
Physics 221A

Fall 2005

Homework 8

Due Thursday, October 27, 2005

Reading Assignment: Sakurai pp. 156–174, 187–195, Notes 10, Notes 11.

1. The axis n̂ of a rotation R is a vector that is left invariant by the action of R, that

is, it satisfies Rn̂ = n̂. Therefore n̂ is a real, normalized eigenvector of R with eigenvalue

+1. Prove that every (proper) rotation has an axis. Show that the axis is unique (apart

from the change in sign, n̂ → −n̂) as long as the angle of rotation is nonzero. This proof is

the essential step in showing that every rotation can be expressed in axis-angle form. Do

proper rotations in 4 dimensions have an axis?

2. Show that if R ∈ SO(3), then

R(a×b) = (Ra)×(Rb). (1)

Hint: Use the fact that if M is any 3 × 3 matrix, then

εijk detM = ε`mn Mi`MjmMkn. (2)

This is essentially the definition of the determinant. This proves Eq. (9.36), and hence the

adjoint formulas (9.32) and (9.34).

3. Show that every 2 × 2 matrix of the form,

U = e−iθn̂·σ/2 (3)

is an element of the group SU(2). Show that every element of the group SU(2) has the

form (3) for some choice of θ, n̂. This problem shows that the spin- 1
2 rotation operators

can be identified with the group SU(2), and that there is no loss of generality in writing a

spinor rotation in axis-angle form.

4. You are probably aware that the Pauli matrices combined with the 2×2 identity matrix

span the space of 2× 2 matrices, that is, an arbitrary 2× 2 matrix A can be written in the

form,

A = a0I + a · σ, (4)
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where (a0,a) are the (generally complex) expansion coefficients. Notice that if A is Hermi-

tian, then (a0,a) are real. Notice also that

det A = a2
0 − a · a. (5)

It is convenient to write σ0 = I, and to regard σ0 as a fourth Pauli matrix. Then Eq. (4)

becomes,

A =

3
∑

µ=0

aµ σµ. (6)

Notice that we have the orthogonality relation,

tr(σµσν) = 2δµν , (7)

which can be used to solve Eq. (6) for the expansion coefficients,

aµ =
1

2
tr(σµA). (8)

Use these results to show that

tr(AB) =
1

2

∑

µ

tr(σµA) tr(σµB), (9)

where A and B are 2 × 2 matrices.

Use these results to prove Eq. (10.35), that is,

R(U1)R(U2) = R(U1U2), (10)

where R(U) is defined by Eq. (10.34).

5. Sakurai, problem 3.8, p. 243. Also write out the components of n̂. This problem could

also be done with SO(3) matrices, but it is a miserable calculation. This is a nice example

of how many properties of SO(3) are easier to analyze in terms of the corresponding SU(2)

matrices.

6. This problem concerns the polarization states of classical electromagnetic waves, which

can be described by the same mathematical formalism used for spinors of spin- 1
2

particles.

It is also provides a good background for the subject of the polarization states of photons,

which we will take up later in the course.

(a) The spinor “pointing in” the n̂ direction was defined by Eq. (10.49). Show that every

spinor “points” in some direction. For this, it is sufficient to show that for every normalized
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spinor |χ〉, 〈χ|σ|χ〉 is a unit vector. You can prove this directly, or use the formalism based

on Eq. (9) above. This property only holds for spin- 1
2

particles.

(b) Consider now the phenomenon of polarization in classical electromagnetic theory. The

most general physical electric field of a plane light wave of frequency ω travelling in the

z-direction can be written in the form

Ephys(r, t) = Re
2

∑

µ=1

ε̂µEµei(kz−ωt), (11)

where µ = 1, 2 corresponds to x, y, where ε̂1 = x̂, ε̂2 = ŷ, and where E1 = Ex and E2 = Ey

are two complex amplitudes, and where ω = ck. Thus, the wave is parameterized by the

two complex numbers, Ex, Ey. Often we are not interested in absolute amplitudes, only

relative ones, so we normalize the wave by setting

|Ex|2 + |Ey|2 = E2
0 , (12)

for some suitably chosen reference amplitude E0. This allows us to associate the wave with

a normalized, 2-component complex “spinor,” according to

χ =
1

E0

(

Ex

Ey

)

. (13)

Furthermore, we are often not interested in any overall phase of this spinor, since such an

overall phase corresponds merely to a shift in the origin of time in Eq. (11). This cannot

be detected anyway in experiments that average over the rapid oscillations of the wave (a

practical necessity at optical frequencies).

If we normalize according to Eqs. (12) and (13) and ignore the overall phase, then the

four real parameters originally inherent in (Ex, Ey) are reduced to two, which describe the

state of polarization of the wave. For example, the spinors

χx =

(

1
0

)

, χy =

(

0
1

)

, (14)

correspond to linear polarization in the x- and y-directions, respectively. Notice that po-

larization in the +x-direction is the same as that in the −x-direction; they differ only by

an overall phase. Similarly, the spinors

χr =
1√
2

(

1
−i

)

, χ` =
1√
2

(

1
i

)

, (15)

correspond to right and left circular polarizations, respectively. Right circular polarization

means the electric vector rotates in a clockwise direction in the x-y plane, tracing out a circle,
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whereas in left circular polarization, the electric vector rotates counterclockwise. Sakurai

says there is no uniformity in the literature about these conventions, and in fact he uses

the opposite conventions for left and right circular polarizations; but the conventions I am

quoting here are the ones used by Jackson and Born and Wolf, and I think most physicists

use them. Right circular polarization corresponds to photons with negative helicity, and

vice versa. In more general polarization states, the electric vector traces out an ellipse in

the x-y plane; these are called elliptical polarizations. A limiting case of the ellipse is where

the electric vector traces a line, back and forth; these are linear polarization states.

In optics it is conventional to introduce the so-called Stokes’ parameters to describe

the state of polarization. These are defined by

s0 = (|Ex|2 + |Ey|2)/E2
0 = 1,

s1 = (|Ex|2 − |Ey|2)/E2
0 ,

s2 = 2Re(ExE∗
y )/E2

0 ,

s3 = 2 Im(ExE∗
y )/E2

0 . (16)

(See Born and Wolf, Principles of Optics, p. 31.) Show that these parameters satisfy

s2
1 + s2

2 + s2
3 = 1, (17)

so that ŝ = (s1, s2, s3) is a unit vector. The sphere upon which this unit vector lies is called

the Poincaré sphere; points on this sphere correspond to polarization states. Notice that

the Stokes’ parameters are independent of the overall phase of the wave, being bilinear in

the field amplitudes (Ex, Ey). Indicate which points on the Poincaré sphere correspond to

linear x- and y-polarization, and which to right and left circular polarization. What kind

of polarization does the positive 2-axis in s-space correspond to? What about the negative

2-axis? (We will refer to directions in s-space by the indices 1,2,3, to avoid confusion with

x, y, z in real space).

(c) Compute the expectation value 〈χ|σ|χ〉 = n̂ for the spinor (13), and relate the compo-

nents of n̂ to the Stokes’ parameters. You will see that Stokes and Poincaré didn’t exactly

follow quantum mechanical conventions (since quantum mechanics had not yet been in-

vented in their day), but the basic idea is that the point on the Poincaré sphere indicates

the direction in which the spinor (13) is “pointing.”

(d) Now suppose we have a quarter-wave plate with its fast and slow axes in the x- and

y-direction, respectively. This causes a relative phase shift in the x- and y-components of
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the spinor (13) by π/2, that is,

(

E′

x

E′

y

)

=

(

e−iπ/4 0
0 eiπ/4

)(

Ex

Ey

)

, (18)

where the unprimed fields are those entering the quarter wave plate, and the primed ones are

those exiting it. Show that the effect of the quarter wave plate on an incoming polarization

state, as represented by a point on the Poincaré sphere, can be represented by a rotation

in s-space. Find the 3× 3 rotation matrix such that ŝ′ = Rŝ. Use this picture to determine

the effect of the quarter wave plate on linear x- and y- polarizations, and on right and left

circular polarizations. What polarization must we feed into the quarter wave plate to get

right circular polarization coming out?


