
Physics 221A

Fall 2005

Homework 10

Due Thursday, November 10, 2005

Reading Assignment: Sakurai pp. 203–217, 232–233, Notes 13, 14.

1. A problem concerning electrons in magnetic fields.

(a) In problem 2 of homework 5, you worked out the energy levels and energy eigenfunctions

for an electron in a uniform magnetic field, but we ignored the spin. I said this was not

a good approximation, because if you include the spin it does more than just make small

perturbations in the levels you found without spin.

Including the spin, find the energy levels of an electron in a uniform magnetic field.

Express your answer in terms of ω0 = eB/mc, the orbital frequency of a classical electron

in a uniform magnetic field.

Hint: This is a short problem, and does not require any lengthy calculations (unlike that

earlier problem).

(b) Consider an electron in a central force potential V (r), plus a uniform magnetic field

B = Bb̂. Include the interaction of the spin with the magnetic field (but ignore fine

structure). Again let ω0 = eB/mc. Use the gauge A = 1

2
B×r. The Schrödinger equation

is

ih̄
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (1)

Define a new state |φ(t)〉 by

|ψ(t)〉 = U(b̂, ωt)|φ(t)〉, (2)

where U(b̂, ωt) is a rotation operator. This means that |φ(t)〉 is the state in a frame rotating

with angular velocity ω about the axis b̂.

Find a frequency ω that eliminates the effect of the magnetic field on the orbital motion

of the particle, apart from an extra potential proportional to (b×r)2. Find a frequency ω

that eliminates the effect of the magnetic field on the spin. Espress your answers as some

multiple of ω0.

2. Consider a particle of spin 1 and magnetic moment µ = −γS in the magnetic field,

B = B0ẑ +B10(x̂ cosω1t+ ŷ sinω1t), (3)
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employed in magnetic resonance experiments (assume γ > 0). If at t = 0, the particle is in

state m = 0, find the transition probabilities P (0 → ±1) as a function of time.

3. If we combine Eq. (13.22) with (13.29), we obtain

∂U

∂t
= −

i

h̄
ω(t) · SU, (4)

where we write U instead of T for the time evolution operator, which we know is a rotation.

Let U be parameterized by its Euler angles, U = U(α, β, γ). Find equations of motion for

the Euler angles, assuming ω(t) is given. Your answer will be identical to the equations of

motion of the Euler angles in classical rigid body theory (for given ω(t)).

4. Consider a biological sample at 300K in a magnetic field of 6T (for example, you

in an MRI device). After a certain relaxation time, the nuclear spins will reach thermal

equilibrium with their environment (a heat bath). Calculate the fractional magnetization of

protons under such circumstances (the magnetization compared to the maximum we would

have at 0K). Finally, for a sample of water under the conditions indicated, compute the

magnetization due to protons in Gauss.

5. I won’t ask you to work out any numerical values of Clebsch-Gordan coefficients, but

you should be comfortable in doing so. The following is a related problem.

Consider the angular momentum problem `⊗ 1

2
, where ` is arbitrary and could be very

large. We write j = `+ 1

2
or j = `− 1

2
for the resulting angular momentum. By beginning

with the doubly stretched state,

|`+ 1

2
, `+ 1

2
〉 = |``〉| 1

2

1

2
〉, (5)

apply lowering operators to construct the states |`+ 1

2
,m〉 for m going down to `− 5

2
. By

this time a pattern should be evident; guess it, and prove that it is right by induction, to

obtain a general formula for |` + 1

2
,m〉. You may simplify notation by omitting the total

angular momenta ` and 1

2
in the kets on the right hand sides of your equations, because

they are always the same; for example, the RHS of Eq. (5) can be written simply |`〉| 1

2
〉.

Now construct the stretched state for j = `− 1

2
, namely |`− 1

2
, `− 1

2
〉. Use the standard

phase convention given by Eq. (14.31). Then lower this enough times to see a pattern, guess

it, and prove it by induction. Note the Useful Formula section below.
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Useful Formulas

The following are some useful formulas, which can be derived by the methods of problem

5. We combine ` ⊗ 1, and find, for the three cases j = ` + 1, j = `, and j = ` − 1, the

following:

|`+ 1,m〉 =

√

(`+m+ 1)(`+m)

(2`+ 2)(2` + 1)
|m− 1〉|1〉

+

√

(`−m+ 1)(` +m+ 1)

(`+ 1)(2`+ 1)
|m〉|0〉 +

√

(`−m)(`−m+ 1)

(2`+ 2)(2`+ 1)
|m+ 1〉| − 1〉.

(6a)

|`m〉 = −

√

(`−m+ 1)(`+m)

2`(`+ 1)
|m− 1〉|1〉

+
m

√

`(`+ 1)
|m〉|0〉 +

√

(`−m)(`+m+ 1)

2`(`+ 1)
|m+ 1〉| − 1〉. (6b)

|`− 1,m〉 =

√

(`−m)(`−m+ 1)

2`(2`+ 1)
|m− 1〉|1〉

−

√

(`−m)(`+m)

`(2`+ 1)
|m〉|0〉 +

√

(`+m+ 1)(` +m)

2`(2`+ 1)
|m+ 1〉| − 1〉. (6c)


