. 49.11.

A proper appreciation of these results requires developments that have not been explained yet.

For now suffice it to say that it turns out that the position operator does not have the same meaning

in relativistic quantum mechanics as in the nonrelativistic theory, because if we try to localize the

particle in a region smaller than the Compton wavelength there will arise significant amplitudes for

the production of particle-antiparticle pairs. Thus, we are no longer dealing with a single particle.

Recall that the photon does not have a position operator.

Now we compute the time derivative of the kinetic momentum π, for which

∂π

∂t
= −q

c

∂A

∂t
. (40)

Working out the commutators and expressing the derivatives of A and Φ in terms of the electric

and magnetic fields, we find

π̇ = q
[

E(x, t) +
1

c
v×B(x, t)

]

, (41)

where v = cα. This is precisely the equation of motion for the kinetic momentum of a charged

particle in classical relativity theory, which of course here is reinterpreted as an operator equation.
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In the classical theory π = mγv, but as we have seen, in the quantum theory the velocity and

momentum are not functions of one another.

The Heisenberg equations of motion are useful for finding the time-dependence of expectation

values of wave packets, a subject we will return to when we reconsider the strange features of the

velocity operator.

9. The Nonrelativistic Limit of the Dirac Equation

An obvious requirement for any successful relativistic theory such as the Dirac equation is that

it must reduce to the known, nonrelativistic theory when the velocity is small compared to the speed

of light. We will now examine solutions of the Dirac equation in the low velocity limit, using a simple

procedure that gives us the answers to order (v/c)2. In Notes 48 we will carry out a more systematic

expansion of the Dirac equation in powers of v/c.

Instead of the condition v ≪ c, we will write the energy as mc2 plus a correction that is small

compared to mc2. This gives us the nonrelativistic limit of the positive energy solutions of the Dirac

equation. Since the time dependence of the wave function ψ is governed by the energy (energy

eigenstates have the time dependence e−iEt/h̄), let us split off a factor of e−imc2t/h̄ from the Dirac

wave function ψ. This will remove the dominant part of the time-dependence of ψ when the energy

is mc2 plus a small correction. Let us also break the 4-component spinor into two 2-component

spinors φ and χ, using the Dirac-Pauli representation. That is, let us substitute

ψ = e−imc2t/h̄

(

φ
χ

)

(42)

into the Dirac equation, which we write in the Schrödinger form (2) with the Hamiltonian (35),

including the interaction with the electromagnetic field.

The left-hand side becomes

ih̄
∂ψ

∂t
= e−imc2t/h̄

[

mc2 + ih̄
∂

∂t

]

(

φ
χ

)

, (43)

while the right-hand side is

(cα · π + qΦ+mc2β)ψ = e−imc2t/h̄
[

c

(

0 σ · π
σ · π 0

)

+ qΦ+mc2
(

1 0
0 −1

)

]

(

φ
χ

)

, (44)

where we have written out the matrices α and β explicitly. Cancelling the common phase and rear-

ranging the terms slightly, the Dirac equation becomes a system of two coupled equations involving

the 2-component spinors φ and χ:

ih̄
∂φ

∂t
= c(σ · π)χ+ qΦφ, (45a)

ih̄
∂χ

∂t
= c(σ · π)φ+ qΦχ− 2mc2χ. (45b)

This coupled system is exactly equivalent to the original Dirac equation.
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In Eq. (45b) there are three terms involving χ. The term qΦχ is of the order of the nonrelativistic

kinetic energy (times χ), assuming that the kinetic and potential energies trade back and forth as is

typical, for example, in the orbital motion of an electron in an atom. That is, qΦ ≪ mc2, according

to our assumptions. The term ih̄∂χ/∂t must also be of the order of the nonrelativistic kinetic energy

(times χ), because we have already stripped off mc2 from the time dependence that represents the

total (relativistic) energy. Therefore both these terms are small compared to −2mc2χ, and can be

neglected. Doing this, we can solve Eq. (45b) for χ in terms of φ,

χ ≈ 1

2mc
(σ · π)φ. (46)

Now substituting this into Eq. (45a), we obtain

ih̄
∂φ

∂t
=

1

2m
(σ · π)2φ+ qΦφ. (47)

This equation is actually the Pauli equation. To see this, note that π commutes with σ, so

(σ · π)2 = σiπiσjπj = σiσjπiπj = (δij + iǫijk σk)πiπj ,= π
2 + iǫijk σkπiπj , (48)

where we use the properties of the Pauli matrices [see Eq. (1.145)]. Since the Levi-Civita symbol

ǫijk is antisymmetric in i and j, the second term in this equation can be written,

i

2
ǫijk σk(πiπj − πjπi) =

i

2
ǫijk σk[πi, πj ] = − h̄q

2c
ǫijk σk ǫijℓ Bℓ = − h̄q

c
σ ·B, (49)

where we use the commutator in Eq. (36) and Eq. (E.52). Altogether, we have

(σ · π)2 = π
2 − h̄q

c
σ ·B, (50)

so Eq. (47) becomes

ih̄
∂φ

∂t
=

(

π
2

2m
− µ ·B+ qΦ

)

φ, (51)

where

µ =
h̄q

2mc
σ = g

( q

2mc

)

S, (52)

where we have set S = (h̄/2)σ for a spin- 1
2
particle, and where g = 2. See Eq. (14.12).

Equation (51) is the Pauli equation for a particle of spin 1
2
(because φ has two components),

with the interaction of the spin with the magnetic field included and with a g-factor of 2. As we

have seen in Notes 14, the g-factor of the electron is very close to 2. In Dirac’s day the small

corrections to the value 2 had not been seen experimentally and were not suspected theoretically, so

as far as anyone knew the Dirac equation gave the exact g-factor of the electron. It is evident that

Dirac’s program for developing his wave equation, as described in these notes, is giving us a theory

of the electron. Other particles of spin 1
2
, such as the proton and neutron, with their “anomalous”

magnetic moments, will require a modified development.
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This is the first of a series of miraculous successes of the Dirac equation that we will see as

we proceed. In the first place notice that in the nonrelativistic theory, if we want to include the

interaction of the magnetic moment of the electron with a magnetic field, we must put the term

−µ ·B into the Hamiltonian by hand, based on our knowledge that this is the energy of interaction

of a classical magnetic moment with a magnetic field. (And this classical interaction involves some

subtleties that are completely skipped in most books. In general, the subject of magnetic energy is

treated poorly in many books, with some common mistakes.) In the Dirac equation, however, we

did not have to put this interaction in by hand, rather it followed automatically from the minimal

assumptions we have made (the simplest representation of the Dirac algebra, and the minimal

coupling prescription for the interaction with the electromagnetic field). Not only that, but we

get the correct g-factor for the electron to a high degree of accuracy, while in the nonrelativistic

theory the g-factor has to be taken as a measured parameter without theoretical support. For this

reason the value g = 2 is sometimes called the “Dirac” value, while other values are considered

“anomalous”.

Although there remain some interpretational difficulties with the Dirac equation, including the

negative energy solutions and some others we will discuss later, these successes are so striking that

we continue with the theory to see where it will lead. The next step is to see how the Dirac equation

transforms under Lorentz transformations.

Problems

1. The Dirac equation in two space dimensions. Suppose we lived in a world with two space dimen-

sions (x and y) and one time dimension. Let xµ = (ct, x, y), and otherwise use the obvious restrictions

of ordinary relativity theory to two spatial dimensions (for example, gµν = diag(+1,−1,−1)). In

two spatial dimensions, the vector potential A has two components (Ax, Ay), but the magnetic field

is a scalar,

B =
∂Ay

∂x
− ∂Ax

∂y
. (53)

More generally, true vectors in three dimensions become 2-vectors when restricted to two dimensions,

but pseudo-vectors in three dimensions become (pseudo) scalars in two dimensions. You will find

that in some respects the Dirac equation in two spatial dimensions is very similar to what was done

in lecture in three spatial dimensions, and in other respects it is different.

(a) Carry out Dirac’s program of finding a relativistic wave equation that is first order in both

space and time. Show that the Dirac algebra of α = (α1, α2) and β matrices can be satisfied by

2 × 2 Hermitian matrices. This is the simplest solution for the Dirac algebra in 2 + 1 dimensional

space-time. Thus, the Dirac spinor has two components. The solution is not unique, because you can

change the basis (conjugate any solution with some unitary matrix to create another representation

of the algebra), so let your primary solution be one in which β is diagonal. Call this the “Dirac-Pauli”
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representation. Also compute the matrices γµ in the Dirac-Pauli representation. The Dirac-Pauli

representation is most convenient for studying the nonrelativistic limit.

Now find a representation in which the matrices γµ are purely imaginary. See Eq. (47.5) for the

definition of the matrices γµ. Call this the “Maiorana representation.” The Maiorana representation

makes Lorentz transformations on the spinors look most simple.

(b) Write out the Dirac equation including minimal coupling to the electromagnetic field, and show

that it possesses a positive definite probability density with an associated probability current that

taken together satisfy the continuity equation.

(c) Work out the Heisenberg equations of motion for x and π = p− (q/c)A.

(d) Using the Dirac-Pauli representation, write the 2-component Dirac spinor as

ψ = e−imc2t/h̄

(

φ
χ

)

, (54)

and assume that the energy is E = mc2 + small. Find an approximation giving χ in terms of φ,

and use it to obtain an effective Schrödinger equation for the upper component φ. Is the resulting

Schrödinger equation realistic for any problems in our real (3-dimensional) world?


