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The Hartree-Fock Method in Atoms†

1. Introduction

The Hartree-Fock method is a basic method for approximating the solution of many-body

electron problems in atoms, molecules, and solids. With modifications, it is also extensively used

for protons and neutrons in nuclear physics, and in other applications. In the Hartree-Fock method,

one attempts to find the best multi-particle state that can be represented as a Slater determinant

of single particle states, where the criterion for “best” is the usual one in the variational method

in quantum mechanics. For the Hartree-Fock method, this means that the expectation value of

the energy should be stationary with respect to variations in the single particle orbitals. Hartree-

Fock solutions are often used as a starting point for a perturbation analysis, which is capable of

giving more accurate approximations. In these notes, we discuss the Hartree-Fock method in atomic

physics. Later we will use it as the basis of a perturbation analysis that reveals the basic facts about

atomic structure in multielectron atoms.

This is our first excursion into the physics of systems with more than two identical particles,

and we will use it as an opportunity to elaborate on the symmetrization postulate in the context of

a practical example.

2. The Basic N-electron Hamiltonian

The Hamiltonian we wish to solve initially is the nonrelativistic, electrostatic approximation for

an atom with N electrons and nuclear charge Z. We do not necessarily assume N = Z, so we leave

open the possibility of dealing with ions. The case N < Z is a positive ion, and N > Z is a negative

ion. We know that negative ions exist as bound states, for example, H− or the common ion Cl−. In

atomic units, our Hamiltonian is

H =

N
∑

i=1

(p2i
2

− Z

ri

)

+
∑

i<j

1

rij
. (1)

This Hamiltonian neglects a number of physical effects, including mass polarization (coming from

the finite nuclear mass), fine structure, retardation, hyperfine interactions, radiative corrections, etc.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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These are all small for atoms near the beginning of the periodic table, but the fine structure terms

are of relative order (Zα)2 and so become important near the end of the periodic table. For heavy

atoms, the Hamiltonian (1), which is fundamentally nonrelativistic, is not a good starting point for

atomic structure; instead, it is more useful to begin with a relativistic treatment, based on the Dirac

equation. In these notes, we will stick with the Hamiltonian (1). Of the various corrections not

included in Eq. (1), the spin-orbit terms are particularly notable, because they couple the spatial

and spin degrees of freedom. We will have something to say about spin-orbit corrections later. With

the neglect of all these corrections, the Hamiltonian (1) is a purely orbital operator. We will call H

in Eq. (1) the “basic N -electron Hamiltonian.”

We break the basic N -electron Hamiltonian into two terms, H = H1 +H2, where

H1 =

N
∑

i

(

p2i
2

− Z

ri

)

, (2)

and

H2 =
∑

i<j

1

rij
. (3)

The 1 and 2 subscripts indicate that the two terms involve respectively one- and two-electron oper-

ators, that is, operators that involve the coordinates of one or two electrons at a time. There is no

implication that H2 is smaller than H1, and we do not intend to treat H2 by perturbation theory.

It is true that in helium we treated H1 as an unperturbed Hamiltonian and H2 as a perturbation

(there we called them H0 and H1, see Eqs. (29.24)), and we got results that explained at least the

qualitative features of the excited states of helium. But in heavier atoms such an approach is not

useful. Instead, in these notes we will treat H = H1 +H2 by the variational method.

3. Good Quantum Numbers

The Hamiltonian (1) has a number of exactly conserved quantities, in addition to the obvious

example of H itself. First, the total orbital angular momentum,

L =

N
∑

i=1

Li, (4)

is conserved, and therefore also any function of L, of which L2 and Lz are notable because they not

only commute with H but also with each other. On the other hand, the orbital angular momenta of

the individual electrons Li are not conserved, because the inter-electron Coulomb interactions are

not invariant under spatial rotations of the individual electron coordinates. Next, the Hamiltonian

(1) is a purely spatial operator, and so commutes with any of the individual spin operators, Si, and

therefore with any function of these, notably the total spin,

S =

N
∑

i=1

Si, (5)
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and the total spin operators S2 and Sz . Next, H commutes with parity π. Finally, H commutes

with the operators Eij that exchange the labels of electrons i and j. Note that there is one exchange

operator for every pair of electrons. More generally, H commutes with permutation operators, which

are generalizations of the exchanges. As in helium, we can also define orbital and spin permutation

operators, and H commutes with these separately. We will have more to say about exchanges and

permutations below. This list of good quantum numbers is basically the same one that we had in

the case of helium.

Note that we are talking about the operators that commute with the basic N -electron Hamil-

tonian (1); when the various corrections are added, some operators are no longer conserved. For

example, when the spin-orbit terms are added, we find that neither L nor S commutes with H ,

but J = L + S does. Similarly, with the inclusion of spin-orbit terms, the Hamiltonian no longer

commutes with orbital and spin permutations separately, but it still commutes with overall permu-

tations. Going in the other direction, there are cruder approximations than Eq. (1) that have higher

symmetry; for example, the central field Hamiltonian (32.8a) commutes with the individual orbital

angular momenta Li. We will say more about central field Hamiltonians in Notes 32.

These facts follow a general rule, namely, the more idealized an approximation of a physical

system, the higher the degree of symmetry, the larger number of conserved quantities and the higher

degree of degeneracy in the energy eigenstates. Conversely, more realistic treatments mean lower

symmetry, fewer exactly conserved quantities, and splitting of degeneracies.

4. The Idea of Hartree

Hartree developed a variational treatment of multi-electron atoms which we now describe.

Hartree’s trial wave function is a product of single particle orbitals, one for each electron. The

word orbital refers to a single-particle wave function, either including or not including spin, depend-

ing on the context. Hartree’s multiparticle trial wave function is

|ΦH〉 = |1〉(1)|2〉(2) . . . |N〉(N), (6)

where the H subscript means “Hartree.” In this notation, the parenthesized numbers attached to

the kets are electron labels, while the numbers inside the kets are orbital labels. Thus, we have in

mind N electrons that are assigned to N orbitals in some way.

In the following we will attempt to use Latin indices i, j, . . . = 1, . . .N to label electrons, and

Greek indices λ, µ, . . . = 1, . . . , N to label orbitals. This is convenient to keep track of the two

different kinds of objects that are being labeled.

The orbitals |λ〉 in Hartree’s trial wave function are assumed to be the product of a spatial part

|uλ〉 times a spin part |msλ〉,
|λ〉 = |uλ〉|msλ〉. (7)

The spin part is assumed to be an eigenstate of Sz for the individual electron, with eigenvalue

msλ = ± 1
2 , (8)
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where a definite value of msλ is assigned to each orbital. This amounts to making Hartree’s trial

wave function |ΦH〉 an eigenstate of each of the operators Siz for each of the electrons. There is no

loss of generality in this, since the Hamiltonian (1) commutes with each of the operators Siz, which

also commute with each other. As for the spatial part of each orbital, it is associated with a wave

function on three-dimensional space by

uλ(r) = 〈r|uλ〉. (9)

In Hartree’s theory the variational parameters are the spatial parts of the single particle orbitals,

uλ(r), that is, the entire functions. Thus, Hartree’s variational calculation gives the best multipar-

ticle wave function for the atom that can be written as the product of single particle wave functions

of definite spin, where “best” means lowest energy. Recall that in helium we did a variational cal-

culation in which the effective nuclear charge, a single number, was the variational parameter. In

Hartree’s method, the variational parameters are a set of N functions on three-dimensional space.

This is considerably more sophisticated than what we did in the case of helium, since there are

effectively an infinite number of variational parameters.

In the variational method one can use any trial wave function one wishes, but the answers will

usually not be very good unless some physical or other kind of reasoning indicates that the trial wave

function is close to the true ground state. In the case of the Hartree method, the basic physical idea

is that in a multielectron atom, each electron sees an effective potential produced by the nucleus

and the average effects of the other electrons. This is the idea behind “screening.” If we imagine

that this effective potential is the same potential V (r) for all the electrons, then the multiparticle

Hamiltonian (1) is approximated by

H =

N
∑

i=1

(

p2i
2

+ V (ri)

)

, (10)

that is, it is the sum of N identical single particle Hamiltonians, one for each particle. The eigen-

functions of such a multiparticle Hamiltonian are products of single particle eigenfunctions of the

single particle Hamiltonian in Eq. (10), that is, they have the form of Hartree’s trial wave function.

There are, however, two complications in this basic picture. One is that each electron sees an

effective potential produced by the nucleus and the other electrons, not itself. Thus, there is really a

different effective potential for each electron. If we replace the common potential V (ri) in Eq. (10)

by Vi(ri), a potential that depends on the electron in question, then the eigenfunctions of H in

Eq. (10) are still products of single particle wave functions, but each will be the eigenfunction of a

different single-particle Hamiltonian.

The second complication is the symmetrization postulate, which requires the multielectron state

to be antisymmetric under exchange. Notice that Hartree’s trial wave function does not satisfy the

symmetrization postulate. We will see how these issues play out as we develop the theory in more

detail.
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5. Hartree’s Energy Functional

We now apply the variational method to the basic N -electron Hamiltonian (1), using Hartree’s

trial wave function (6). The results are not entirely satisfactory, since Hartree’s trial wave function

does not satisfy the requirements of the symmetrization postulate, but we do the calculation any-

way because it is somewhat simpler than the Hartree-Fock calculation that follows and because it

illustrates some of the technical aspects that will be useful later. Hartree’s variational calculation is

also interesting physically.

We require the expectation value of the Hamiltonian (1) with respect to Hartree’s trial wave

function (6). In the following we will assume that the single particle orbitals making up Hartree’s

trial wave function are normalized,

〈λ|λ〉 = 1. (11)

As we explain later, this condition is enforced by means of Lagrange multipliers.

We begin with the one-electron operator H1 in Eq. (2), which we write as

H1 =
N
∑

i=1

hi, (12)

where

hi =
p2i
2

− Z

ri
. (13)

The operator hi involves only the position and momentum of particle i. Then we can write the

required expectation value as

〈ΦH |H1|ΦH〉 =
N
∑

i=1

〈1|(1)〈2|(2) . . . 〈N |(N) hi |1〉(1)|2〉(2) . . . |N〉(N). (14)

To understand the matrix elements in the sum, let us take the special case i = 2. Since the operator

h2 only involves the position and momentum of particle 2, it is “transparent” to all the bras on the

left and kets on the right that involve particles other than particle 2. Because of the normalization

condition (11), these bras and kets combine together to give unity, and only the matrix element

〈2|(2) h2 |2〉(2) (15)

remains. By this example we see that the sum (14) becomes

〈ΦH |H1|ΦH〉 =
N
∑

i=1

〈i|(i) hi |i〉(i), (16)

which is nice because we have reduced the multiparticle matrix element to a sum of single particle

matrix elements. However, matrix elements in the sum violate our rule of using Latin indices i, j to

label particles and Greek indices λ, µ to label orbitals. We can fix this by rewriting Eq. (16) in the

form

〈ΦH |H1|ΦH〉 =
N
∑

λ=1

〈λ|(i) hi |λ〉(i), (17)
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where we add the condition that i = λ.

Now we can write out the single particle matrix elements explicitly in terms of the unknown

orbitals uλ(r). Since hi is a purely spatial operator, the spin parts of 〈λ| and |λ〉 in Eq. (17) combine

to give unity, and the matrix element is just a spatial integral,

〈λ|(i) hi |λ〉(i) =
∫

d3ri u
∗
λ(ri)

(

p2i
2

− Z

ri

)

uλ(ri), (18)

where we integrate over ri, the coordinates of particle i. But this variable ri is obviously just a

dummy variable of integration, which we can replace simply by r. Altogether, we can write Eq. (17)

in the form

〈ΦH |H1|ΦH〉 =
N
∑

λ=1

Iλ, (19)

where

Iλ =

∫

d3r u∗λ(r)
(

p2

2
− Z

r

)

uλ(r). (20)

The energy of the Hartree state involves the sum of the average kinetic energy of the single particle

orbitals plus their potential energy of interaction with the nucleus. It is reasonable that such terms

should appear.

Next we consider the expectation value of the two-electron operator H2 of Eq. (3) with respect

to the Hartree trial wave function (6). As above, we can write this as a sum of multiparticle matrix

elements,

〈ΦH |H2|ΦH〉 =
∑

i<j

〈1|(1)〈2|(2) . . . 〈N |(N) 1

rij
|1〉(1)|2〉(2) . . . |N〉(N). (21)

Again, to take an example, consider the term i = 2, j = 3. Then all the bras and kets for electrons

other than electrons 2 and 3 combine together to give unity, due to the normalization (11), leaving

a two-particle matrix element,

〈2|(2)〈3|(3) 1

r23
|2〉(2)|3〉(3). (22)

By this example we see that the expectation value can be written,

〈ΦH |H2|ΦH〉 =
∑

i<j

〈i|(i)〈j|(j) 1

rij
|i〉(i)|j〉(j) =

∑

λ<µ

〈λ|(i)〈µ|(j) 1

rij
|λ〉(i)|µ〉(j), (23)

where in the final sum we switch to Greek indices for orbitals and add the conditions i = λ and

j = µ.

In the final matrix elements in Eq. (23) the bra 〈λ|(i) and ket |λ〉(i) for particle i have the same

spinor attached to them, and the operator in the middle is a purely spatial operator. Thus, the spin

scalar product just gives unity, and the matrix element reduces to a spatial integration insofar as

the coordinates of particle i are concerned. The same is true for particle j. We denote the matrix

element in question by Jλµ, which we write out as an integral over the coordinates of particles i and

j,

Jλµ =

∫

d3ri d
3rj u

∗
λ(ri)u

∗
µ(rj)

1

rij
uλ(ri)uµ(rj). (24)
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But the variables of integration, ri and rj , are just dummies, and we can rewrite this in the form,

Jλµ =

∫

d3r d3r′
|uλ(r)|2|uµ(r′)|2

|r− r′| . (25)

Finally, we can write the expectation value of H2 as

〈ΦH |H2|ΦH〉 =
∑

λ<µ

Jλµ. (26)

The integrals Jλµ are examples of “direct” integrals of the type we saw earlier in our perturbation

treatment of the excited states of helium. Only the case λ 6= µ occurs in the calculation above. The

physical interpretation of Jλµ for λ 6= µ is that it is the mutual electrostatic energy of interaction of

the two electron clouds associated with orbitals uλ(r) and uµ(r), that is, it is the energy required

to move these two clouds rigidly from infinite separation to their final position in the atom. Since

the clouds are negatively charged they repel one another, and the required energy is positive. This

is also obvious from Eq. (25), since the integrand is strictly positive.

Also, the physical interpretation of Jλµ makes it clear that it must be symmetric in the two

indices,

Jλµ = Jµλ, (27)

which also follows from the integral (23) by swapping the variables r, r′ of integration. Because of

this symmetry, the expectation value of H2 can be written,

〈ΦH |H2|ΦH〉 = 1

2

∑

λ6=µ

Jλµ, (28)

which is more convenient for later work. The omission of the diagonal terms λ = µ means that the

self-energies of the electron clouds are not counted in the Hartree energy functional. The self-energy

for orbital λ would be (1/2)Jλλ, which according to standard electrostatics is the energy required

to bring together infinitesimal charges from infinity to form the charge cloud |uλ(r)|2. Of course,

this notion takes no account of the indivisible quantum of electric charge e. It is physically plausible

that the mutual energies of the electron clouds should occur in the energy functional, but not the

self-energies.

Altogether, we can write the expectation value for the energy in Hartree’s theory as

E[ΦH ] = 〈ΦH |H |ΦH〉 =
N
∑

λ=1

Iλ +
1

2

∑

λ6=µ

Jλµ. (29)

This expectation value is regarded as a functional of Hartree’s multiparticle state, as indicated, or,

equivalently, of the set of single particle orbitals {uλ(r)}.
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6. The Hartree Equations

The Hartree state |ΦH〉 is not normalized unless we impose some constraints to make this so.

See Sec. 27.5, where we used a Lagrange multiplier to enforce normalization in a family of trial wave

functions. The easiest way to do this is to require the single particle orbitals to be normalized as

indicated by Eq. (11). The spin parts of the orbitals |λ〉 are already normalized, so the normalization

condition reduces to a spatial integral,

∫

d3ru∗λ(r)uλ(r) = 1. (30)

Thus there are really N constraints, one for each orbital. Denoting the corresponding Lagrange

multipliers by ǫλ, we subtract the Lagrange multiplier term from the functional E[ΦH ] in Eq. (29)

to obtain a modified functional,

F [ΦH ] =

N
∑

λ=1

Iλ +
1

2

∑

λ6=µ

Jλµ −
N
∑

λ=1

ǫλ(〈λ|λ〉 − 1). (31)

This functional is required to be stationary with respect to arbitrary variations in the unknown

single particle wave functions, uλ(r). These wave functions are generally complex, so arbitrary

variations consist of independent arbitrary variations in the real and imaginary parts. But varying

the real and imaginary parts independently is equivalent to varying the wave function and its complex

conjugate independently; therefore we require the vanishing of two functional derivatives,

δF [ΦH ]

δuλ(r)
= 0,

δF [ΦH ]

δu∗λ(r)
= 0. (32)

The second of these equations leads to the Hartree equations in their usual form, and the first to the

complex conjugate of those equations; therefore it suffices to work with the second equation only.

Carrying out the required functional derivative, we obtain the Hartree equations,

(

p2

2
− Z

r

)

uλ(r) + Vλ(r)uλ(r) = ǫλuλ(r), (33)

where

Vλ(r) =
∑

µ6=λ

∫

d3r′
|uµ(r)|2
|r− r′| . (34)

The Hartree equations (33) have the form of a set of pseudo-Schrödinger equations for the orbitals

uλ(r), in which the Lagrange multiplier ǫλ plays the role of an eigenvalue. The potential energy

includes the potential of the nucleus, −Z/r, as well as the potential Vλ(r). The latter is physically

the electrostatic potential produced at field point r by the charge clouds of all the other orbitals

µ 6= λ, as may be seen from Eq. (34). The exclusion of the orbital λ from this sum is what makes

the sum depend on λ; the electron with orbital λ is not acted upon by its own charge cloud. This

corresponds to the exclusion of the self-energies from the energy functional. Thus, there is a different
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potential Vλ for each orbital λ. The potential Vλ can only be known when all the other orbitals

uµ(r) for µ 6= λ are known. But each of these orbitals also satisfies a Hartree equation, so in fact

what we have in Eq. (33) is a system of N coupled, nonlinear, integro-differential equations.

In spite of their mathematical complexity, however, the Hartree equations (34) are quite clear

physically: Each electron moves in the average field produced by all the other electrons. Sometimes

one speaks of the self-consistent field, that is, the Hartree orbitals uλ(r) are eigenfunctions of po-

tential energies that depend on those orbitals themselves. The Hartree equations are an example of

a mean field theory, in which one particle is assumed to move in the average field produced by the

other particles. Mean field theories are common in many-body physics and in statistical mechanics.

Since the potentials in the Hartree theory are not known until the orbitals are known, the

Hartree equations cannot be solved by the usual methods of solving the Schrödinger equation (in a

given potential). Instead, the usual procedure is to use a method of iteration. First one makes a guess

for the orbitals uλ(r), for example, they might be taken as the eigenfunctions of the Thomas-Fermi

potential for an atom of given Z and N . From these, the potentials Vλ(r) are computed by Eq. (34),

and then the N Schrödinger equations with potentials Vλ(r) are solved for the eigenfunctions uλ(r).

These are then used to compute new potentials Vλ(r), etc., until the procedure converges.

As described, this procedure requires one to solve fully three-dimensional Schrödinger equations,

since the potentials Vλ(r) are generally not rotationally invariant. It is not easy to solve wave

equations in three dimensions, and even with modern computers one would prefer not to do it if

possible. To avoid this, Hartree suggested that once the potentials Vλ(r) were computed from the

orbitals, they be averaged over angles to produce a central field potential,

V̄λ(r) =
1

4π

∫

dΩVλ(r), (35)

where as indicated the averaged potential V̄λ only depends on the radius r. This is of course an

additional approximation, which degrades the accuracy of the method. With this modification,

Hartree’s method requires only the solution of a radial equation, a much easier task than solving a

three-dimensional equation.

Since each of the Hartree orbitals uλ(r) is an eigenfunction of a Schrödinger operator with its

own potential Vλ(r), the different orbitals are not orthogonal to one another,

〈λ|µ〉 6= δλµ, λ 6= µ. (36)

That is, they are eigenfunctions of different single-particle Hamiltonians. The orbitals are normal-

ized, 〈λ|λ〉 = 1, but not orthogonal to one another.

The energy associated with the solutions of the Hartree equations, that is, the energy we

minimized in deriving those equations, is just the energy functional (29) evaluated at the Hartree

wave function. You might suppose that the eigenvalues ǫλ are somehow the energies of the individual

electrons, and that if we add them up we would get the energy of the multielectron state. But this
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is not so, for if we multiply the Hartree equation (33) by u∗λ(r) and integrate, we obtain

Iλ +
∑

µ6=λ

Jλµ = ǫλ. (37)

Now summing this over λ and using Eq. (29), we find

E[ΦH ] =

N
∑

λ=1

ǫλ − 1

2

∑

λ6=µ

Jλµ. (38)

It is the energy E[ΦH ] that is the estimate (an upper bound, actually) to the ground state energy

of the atom.

The Hartree orbitals and the estimated energy of the ground state of the atom do not depend

on the assignment of the spins msλ to the orbitals. We expect energies to depend on spin in

multielectron systems for the reasons we saw in the case of helium: The spin state affects the spatial

state because of the requirements of the symmetrization postulate, and the spatial state affects the

energy because of Coulomb interactions. Naturally we do not see any of this in the Hartree theory,

because Hartree’s trial wave function does not satisfy the symmetrization postulate. This is the

main defect of this trial wave function. To remedy it, Fock modified Hartree’s trial wave function

shortly after Hartree’s results were announced, producing what is now called Hartree-Fock theory.

7. The Hartree-Fock Trial Wave Function

Fock’s trial wave function is an antisymmetrized version of Hartree’s; we will denote it by |Φ〉,
without the H subscript. Like Hartree’s trial wave function, that of Fock is specified by a set

of single particle orbitals with definite value of spin as in Eqs. (7) and (9), but the electrons are

permuted among the orbitals in all N ! possible ways and a linear combination of the N ! terms is

made with plus or minus signs, depending on whether the permutation is even or odd. The result is

conveniently expressed as a so-called Slater determinant,

|Φ〉 = 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|1〉(1) |2〉(1) . . . |N〉(1)
|1〉(2) |2〉(2) . . .

...
...

. . .
...

|1〉(N) . . . |N〉(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (39)

The prefactor 1/
√
N ! is a normalization constant. The determinant may be expanded by the defini-

tion of a determinant, producing the N ! terms with plus and minus signs mentioned above. The signs

and the sum over permutations guarantee that the Hartree-Fock state satisfies the symmetrization

postulate, something we will discuss in more detail below.

Apart from the antisymmetrization, the basic idea of the Hartree-Fock method is the same as

that of the Hartree method. Both methods are variational; the Hartree-Fock method determines the

best estimate to the ground state wave function of the atom within the class of multiparticle wave

functions that are properly antisymmetrized products of single particle wave functions.
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A Slater determinant is not so much specified by the single particle orbitals |λ〉 that make it

up, as by the N -dimensional subspace of the single-particle Hilbert space that is spanned by these

orbitals. First note that if the orbitals are linearly dependent, then the Slater determinant vanishes

(since its columns are linearly dependent). Thus, if we want an nonzero Slater determinant, the

single particle orbitals must be linearly independent. This means that they span an N -dimensional

subspace of the single particle Hilbert space (they form a basis in this subspace). Next we define

new orbitals |λ′〉 that are nonsingular linear combinations of the old orbitals,

|λ′〉 =
∑

λ

|λ〉Cλλ′ (40)

where C is an N ×N matrix with detC 6= 0. Then forming a Slater determinant |Φ′〉 from the new

orbitals, we have

|Φ′〉 = (detC)|Φ〉. (41)

The new multiparticle state |Φ′〉 is proportional to the old one, and hence specifies the same state

physically.

The variational method will optimize the multiparticle state |Φ〉 (it will minimize the energy),

but in view of Eq. (41) it cannot be expected to produce unique answers for the single particle orbitals

|λ〉 unless some extra conditions are imposed. In the following we will narrow the possibilities for

the single particle orbitals by requiring them to be orthonormal,

〈λ|µ〉 = δλµ = δ(msλ,msµ)

∫

d3ru∗λ(r)uµ(r). (42)

There is no loss of generality in this, because it is always possible to choose an orthonormal basis in

the N -dimensional space spanned by the single particle orbitals. This still does not uniquely specify

the single particle orbitals, because they can always be rotated by a unitary transformation (for

which detC is a phase factor), but it is a convenient assumption. Recall that in the Hartree theory,

the single particle orbitals could not be orthonormal.

With this normalization condition, it follows that the state |Φ〉 defined by Eq. (39) is normalized,

〈Φ|Φ〉 = 1, (43)

that is, with the normalization factor 1/
√
N !. See Prob. 1.

8. Mathematical Properties of Permutations

We now make a digression into the subjects of permutations and the symmetrization postulate,

which are raised by our use of Slater determinants as a trial wave function. In the process we will

give some attention to bosons as well as fermions. We begin with the mathematical properties of

permutations.

A permutation is defined as an invertible mapping of the set of the first N integers onto itself,

P : {1, . . . , N} → {1, . . . , N}. (44)
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Since the mapping is invertible, it maps each integer in the set into a unique integer in the same set;

thus, it amounts to a rearrangement of the integers in the set. The number of distinct permutations

acting on the set {1, . . . , N} is just the number of ways of rearranging the N integers, namely, N !.

One way to specify a permutation is just to tabulate the values of the function P , which we

denote by Pn or P (n). For example, in the case N = 3, we might have

n P (n)

1 2

2 3

3 1

(45)

Equivalently, we may tabulate the function horizontally,

P =

(

1 2 3
2 3 1

)

, (46)

where the first row contains n and the second P (n).

The set of permutations satisfies the definition of a group. First, the identity permutation exists;

it is just the identity function, P (n) = n. Second, by their definition, permutations are invertible.

Third, permutations can be multiplied. If P and Q are two permutations, then the product PQ is

the composition of the two functions, that is,

(PQ)(n) = P (Q(n)). (47)

This product is another permutation. The multiplication of permutations is associative, but not in

general commutative. The group of permutations of the first N integers has N ! elements.

A special kind of permutation is an exchange, which swaps two integers and leaves the rest

alone. The idea and notation are clear enough from an example (in the case N = 5),

E24 =

(

1 2 3 4 5
1 4 3 2 5

)

. (48)

Not every permutation is an exchange, but every permutation can be written as a product of ex-

changes. For example, the permutation

P =

(

1 2 3 4
3 4 2 1

)

(49)

can be factored as follows, where we show the mappings of successive permutations horizontally:

E13 E24 E12

1 −→ 3 −→ 3 −→ 3
2 −→ 2 −→ 4 −→ 4
3 −→ 1 −→ 1 −→ 2
4 −→ 4 −→ 2 −→ 1

(50)
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The first permutation puts the 3 in the right final position, the second the 4, and the last one, the

1 and 2. Thus, the P in Eq. (49) can be written,

P = E12E24E13. (51)

The decomposition of a permutation into a product of exchanges is not unique, but the number of

exchanges required is always either even or odd. Therefore we can define the parity of a permutation

as the quantity +1 for an even permutation, and −1 for an odd one. We will denote this quantity

by (−1)P . For example, the permutation in Eq. (49) is odd, since there are 3 exchanges in Eq. (51).

A basic fact about permutations is that the parity of a product of permutations is the product of

the parities, or,

(−1)P (−1)Q = (−1)PQ. (52)

This follows easily by factoring P and Q into exchanges; the number of exchanges in PQ is the sum

of the numbers of exchanges in P and Q.

9. Permutation Operators in Quantum Mechanics

In general, a quantum system may consist of one or more species of identical particles, for

example, the protons and neutrons in a nucleus. In nonrelativistic quantum mechanics, the numbers

of particles of each species are fixed. The case of photons is somewhat special; photons of course

travel at the speed of light, and in that sense are always relativistic. But since they are massless they

are easily created and destroyed in interactions with nonrelativistic matter, so it is often desirable

to treat with them within a formalism that is otherwise nonrelativistic. In the following we will

ignore the case of photons, and think of a nonrelativistic quantum system with fixed numbers of

massive particles of different species. We treat this system with the wave function or ket formalism

we have developed so far in this course (not field theory). It then is possible to define operators that

permute the particles within the different classes of identical particles. These are associated with

the mathematical permutations defined above, but are operators that act on the Hilbert space of

the quantum system. For simplicity we take the case of a system with just one species of N identical

particles (the case relevant to our treatment of the electrons in an atom); the generalization to more

than one species is trivial.

Let {|X〉} be a basis in the single particle Hilbert space. Such a basis always exists. The index

X may stand for a collection of quantum numbers, for example, (n, ℓ,mℓ,ms). Then the N -particle

Hilbert space possesses the basis,

|X1〉(1)|X2〉(2) . . . |XN 〉(N), (53)

where the list (X1, X2, . . . , XN ) runs over all combinations of N indices of the single particle basis,

and the numbers in parentheses label the particles. See also Sec. 18.2. Now let P be a permutation,

and define the action of an operator U(P ) on the multiparticle basis states by

U(P )|X1〉(1)|X2〉(2) . . . |XN 〉(N) = |XP1
〉(1)|XP2

〉(2) . . . |XPN
〉(N). (54)
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By linearity, this definition can be extended to arbitrary vectors of the multiparticle Hilbert space.

One can show that the resulting operator is actually independent of the basis in the single particle

Hilbert space that was used in its definition. One can also show that this operator U(P ) preserves the

norm of all states, and hence is unitary. Equation (54) is obviously a generalization of Eq. (28.12),

which applied to the case of two identical particles.

The definition (54) has the consequence that the unitary operators U(P ) reproduce the multi-

plication law of the permutations themselves, in the following sense:

U(P )U(Q) = U(QP ). (55)

[If it is desired that the right-hand side of this equation should be U(PQ), so that the unitary

operators form a representation of the permutations, then P on the left-hand side of Eq. (54) can

be replaced by P−1. This would not change any of the main conclusions presented in these notes,

but it would complicate the presentation slightly.]

We will henceforth for simplicity write P for the unitary operators U(P ), since there will be

little danger of confusion.

10. Permutation Operators and the Symmetrization Postulate

We stated the symmetrization postulate in Notes 28 in terms of the properties of wave functions

when identical particles are exchanged. Exchange operators are special cases of permutation opera-

tors, which we have just defined. Since a permutation can be factored into a product of exchanges,

we can now state the symmetrization postulate in a different and somewhat more general manner.

Namely, let |Ψ〉 be a multiparticle state of a system consisting of N identical particles. Then the

multiparticle states that are physically allowed are those that satisfy

P |Ψ〉 =
{

+|Ψ〉, bosons,
(−1)P |Ψ〉, fermions.

(56)

In the wave function or ket formalism we have been using up to this time in this course, it is

impossible to write down a multiparticle state for identical particles without labeling the particles.

You will see that the definition of the permutation operators above required us to label the particles.

One of the consequences of the symmetrization postulate, however, is that no physics depends on

this labeling. For example, in the Hartree-Fock trial wave function (39), the individual orbitals are

assigned definite values of spin (up or down). But we cannot say that electron 1, for example, has

a definite spin, since the Slater determinant permutes all electrons among all the orbitals. It is

meaningful to say how many electrons are spin up and how many spin down, but not which ones

are which.

Another aspect of the present formalism is that it is possible to write down multiparticle states

that are not physical at all, since they do not satisfy the symmetrization postulate. In fact, we

should not even call them “states,” since they are just mathematical wave functions without physical
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meaning. They may be useful for mathematical purposes, however, as we saw with Hartree’s trial

wave function (6). Thus, we may speak of the “nominal Hilbert space” consisting of all multiparticle

wave functions we can write down, whether physical or not. The physically allowed states, those

that satisfy the symmetrization postulate (56), occupy a subspace of the nominal Hilbert space,

what we may call the “physical subspace.”

Just as some states are nonphysical, some operators that act on the nominal Hilbert space are

nonphysical, too, in the sense that they do not correspond to any measurement process that can

actually be carried out. A physical operator is necessarily one that maps any physical state into

another physical state, that is, it must leave the physical subspace of the nominal Hilbert space

invariant. Operators that commute with all permutations satisfy this condition and are physical.

An example is the atomic Hamiltonian (1), in fact, the two terms H1 and H2 in Eqs. (2) and (3)

individually commute with all permutations,

[P,H1] = [P,H2] = 0, (57)

since the permutation operators just permute the labels in a sum such as (2) without changing the

sum itself. Similarly, the total orbital angular momentum L and spin S, defined in Eqs. (4) and (5),

are physical operators. The individual orbital angular momenta Li and spins Si are, however, not

physical.

In fact we can say that all physical observables (Hamiltonians and others) involving identical

particles must commute with all permutations of those particles, since otherwise the particles would

not be identical.

11. The Symmetrization Postulate and the Pauli Exclusion Principle

The usual statement of the Pauli exclusion principle is that no two electrons can occupy the

same state. This refers of course to the case of identical fermions. It is important to understand that

the “states” in question are single-particle states, and that when we talk about electrons being “in”

such states we are implicitly thinking of a multiparticle state that is a properly antisymmetrized

tensor product of such single particle states, that is, it is a Slater determinant as in Eq. (39). The

Slater determinant vanishes if any two single particle states |λ〉 are identical, since in that case two

columns of the determinant are equal. As remarked in Sec. 7, the more general condition is that the

Slater determinant vanishes if the set of single particle orbitals is linearly dependent.

It is important to realize that such multiparticle fermion states (Slater determinants of sin-

gle particle orbitals) are not the most general multiparticle states. While an arbitrary physical,

multiparticle fermion state (one lying in the physical subspace) can always be written as a linear

combination of Slater determinants, it is unlikely that the actual multiparticle states occurring in the

real world have the form of a single Slater determinant. Slater determinants, that is, multiparticle

fermion states in which it is meaningful to talk about the (single particle) “states” that the elec-

trons are “in,” are much more common in theory or in vague or elementary descriptions of physical
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phenomena than they are in the real world. For example, these notes are devoted to Hartree-Fock

theory, but the Slater determinant used in Hartree-Fock theory is only a trial wave function, and

the actual wave functions of real atoms (ground states or otherwise) never have the form of a single

Slater determinant.

Thus, the usual statement of the Pauli exclusion principle is rather limited in scope, and is not

as general as the symmetrization postulate as given above.

12. The Antisymmetrizing Projector

In this section we consider the case of N identical fermions. The physical multiparticle states

form a subspace of the nominal multiparticle Hilbert space, and it should be possible to write down

a projection operator A that projects onto this subspace. It turns out that this projector can be

expressed in terms of the permutation operators,

A =
1

N !

∑

P

(−1)PP. (58)

To say that A is a projection operator means that it is Hermitian, A† = A, and that it is idempotent,

A2 = A (see Sec. 1.24). The operator A is Hermitian because the permutation operators P are all

unitary, and for every P in the sum in Eq. (58) the term containing P−1 = P † also occurs (they

could be the same term). Therefore when we form the Hermitian conjugate of the sum, the terms

involving P and P−1 just exchange places, the sum goes into itself, and we find A† = A.

To show that A is idempotent, we begin by letting Q be a fixed permutation, and we consider

the product

(−1)QQA =
1

N !

∑

P

(−1)Q(−1)PQP. (59)

By Eq. (52), this can also be written

1

N !

∑

P

(−1)QPQP =
1

N !

∑

P

(−1)P
′

P ′, (60)

where P ′ = QP . The variable of summation P in this final sum is just a dummy variable, which

runs over all the permutations. But if we take the list of permutations and multiply each on the

left by a fixed permutation Q, the result is the same list all over again, but just in a different order.

Therefore when P runs over all permutations, so does P ′ = QP , and we can replace the dummy

index of summation P in Eq. (60) by P ′. The result is

(−1)QQA =
1

N !

∑

P ′

(−1)P
′

P ′ = A. (61)

Now let us take the product A2, and expand the first factor only. We have

A2 =

(

1

N !

∑

P

(−1)PP

)

A =
1

N !

∑

P

(−1)PPA =
1

N !

∑

P

A, (62)
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where we use Eq. (61) in the last step. But this final sum is a sum of N ! terms, all of which are

identical (namely, A), so the sum itself is just N !A. Thus the N !’s cancel, and we have A2 = A.

Therefore A is indeed a projection operator.

We must now show that A projects onto the physical subspace, that is, if |Ψ〉 is an arbitrary

multiparticle state, then |Ψ′〉 = A|Ψ〉 is a state that satisfies the symmetrization postulate. To do

this we apply the symmetrization postulate in the form (56):

P |Ψ′〉 = PA|Ψ〉 = (−1)PA|Ψ〉 = (−1)P |Ψ′〉, (63)

where we use Eq. (61). Thus, the state |Ψ′〉 is properly antisymmetrized.

13. The Hartree-Fock Energy Functional

We return now to Hartree-Fock theory, and compute the expectation value of the Hamilto-

nian (1) with respect to the Hartree-Fock trial wave function |Φ〉 in Eq. (39). First we note that the

expansion of the Slater determinant by the definition of a determinant is equivalent to applying all

N ! permutation operators P to the Hartree state |ΦH〉 in Eq. (6) and summing the terms with + and

− signs, corresponding to the parity of the permutation. Thus, by Eq. (58), the Slater determinant

is proportional to the antisymmetrizing projector A applied to the (unsymmetrized) Hartree state.

Including the prefactors, we have

|Φ〉 =
√
N !A|ΦH〉. (64)

This is a convenient way of writing the Hartree-Fock state in terms of the Hartree state.

Next we note that since the terms in the HamiltonianH1 andH2 commute with all permutations

P (see Eq. (57)), by the definition (58) they also commute with A,

[H1, A] = [H2, A] = 0. (65)

In fact, this is true of any operator that is physically meaningful.

Now we compute the expectation value of H1 in Eq. (2) with respect to the Hartree-Fock state.

First we use Eq. (64) to write the expectation value in terms of the Hartree state,

〈Φ|H1|Φ〉 = N !〈ΦH |A†H1A|ΦH〉. (66)

But the operator in this latter matrix element can be simplified,

A†H1A = AH1A = H1A
2 = H1A, (67)

where we use Eq. (65) and the relations A† = A and A2 = A. Thus Eq. (66) can be written

〈Φ|H1|Φ〉 = N !〈ΦH |H1A|ΦH〉 =
N
∑

i=1

∑

P

(−1)P 〈ΦH |hiP |ΦH〉, (68)

where we have used Eqs. (2) and (58) to expand H1 and A, and where the individual particle

Hamiltonian hi is defined in Eq. (13).
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Let us take the case i = 2 for the matrix element in Eq. (68), and write out the Hartree states

in terms of single particle orbitals as in Eq. (6). We find

〈ΦH |h2P |ΦH〉 =

〈1|(1)〈2|(2)〈3|(3) . . . 〈N |(N) h2 |P1〉(1)|P2〉(2)|P3〉(3) . . . |PN 〉(N), (69)

where we express action of the permutation P on the Hartree state |ΦH〉 as in Sec. 9. The operator in

the center of this matrix element, namely h2, only acts on the variables for particle 2, and therefore

only involves the bra 〈2|(2) on the left and the ket |P2〉(2) on the right. All other single particle bras

and kets pass right through h2, and combine with each other in accordance with the orthonormality

condition 〈λ|µ〉 = δλµ. Thus, the matrix element becomes,

〈ΦH |h2P |ΦH〉 = δ1P1
δ3P3

δ4P4
. . . δNPN

〈2|(2) h2 |P2〉(2), (70)

where only the i = 2 term is omitted from the product of Kronecker deltas. But this matrix element

was taken out of the expression in Eq. (68), where it is summed over all permutations P , and we see

that the Kronecker deltas will severely limit the permutations of this sum that yield nonvanishing

terms. In fact, the Kronecker deltas in Eq. (70) will force the permutation to have the form,

P =

(

1 2 3 4 . . . N
1 x 3 4 . . . N

)

, (71)

where only x = P2 is not determined by the Kronecker deltas. But since a permutation must be

a rearrangement of the N numbers on the top row, the only possibility for x = P2 on the bottom

row is the value 2. Therefore the only permutation that survives in the sum Eq. (68) is the identity

permutation, which is an even permutation.

Thus we have
∑

P

(−1)P 〈ΦH |h2P |ΦH〉 = 〈2|(2) h2 |2〉(2), (72)

and Eq. (68) becomes

〈Φ|H1|Φ〉 =
N
∑

i=1

〈i|(i) hi |i〉(i) =
N
∑

λ=1

〈λ|(i) hi|λ〉(i), (73)

where in the last step we have switched to Greek indices for orbitals and added the condition i = λ.

The result is the same as the expectation value of H1 in Hartree’s simpler theory, Eq. (17), so

〈Φ|H1|Φ〉 =
N
∑

λ=1

Iλ, (74)

where Iλ is defined in Eq. (20).

The term H2 in Eq. (3) is treated similarly. We have

〈Φ|H2|Φ〉 = N !〈ΦH |A†H2 A|ΦH〉

= N !〈ΦH |H2A|ΦH〉 =
∑

i<j

∑

P

(−1)P 〈ΦH | 1
rij
P |ΦH〉, (75)
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just as in Eqs. (66)–(68). To understand the matrix elements appearing here, we take the example

i = 2, j = 3, for which we have

〈ΦH | 1

r23
P |ΦH〉

= 〈1|(1)〈2|(2)〈3|(3) . . . 〈N |(N) 1

r23
|P1〉(1)|P2〉(2)|P3〉(3) . . . |PN 〉(N), (76)

just as in Eq. (69). Proceeding as before, we note that the operator 1/r23 only acts on the coordinates

for particles 2 and 3, so all the other single particle bras and kets combine by orthonormality. We

obtain a product of N − 2 Kronecker deltas,

〈ΦH | 1

r23
P |ΦH〉 = δ1P1

δ4P4
δ5P5

. . . δNPN
〈2|(2)〈3|(3) 1

r23
|P2〉(2)|P3〉(3), (77)

where only the i = 2, 3 terms are omitted from the product of Kronecker deltas. As before, when this

matrix element is summed over permutations as in Eq. (75), most permutations will not contribute.

In fact, the Kronecker deltas will force the permutations to have the form,

P =

(

1 2 3 4 5 . . . N
1 x y 4 5 . . . N

)

, (78)

where only x = P2 and y = P3 are not determined. But there are only two permutations of this

form. One is the identity permutation P = I, an even permutation, for which x = P2 = 2 and

y = P3 = 3; and the other is the permutation that exchanges particles 2 and 3, P = E23, an odd

permutation, for which x = P2 = 3 and y = P3 = 2.

Therefore the sum in Eq. (75) can be written

〈Φ|H2|Φ〉 =
∑

i<j

[

〈i|(i)〈j|(j) 1

rij
|i〉(i)|j〉(j) − 〈i|(i)〈j|(j) 1

rij
|j〉(i)|i〉(j)

]

=
∑

λ<µ

[

〈λ|(i)〈µ|(j) 1

rij
|λ〉(i)|µ〉(j) − 〈λ|(i)〈µ|(j) 1

rij
|µ〉(i)|λ〉(j)

]

, (79)

where in the final expression we add the conditions i = λ, j = µ. The first term in the final sum is

the same expression we had in the case of the Hartree theory (see Eq. (23)), and can be expressed

as a sum over the direct integrals Jλµ defined in Eq. (25).

As for the matrix elements in the second term in the final sum in Eq. (79),

〈λ|(i)〈µ|(j) 1

rij
|µ〉(i)|λ〉(j), (80)

they can also be written out in terms of the spatial and spin parts of the orbitals for particles i and

j. As for particle i, the orbitals in the bra and ket on the two sides are not the same, so the spin

parts are not necessarily identical. The operator in the middle is a purely spatial operator, so the

spin parts of the orbitals combine to give the Kronecker delta δ(msλ,msµ). The same Kronecker

delta occurs when we combine the spin parts of the bra and ket for particle j, but since a Kronecker
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delta is equal to its own square, we need only represent it once. As for the spatial parts of the matrix

element, they can be written in terms of integrals over the coordinates ri and rj of particles i and

j, which, however, are dummy variables of integration that we replace by r and r′. We write the

result as

Kλµ = δ(msλ,msµ)

∫

d3r d3r′
u∗λ(r)u∗µ(r′)uλ(r′)uµ(r)

|r− r′| . (81)

This is an exchange integral of the type we saw previously in our perturbation treatment of the

excited states of helium. We recall that the exchange integrals were responsible for the splitting

between ortho and para states in helium, that is, they account for the energy shift when the spatial

symmetry of the wave function is forced to change because of a change in spin symmetry.

Altogether, we can express the expectation value of H2 in the Hartree-Fock theory as

〈Φ|H2|Φ〉 =
∑

λ<µ

(Jλµ −Kλµ). (82)

The first term is the same as in the Hartree theory (see Eq. (26)), but the second term is new.

The exchange integrals Kλµ do not have such a simple electrostatic interpretation as the direct

integrals Jλµ. By use of Green’s theorem one can prove that they are positive (see Appendix 19 of

Quantum Theory of Atomic Structure, by John C. Slater). This is plausible in any case, since the

denominator |r − r′| causes the regions where r ≈ r′ to dominate the integral, and in such regions

the numerator of the integrand is positive. Thus, since they enter with a minus sign in the energy

functional (82), the Hartree-Fock energy is lower than the Hartree energy, and provides a better

estimate to the ground state energy. This is what we would expect, given that the Hartree-Fock

wave function is more sophisticated (and closer to the physics since it is a physically allowed state).

However, note that because of the Kronecker delta in Eq. (81), the exchange integrals are

nonzero only between orbitals of the same spin (both up or both down). Thus, when spins are

aligned (either all up or all down), the effect of the exchange integrals is maximized. In this case,

the exchange integrals reduce the overall energy of the collection of electrons. This is a reflection of

the fact that when spins are aligned, the symmetry of the spin states forces an antisymmetry of the

spatial parts of the multiparticle wave function, so that the electrons are kept apart. This in turn

reduces the electrostatic energy of interaction of the electrons. On the other hand, when half the

spins are up and half down, the effect of the exchange terms is minimized, and the energy is raised.

The same phenomenon occurred in the case of helium, where the ortho states are lower in energy

than the para states for the same configuration.

Because states with all spins aligned are lower in energy, the ground states of atoms do have

their spins aligned in this way to the extent it is allowed by the symmetrization postulate. In the case

of a full subshell, there is only one way to assign the spins, and that is half up and half down. But

when a new subshell is being filled, the electrons that go in first will align themselves (all up, say),

until the subshell is half-filled; after that, by the Pauli principle, spins must start to go in pointing

down. The first spin to go in down, after the subshell is half-full, causes an abrupt raising of the
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energy of the atom and a lowering of the ionization energy; this is the explanation for the glitch

between nitrogen and oxygen in the graph of the ionization potential as a function of Z. See Fig. 1.

The special stability of half-filled subshells also explains why chromium, in the first transition series

of elements, which might have been expected to have a configuration of 3d44s2, actually borrows an

electron from 4s subshell and ends up with configuration 3d54s.
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Fig. 1. Ionization potentials (I.P.) for low-Z atoms. Energies measured in atomic units.

The exchange integrals are real and symmetric in their indices, Kλµ = Kµλ, like the direct

integrals, and are positive. In addition, the direct and exchange integrals are equal on the diagonal,

Jλλ = Kλλ, (83)

as follows by inspection of the integrals. The diagonal elements are the self-energies of the electron

clouds which we do not expect to appear in the physics of the electron interactions, but since only the

difference Jλµ −Kλµ occurs in the sum (82), we can extend that sum to include the diagonal terms

without changing anything. Then extending the sum to all λ and µ, we can write the expectation

value as

〈Φ|H2|Φ〉 =
1

2

∑

λµ

(Jλµ −Kλµ), (84)

where we divide by 2 to compensate for the double counting. This is the most convenient form for

the expectation value.

Altogether, the energy functional in the Hartree-Fock theory is

E[Φ] = 〈Φ|H |Φ〉 =
N
∑

λ=1

Iλ +
1

2

∑

λµ

(Jλµ −Kλµ). (85)
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14. The Hartree-Fock Equations

We wish the energy to be stationary with respect to variations in the single particle orbitals

uλ(r), but we cannot allow arbitrary variations because we wish to preserve the orthonormality

conditions (42). These constitute N2 constraints, so we should introduce N2 Lagrange multipliers,

which we can arrange in a matrix denoted by ǫλµ. Then we can add the Lagrange multiplier term

∑

λµ

ǫλµ
(

〈λ|µ〉 − δλµ
)

(86)

to the energy functional E[Φ]. This would be the honest way of enforcing these constraints, and if

we do it, we will get the correct answers.

It turns out, however, that a simpler approach gives the same results. In the simpler approach,

instead of demanding that the single particle orbitals be orthonormal, we simply demand that they

be normalized. This amounts to only N constraints, 〈λ|λ〉 = 1, which can be enforced by adding

the term
∑

λ

ǫλ
(

〈λ|λ〉 − 1
)

(87)

to the energy functional. Here ǫλ are the N Lagrange multipliers, and the constraint condition is

given explicitly in terms of the unknown spatial orbitals uλ by

〈λ|λ〉 =
∫

d3r u∗λ(r)uλ(r), (88)

since the spin parts of the orbital |λ〉 simply combine to give unity. The reason this simpler method

works is that once the variational equations have been derived, it turns out that the solutions to

those equations are automatically orthogonal. Thus, the orthogonality conditions are not really

necessary. But to believe this we must prove the orthogonality of the solutions of the variational

equations, since we are not enforcing orthogonality with Lagrange multipliers. We will return to

this task later.

Altogether, our functional is

F [Φ] =

N
∑

λ=1

Iλ +
1

2

∑

λµ

(Jλµ −Kλµ)−
N
∑

λ=1

ǫλ
(

〈λ|λ〉 − 1
)

, (89)

where we use the symbol F to indicated a modified energy functional.

Carrying out the functional derivative, we find the Hartree-Fock equations in the form,

(

p2

2
− Z

r

)

uλ(r) + Vd(r)uλ(r)−
∫

d3r′ Vex(r, r
′)uλ(r

′) = ǫλuλ(r), (90)

where we define

Vd(r) =

N
∑

µ=1

∫

d3r′
|uµ(r′)|2
|r− r′| , (91)
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and

Vex(r, r
′) =

N
∑

µ=1

δ(msλ,msµ)
uµ(r)u

∗
µ(r

′)

|r− r′| . (92)

As in the Hartree theory, the Hartree-Fock equations have the form of a pseudo-Schrödinger equation,

in which the Lagrange multiplier ǫλ plays the role of an eigenvalue, and the Schrödinger operator

is determined self-consistently by the orbitals uλ(r) themselves. The functions Vd(r) and Vex(r, r
′)

are called the direct and exchange potentials; both of these are self-consistent, that is, determined

only once the orbitals uλ(r) are known.

The direct potential Vd(r) is almost the same as the potential Vλ(r) in the Hartree theory, the

difference being that it includes the potential of all the electrons, including the one with orbital uλ

itself. In other words, it contains the self-interactions, and a given orbital seems to be acted upon

by the electric field produced by itself. We do not expect the self-interactions to appear physically,

and actually they do not, since the diagonal λ = µ contributions to the direct and exchange terms

in the Hartree-Fock equations (90) cancel. But it is convenient to leave them in the direct potential

Vd(r), because this makes this potential the same for all orbitals (independent of λ). Recall that

in the Hartree theory, the fact that the potentials depended on λ meant that the different orbitals

were driven by different Schrödinger operators, and hence not orthogonal to one another.

The exchange potential Vex(r, r
′) is the new element in the Hartree-Fock equations. The ex-

change term in these equations has the form of an integral transform applied to the orbital uλ(r),

in which Vex(r, r
′) is the kernel. This is a linear operator, but it is not a multiplicative operator in

the position representation, like Vd(r) (that is, like an ordinary potential). As a result, the exchange

potential is referred to as a “nonlocal potential.” If we denote the exchange potential, regarded as

an operator, by simply Vex, then its relation to the function Vex(r, r
′) is simply

Vex(r, r
′) = 〈r|Vex|r′〉. (93)

The operator is nonlocal because its matrix elements in the position representation are not diagonal.

The exchange potential is harder to interpret physically than the direct potential, but it is responsible

for the effective repulsion that electrons in the same spin states feel due to the symmetrization

postulate, which forces the spatial parts of their wave functions to repel one another.

As noted, the direct potential is the same for all orbitals λ, but the exchange potential does

depend on the orbital in question, through the Kronecker delta δ(msλ,msµ). But since msλ can only

take on the values ± 1
2 , there are in fact only two exchange potentials, which with a slight change of

notation we might write as

V ±
ex(r, r

′) =

N
∑

µ=1

δ(msµ,± 1
2 )
uµ(r)u

∗
µ(r

′)

|r− r′| . (94)

Then all spin-up orbitals uλ are driven by the exchange potential V +
ex, and all spin down orbitals

by V −
ex. Thus, the Hartree-Fock equations (90) can be thought of as two coupled equations, one for
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spin-up orbitals and one for spin-down orbitals,

(

p2

2
− Z

r
+ Vd − V ±

ex

)

uλ(r) = ǫλuλ(r), (95)

where the ± sign is the same one in msλ = ± 1
2 , and where we just write V ±

exuλ for the wave

function produced by the integral transform in Eq. (90). Equations (95) are coupled because the

self-consistent potentials Vd(r) and V
±
ex(r, r

′) involve all the orbitals. However, once these potentials

have been determined self-consistently, then the spin up and spin down orbitals uλ are eigenfunctions

of two distinct single-particle Hamiltonian operators.

Now we can see that the actual solutions to the Hartree-Fock equations are orthonormal, and

verify the claims made earlier when we introduced the simplified Lagrange multiplier term (87). For

if we take two orbitals λ 6= λ′, both with the same value of spin, then since both orbitals satisfy the

same Schrödinger equation (that is, both either with V +
ex or with V −

ex), the spatial wave functions

uλ(r) and uλ′(r) are automatically orthogonal. But if the spins are opposite, then the orbitals are

orthogonal due to the spins. Altogether, the orthonormality constraints 〈λ|µ〉 = δλµ are satisfied in

Hartree-Fock theory.

This is in contrast to Hartree’s theory, where the orbitals are not orthogonal (an unattractive

feature of that theory). In fact, the Hartree-Fock theory is in many respects more symmetrical and

elegant than the Hartree theory (and more physical, too, since it employs properly antisymmetrized

wave functions). Nevertheless, the nonlocal exchange potential is definitely more difficult to work

with than the direct potential, and people who do numerical calculations are always searching for

approximations or other ways to avoid dealing with it.

15. Koopmans’ Theorem

We will now attempt to give an interpretation for the pseudo-eigenvalues ǫλ that occur in the

Hartree-Fock equations (90). If we multiply this equation by uλ(r)
∗ and integrate, we obtain

Iλ +

N
∑

µ=1

(Jλµ −Kλµ) = ǫλ. (96)

We might think that this ǫλ is somehow the energy of electron λ, and that the total energy of the

atom would be the sum of the ǫλ’s. But this is incorrect, for if we sum Eq. (96) over λ, we obtain

∑

λ

ǫλ =
∑

λ

Iλ +
∑

λµ

(Jλµ −Kλµ) = E +
1

2

∑

λµ

(Jλµ −Kλµ), (97)

where E is the total energy of the atom according to Eq. (85). On the other hand, there is an

approximate relation between the largest of the eigenvalues ǫλ and the ionization potential of the

atom. Assuming that we order the eigenvalues ǫλ in ascending order, then ǫN is the largest one. The

ionization potential of the atom is the difference between the ground state energy of the atom with
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N electrons, and the ground state energy of the (different) atom with N − 1 electrons. According

to Eq. (85), these two energies are

E(N) =

N
∑

λ=1

Iλ +
1

2

N
∑

λ,µ=1

(Jλµ −Kλµ), (98a)

and

E(N − 1) =

N−1
∑

λ=1

Iλ +
1

2

N−1
∑

λ,µ=1

(Jλµ −Kλµ), (98b)

The quantities Iλ, Jλµ, andKλµ in the two equations are not the same, since the fields are determined

self-consistently, and when we remove one electron, we will obtain different self-consistent solutions

for the orbitals. But if we assume this difference is small and ignore it, then we can subtract Eq. (98b)

from Eq. (98a) to obtain the ionization potential (IP):

IP = IN +

N
∑

µ=1

(JNµ −KNµ) = ǫN . (99)

In deriving this equation, it helps to remember that Jλλ = Kλλ (on the diagonal). The result (99)

is known as Koopmans’ theorem.

16. Averaging and the Electron Configuration

The Hartree-Fock equations are nonlinear, and can be solved by an iterative procedure much

as in Hartree’s theory. As in Hartree’s theory, in order to avoid solving fully three-dimensional wave

equations at each iteration, we can add an additional, simplifying step in the iteration: After we have

used a set of orbitals uλ(r) to compute the direct and exchange potentials Vd(r) and Vex(r, r
′), we

average these over angles to obtain rotationally invariant potentials, call them V̄d(r) and V̄ex(r, r
′).

The physical reasoning behind this step is that we expect the atom, at least in the ground state,

to be approximately spherically symmetric, so we hope there will not be a great loss in accuracy in

forcing the self-consistent potentials to have the same symmetry.

For the direct potential, the angle average is given by

V̄d(r) =
1

4π

∫

dΩVd(r), (100)

as in Eq. (35). The formula for averaging the exchange potential is slightly more complicated, so

we will not write it down, but we remark that the effect is to create an averaged exchange operator

V̄ ±
ex with integral kernel V̄ ±

ex(r, r
′) that is invariant under all rotations,

U(R)V̄ ±
exU(R)† = V̄ ±

ex, (101)

for all R ∈ SO(3). (The unitary operator U(R), acting on three-dimensional wave functions, is

defined in Eq. (15.13).) The result is a pair of Schrödinger operators (one for spin up, one for spin



26 Notes 31: Hartree-Fock Method

down) for the orbitals uλ(r) that are rotationally invariant, so that the wave equations separate in

spherical coordinates and the orbitals uλ(r) have the central force form Rnℓ(r)Yℓmℓ
(Ω). Then only

radial equations need be solved at each step of the iteration, that is, essentially one-dimensional

Schrödinger equations, a much easier task than solving three-dimensional equations. After this step,

the energies do not depend on the orbital magnetic quantum number mℓ.

A further approximation of the same sort is to average the Hartree-Fock equations over spin

rotations as well as spatial ones. This replaces the two exchange potentials V̄ ±
ex by their average,

V̄ ±
ex → 1

2
(V̄ +

ex + V̄ −
ex), (102)

which we will call simply V̄ex (without the ±). After this is done, there is effectively only one Hartree-

Fock operator (the same for spin up and spin down orbitals), and the energies do not depend on the

spin magnetic quantum number ms. The Hartree-Fock equations that must now be solved are
(

p2

2
− Z

r
+ V̄d − V̄ex

)

uλ(r) = ǫλuλ(r). (103)

With these averaging steps included, the labels λ of the Hartree-Fock orbitals |λ〉 can be iden-

tified with a list of central force quantum numbers, λ = (nℓmℓms), and the eigenvalues ǫλ become

ǫnℓ (independent of mℓ and ms). Thus, it becomes possible to describe the electrons as being “in”

various central force orbitals, not which electrons are in which orbitals (because that would imply a

nonphysical labeling of the electrons), but simply a list of the orbitals that are occupied. This list

is called the electron configuration of the atom. Since the energies do not depend on the magnetic

quantum numbers mℓ and ms, the electron configuration is limited to a count of the number of

electrons possessing the various (nℓ) values. For a given (nℓ) value, the number of possible magnetic

quantum numbers is 2(2ℓ + 1); the corresponding states are said to form a subshell of the atom.

Some examples will illustrate the standard spectroscopic notation for electron configurations. For

helium, it is 1s2; for beryllium, 1s22s2; for carbon, 1s22s22p2; for sodium, 1s22s22p63s. As shown,

the number of electrons in a subshell is indicated by an superscript. Standard periodic tables of

the elements usually list the configuration of all the atoms, that is, the ground states of the neutral

atoms. It must be understood that the central field potentials in question are self-consistent, and

that they depend on the atom in question (the value of Z).

It should also be understood that the electron configuration does not refer to the actual ground

state of the atom, but rather to the best approximation to it according to the variational principle

and other approximations we have made. The true ground (or any other state) of an atom never has

exactly the form of a single Slater determinant, comprised of a list of single particle orbitals. It may

certainly be expanded as a linear combination of such Slater determinants, but there is no guarantee

on the basis of anything that we have said that the expansion is even dominated by a single term.

This is once again a warning to be careful of language in which one speaks of which state various

electrons are “in.” Such language is only meaningful for product wave functions, which are common

in theory but rare in the real world.
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An interesting fact about the Hartree-Fock equations is that the averaging procedure described

above is actually unnecessary in the case of completely filled subshells, for example, beryllium with

1s22s2 or neon with 1s22s22p6. In this case, self-consistent solutions exist in the form of central

field eigenfunctions. That is, with orbitals of this form, the direct and exchange potentials are

automatically invariant under both spatial and spin rotations. See Prob. 2.

Problems

1. Show that the Slater determinant |Φ〉 in Eq. (39) is normalized if the orbitals |λ〉 are orthonormal.

2. The Hartree-Fock equations can be solved by iteration. A simplification is to average the potentials

over angles and spins after they are computed in terms of some approximate orbitals, to make the

Schrödinger equation for the next iteration of orbitals into a central force problem. However, this

averaging is not necessary in the case of completely filled subshells; in this case, rotationally invariant

potentials and central force orbitals are self-consistent.

It is a familiar fact that a three-dimensional central force Hamiltonian H = p2/2m+ V (r) has

eigenfunctions in the form Rnℓ(r)Yℓm(Ω), and that the energies only depend on n and ℓ. It turns

out that these facts are true for any rotationally invariant Hamiltonian in three dimensions (that is,

H need not have the simple kinetic-plus-potential form). This is important in Hartree-Fock theory,

because the exchange potential is not an ordinary potential.

(a) In Hartree-Fock theory, the direct potential is given in terms of the orbitals uλ(r) by Eq. (91).

Suppose that the orbitals are central force orbitals so λ = (nℓmℓms), and suppose that all subshells

are filled. Show that the direct potential is then rotationally invariant, that is, it only depends on

r = |r|.
Hint: It is easiest to solve this as a problem in electrostatics. The potential will be rotationally

invariant if the charge density is rotationally invariant. To prove the latter fact, use the addition

theorem for spherical harmonics, Eq. (15.71). Once the charge density is known the potential can

be determined by Gauss’s law.

(b) An operator K̂ is rotationally invariant if it commutes with all rotation operators,

U(R)†K̂U(R) = K̂, (104)

for all R ∈ SO(3). See Eq. (15.3) or (15.13) for the definition of U(R). K is also called a scalar

operator (see Sec. 19.3). Let K(r, r′) be the kernel of the operator K̂, so that the action or K̂ on a

wave function ψ is

(K̂ψ)(r) =

∫

d3r′K(r, r′)ψ(r′). (105)
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Then the kernel is the r-space matrix elements of the operator K̂,

K(r, r′) = 〈r|K̂|r′〉. (106)

This is precisely the situation we have with the exchange potentials in Hartree-Fock theory, see

Eq. (92). (If the kernel of the exchange potential is V ±
ex(r, r

′), then we may write the operator as

V̂ ±
ex. See Eq. (93) for the definition of the kernel.)

If K̂ is rotationally invariant, then we must have

〈r|U(R)†K̂U(R)|r′〉 = 〈Rr|K̂|Rr′〉 = 〈r|K̂|r′〉, (107)

or,

K(r, r′) = K(Rr,Rr′), (108)

for all R ∈ SO(3). Think of the kernel K(r, r′) as a function of two vectors in 3D space. According

to Eq. (108), if K̂ is rotationally invariant, then the value of K(r, r′) is unchanged if both vectors are

rotated by the same rotation. This means that K(r, r′) is actually only a function of the rotational

invariants of the triangle formed by the two vectors r and r′. The triangle invariants include the

lengths of the three sides of the triangle, r = |r|, r′ = |r′|, and |r − r′|, or the three angles of the

triangle.

Show that in the case of complete subshells, two exchange potentials V ±
ex(r, r

′) are functions

only of the triangle invariants, so that the operators V̂ ±
ex are rotationally invariant. Show also that

the two exchange potentials (for spin up and spin down orbitals) are equal, so there is only one

Hartree-Fock equation (and we can drop the ±).

Parts (a) and (b) of this problem show that in the case of complete subshells, it is not necessary

to average the potentials (direct and exchange), since they automatically turn out to be invariant

under rotations and independent of spin.

3. Delta-function potentials are popular in theoretical models for the following reason. Short-range

potentials give rise to s-wave scattering at sufficiently low energies. The condition is λ≫ R, where

λ is the de Broglie wavelength of the incident wave, and R is the range of the potential. In this case

only the one term ℓ = 0 contributes to the partial wave expansion of the scattering amplitude, and

the amplitude itself is characterized by a single parameter, the ℓ = 0 phase shift δ0. Any other short

range potential with the same value of δ0 will behave the same insofar as low energy scattering is

concerned. For this reason we often replace a real potential by a delta function, multiplied by some

strength parameter g that we can adjust to make the phase shift δ0 come out right, since this is

mathematically simpler than the true potential.

In Bose-Einstein condensates (cold gases of bosonic atoms), the temperature and density are

such that for atom-atom scattering λ ≫ R, where R is the radius of the atom and where λ, the

de Broglie wavelength, is comparable to the interparticle separation (this is required for the conden-

sation). Thus replacing the atom-atom potential by a δ-function is a good approximation.
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Typically Bose-Einstein condensates are gases in which the atoms are moving in some external,

confining potential, call it V (r). Based on what we have said, the Hamiltonian for a system of N

identical bosonic atoms of spin 0 in the potential V is

H =

N
∑

i=1

(

p2i
2m

+ V (ri)

)

+ g
∑

i<j

δ3(ri − rj). (109)

This differs from the Hamiltonian we used in studying the electrons in atoms in three respects: (1)

the external potential is V instead of Z/r; (2) the interaction potentials are δ-functions instead of

Coulomb interactions; (3) the particles are spin-0 bosons.

Write down a trial wave function for the ground state of this system of bosons that is as close

in spirit as possible to the Hartree-Fock trial wave function in atoms, given that these are bosons

instead of fermions. Derive a self-consistent, three-dimensional Schrödinger-like equation that must

be satisfied to minimize the energy of the system. This equation is the starting point of much current

research into Bose-Einstein condensates.


