
Physics 139: Problem Set 8 solutions

April 1, 2014

Hartle 9.9

Find the relation between the rate of change of angular position of a particle in a circular orbit with
respect to proper time and the Schwarzschild radius of the orbit. Compare with (9.46).

For a circular orbit of radius R, the proper angular velocity is

dφ

dτ
=

`

R2
.

We therefore only have to determine ` from the condition that a circular orbit lies at the minimum
of the effective potential

∂Veff

∂r

∣∣∣
R

= 0.

This gives

`2 =
MR2

R− 3M

so that
dφ

dτ
=

(
M

R3

)1/2(
1− 3M

R

)−1/2

.

This is faster than dφ/dt, given in (9.46). A clock on the circulating particle runs slow compared to
a clock at infinity both because it is moving (time dilation) and because it is in a lower gravitational
potential. The proper period is therefore less than the period in t. The proper speed must therefore
be greater. Note that there can be no circular orbits with R < 3M .

Hartle 9.10

Find the linear velocity of a particle in a circular orbit of radius R in the Schwarzschild geometry
that would be measured by a stationary observer stationed at one point on the orbit. What is its
value at the ISCO?

There are several ways of doing this problem, each involving projecting the four-velocity of the
particle onto the orthonormal basis of the observer. It’s perhaps simplest to calculate the energy
the observer measures and relate that to the velocity. From (7.53) and (5.44),

E = −p · uobs =
m√

1− V 2
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where p = mu is the particle’s four-momentum, uobs is the stationary observer’s four-velocity,
and we have assumed a rest mass m for the particle. uobs can be found from the normalization
condition, requiring that the observer is at rest:

uobs · uobs = gtt
(
utobs

)2
= −1 =⇒ uobs =

{(
1− 2M

R

)−1/2

, 0 , 0 , 0

}

Plugging in, and using (9.47) and (9.48) for the particle’s four-velocity, we find

E = −gttmututobs = m

(
1− 3M

R

)1/2(
1− 2M

R

)−1/2

.

Solving for the velocity, we have

V =

(
M

R

)1/2(
1− 2M

R

)−1/2

At the innermost stable circular orbit (ISCO), R = 6M , so V = 1/2.

Hartle 9.11

A small perturbation of an unstable circular orbit will grow exponentially in time. Show that a dis-
placement δr from the unstable maximum of the Schwarzschild effective potential will grow initially
as

δr ∝ eτ/τ∗

where τ is the proper time along the particle’s trajectory and τ∗ is a constant. Evaluate τ∗. Explain
its behavior as the radius of the orbit approaches 6M .

In the neighborhood of its maximum at radius rmax, the effective potential behaves as

Veff(r) = Veff(rmax) +
1

2

(
d2Veff

dr2

)
rmax

(δr)2 + · · ·

where δr ≡ r − rmax. Denote (d2Vtexteft/dr
2)rtextmax by −K2 since it is negative at the maximum

of the potential. Eq. (9.29) becomes

1

2

(
d(δr)

dτ

)2

− 1

2
K2(δr)2 = 0.

There are growing and decaying solutions to this upside-down harmonic oscillator. The growing
solution behaves as

δr ∝ eKτ

Thus the time constant τ∗ is just 1/K. Carrying out the derivatives explicitly, we find

τ∗ =

√
r5

max

2`2 (rmax − 6M)

where, as before, rmax is the radius corresponding to the maximum of the effective potential. This
diverges as r approaches 6M because the stable and unstable circular orbits are coalescing.
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Hartle 9.12

A comet’s orbit starts at infinity, goes around a relativistic star, then goes out to infinity again.
The impact parameter at infinity is b. The radius of closest approach in Schwarzschild coordinates
is R. What is the speed of the comet at closest approach as measured by a stationary observer at
that point?

At the radius R of closest approach, the Schwarzschild coordinate components of the comet’s four-
velocity are (θ = π/2):

dr

dτ
= 0,

dφ

dτ
=

`

R2

We can find the speed V from the energy measured by the stationary observer, which is

E =
m√

1− V 2
= −p · uobs

where p = mu is the four-momentum of the comet and uobs is the four-velocity of the stationary
observer

uobs =

{(
1− 2M

R

)−1/2

, 0 , 0 , 0

}
Thus

E =

(
1− 2M

R

)1/2

m ut

in which ut can be calculated from the normalization condition and the above equations for dr/dτ
and dφ/dτ , to give

ut =

(
1− 2M

R

)−1/2( `2

R2
+ 1

)1/2

Combining these results, we have

V =
`/R√

1 + (`/R)2

Now we must express ` in terms of b and R. At large r, φ ≈ b/r, where b is the impact parameter,

` ≡ r2dφ

dτ
= −b

(
dr

dτ

)
= b
√
e2 − 1

since dr/dτ is negative as the comet is heading towards the star. The last equality used the fact
that at infinity, the metric approaches flat space, so that

−1 = −
(

1− 2M

r

)(
dt

dτ

)2

+

(
1− 2M

r

)−1(dr
dτ

)2

+ r2

(
dφ

dτ

)2

= −
(

1− 2M

r

)−1

e2 +

(
1− 2M

r

)−1(dr
dτ

)2

+
`2

r2

→ −e2 +

(
dr

dτ

)2

=⇒ dr

dτ
→ ±

√
e2 − 1
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The energy per unit mass e is determined by applying the same normalization condition at the
turning point:

−1 = −
(

1− 2M

R

)−1

e2 +

(
1− 2M

R

)−1(dr
dτ

)2

+
`2

R2

= −
(

1− 2M

R

)−1

e2 +
`2

R2

=⇒ e2 =

(
1− 2M

R

)(
1 +

`2

R2

)
.

Solving for e with ` = b
√
e2 − 1 and plugging into the expression for V gives

V = b

√
2M

R

(
b2 −R2

)−1/2

Hartle 9.15

To find the first order in 1/c2 relativistic correction to the angle ∆φ swept out by a planet in one
bound orbit, factor (1− 2GM/c2r) out of the denominator so that it can be written

∆φ = 2`

∫ r2

r1

dr

r2

(
1− 2GM

c2r

)−1/2
[
c2e2

(
1− 2GM

c2r

)−1

−
(
c2 +

`2

r2

)]−1/2

The factor in the brackets is the square root of a quantity quadratic in 1/r to order 1/c2. To derive
the expression (9.55) evaluate this expression as follows:

a) Expand the factors of (1 − 2GM/c2r) in the above equation in powers of 1/c2 keeping only
the leading order corrections to Newtonian quantities. Furthermore, expand e2 to get

e2 = 1 +
2ENewt

mc2
+ · · ·

b) Introduce the integration variable u = 1/r and show that the integral can be put in the form

∆φ =

[
1 + 2

(
GM

c`

)2
]

2

∫ u1

u2

du

[(u1 − u) (u− u2)]1/2

{
1 +

2GM

c2
u+O

(
1

c4

)}
c) The first term in the integral (including the 2) is just the one in (9.54) and equals 2π. Show

that the second term gives (π/2)(u1 + u2) and that this equals πGM/`2 to lowest order in 1/c2.

d) Combine these results to derive (9.55):

δφprec = 6π

(
GM

c`

)2

+O
(

1

c4

)

The problem statement describes how to do the problem and the desired results.
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