
Physics 139: Problem Set 12 solutions

May 2, 2014

Hartle 20.15

(Null Geodesics with Non-Affine Parametrization) As we showed in Section 8.3, when the tangent
vector to a null geodesic u is parameterized with an affine parameter λ, it obeys the geodesic equation

∇uu = 0

Show that even if a non-affine parameter is used

∇uu = −κu

for some function κ of the parameter λ.

Let λ be the affine parameter so that uα = dxα/dλ satisfies ∇uu = 0. If σ is a different, non-affine
parameter so that λ = λ(σ), then

u′α =
dxα

dσ
=
dxα

dλ

dλ

dσ
≡ f(λ)uα

Then (
∇u′u′)α = u′β∇βu′α = fub∇β (fuα)

= f
(
uβ∇βf

)
uα + f2uβ∇βuα

=
1

2

df2

dλ
uα

in which we used the fact that ∇uu = uβ∇βu = 0 in the final equality. This shows the form of κ
explicitly.

Hartle 20.16

(Surface Gravity of a Black Hole.) In the geometry of a spherical black hole, the Killing vector
ξ = ∂/∂t corresponding to time translation invariance is tangent to the null geodesics that generate
the horizon. If you have happened to work problem 15 you will know that this means

∇ξξ = −κξ

for a constant of proportionality κ which is called the surface gravity of the black hole. Evaluate
this relation to find the value of κ for a Schwarzschild black hole in terms of its mass M . Be sure
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to use a coordinate system which is non-singular on the horizon such as the Eddington-Finkelstein
coordinates discussed in Section 12.1.

In Eddington-Finkelstein coordinates (v, r, θ, φ) we can take ξα = (1, 0, 0, 0). The partial derivative
term in the covariant derivative clearly vanishes, so that

(∇ξξ)α = ξβ∇βξα = ∇vξα = −Γαvβξ
β = −Γαvv

The Christoffel symbols can be evaluated from the derivatives of the metric. The inverse of the
metric (keeping in mind that it’s off-diagonal) has (v, r) components

gvv = 0, gvr = grv = 1, grr =

(
1− 2M

r

)
The only non-zero ones are

Γvvv =
M

r2
, Γrvv = −2M

r2

(
1− 2M

r

)
On the horizon only Γvvv is non-zero. This shows that ∇ξξ is of the form −κξ with a constant κ
that has the value

κ =
1

4M

Hartle 20.18

(Killing’s equation.) In Section 8.2 a Killing vector corresponding to a symmetry of a metric was
defined in a coordinate system in which the metric was independent of one coordinate x1. The
components of the corresponding Killing vector ξ are then

ξα = (0, 1, 0, 0)

By explicit calculation show that
∇αξβ +∇βξα = 0.

This is Killing’s equation. It is a general characterization of Killing vectors in the sense that any
solution corresponds to a symmetry of the metric.

The covariant derivative of the dual vector ξα is

∇βξα =
∂ξα
∂xβ

− Γγβαξγ

We also have
ξα = gαβξ

β = gαβδ
β
A = gαA

Substituting this into the expression for the covariant derivative and plugging in the definition of
the Christoffels, we have

∇βξα = gαA,β − ΓγβαgγA

= gαA,β −
1

2
gγµ (gβµ,α + gαµ,β − gαβ,µ) gγA

= gαA,β −
1

2
δµA (gβµ,α + gαµ,β − gαβ,µ)

= gαA,β −
1

2
(gβA,α + gαA,β − gαβ,A)

=
1

2
(gαA,β − gβA,α + gαβ,A)
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in which we have used the comma notation for partial derivative, Tαβ...γ,µ ≡ ∂Tαβ...γ/∂x
µ. Note

that the last term in the above expression vanishes because the metric is independent of xA. The
remaining expression is antisymmetric under interchange of α and β. Thus

∇βξα +∇αξβ = 0

as desired.

Littlejohn 4

If V is a vector with components V µ, then ∇DV is another vector – the directional derivative of
V along D, with components (∇DV)µ = Dα∇αV µ, where

∇αV µ =
∂V µ

∂xα
+ ΓµαβV

β

Equivalently, we can say that ∇V is a tensor, the covariant derivative of V, with components
∇αV µ.

Find an expression for ∇β∇αV µ, the components of the second covariant derivative of V.
Express

∇α∇βV µ −∇β∇αV µ

in terms of the components of V and the Riemann tensor,

Rµναβ =
∂Γµβν
∂xα

− ∂Γµαν
∂xβ

+ ΓµασΓσβν − ΓµβσΓσαν

The point is that the covariant derivatives along different directions do not commute, and the
commutator involves the Riemann curvature tensor.

The second covariant derivative of V is the covariant derivative of ∇V:

∇β (∇V) µ
α =

∂ (∇V) µ
α

∂xβ
+ Γµβγ (∇V) γ

α − Γγβα (∇V) µ
γ

Plugging in the components of the covariant derivative of V and using the comma notation for the
partial derivatives, we have

∇β∇αV µ = V µ
,αβ + Γµαγ,βV

γ + ΓµαγV
γ
,β + Γµβγ

(
V γ
,α + ΓγαρV

ρ
)
− Γγβα

(
V µ
,γ + ΓµγρV

ρ
)

Now we swap α and β and take the difference:

∇α∇βV µ −∇β∇αV µ = Γµβγ,αV
γ − Γµαγ,βV

γ − ΓµαγV
γ
,β + ΓµβγV

γ
,α

− Γµβγ
(
V γ
,α + ΓγαρV

ρ
)

+ Γµαγ

(
V γ
,β + ΓγβρV

ρ
)

+ Γγβα
(
V µ
,γ + ΓµγρV

ρ
)
− Γγαβ

(
V µ
,γ + ΓµγρV

ρ
)

The second partial derivatives of V µ cancelled due to the commutativity of mixed partials. Fur-
thermore, the last line will vanish due to the symmetry of the lower two indices of the Christoffel
symbol, leaving

∇α∇βV µ −∇β∇αV µ = Γµβγ,αV
γ − Γµαγ,βV

γ

− ΓµαγV
γ
,β + ΓµβγV

γ
,α − ΓµβγV

γ
,α + ΓµαγV

γ
,β

− ΓµβγΓγαρV
ρ + ΓµαγΓγβρV

ρ
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in which we have expanded the terms in the parentheses and regrouped. Clearly, the second line
will vanish, leaving

∇α∇βV µ −∇β∇αV µ = Γµβγ,αV
γ − Γµαγ,βV

γ − ΓµβγΓγαρV
ρ + ΓµαγΓγβρV

ρ

=
(

Γµβγ,α − Γµαγ,β − ΓµβσΓσαγ + ΓµασΓσβγ

)
V γ

= RµγαβV
γ

Hartle 21.2

(The Shape of the Tides) This problem concerns the shape of the tides raised by the moon in
Newtonian gravity. Consider the freely falling frame following the center of mass of the Earth in
its mutual orbit with the moon. (Neglect the slower motion of the Earth around the sun and the
rotation of the Earth.) Assume the surface of the solid Earth is a sphere which is covered with a
worldwide ocean.

a) Explain why the surface of the ocean should be at an equal total gravitational potential.

b) Find a gravitational potential Φtidal that will reproduce the tidal gravitational force of the moon
given in (c) of Box 21.1 and the gravitational force of the Earth on an ocean fluid element of
mass m according to:

~Ftidal = −m∇Φtidal

c) Find the difference δh(θ, φ) between the depth of the ocean in the presence of the moon and
in its absence caused by the tidal gravitational force of the moon. Use the usual polar angles
with the z-axis pointing towards the moon. Express your answer in terms of the mass of the
Earth, the mass of the moon, the distance between them, and the distance from the center of
the Earth to the surface of the ocean were the moon not present.

d) Estimate the expected height of the ocean tides from your result in part c).

e) Answer the question at the end of Box 21.1.

a)

Consider a cubical fluid element of mass m at the surface of the ocean. The gravitational force on
it is −m∇Φ. The pressure force results from the difference between the pressure on opposite sides.
There is therefore no pressure force along surfaces of constant pressure. In fact, the pressure force
is ∇p which is normal to surfaces of constant pressure. If the fluid element is not to accelerate,
∇p must lie along m∇Φ which means that surfaces of constant pressure are surfaces of constant
potential. But the surface of the ocean is a constant pressure (p = 0) surface, so it must be an
equipotential.

b)

Use (x, y, z) coordinates as the figure in Box 21.1. Let R be the radius of the Earth, d the distance
from the Earth to the moon, and δh the difference between the height of the ocean and its mean
height. Assume that δh/R � 1. The fluid element experiences forces from the gravitational fields
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of both the earth and the moon. The tidal acceleration of the fluid element relative to the center of
the earth due to the moon (eqn b of Box 21.1) can be reproduced by the potential (per unit mass)

Φtidal =
1

2

(
∂2Φmoon

∂xi∂xj

)
0

xixj =
GMmoon

2d3
(
x2 + y2 − 2z2

)
The earth’s potential requires more care since it is singular at the origin of the coordinates. The
gravitational force on a fluid element at (x, y, z) is

~FEarth = −mGMEarth

R3
(x, y, z)

For small variations in x, y, z near the surface, this can be reproduced by the potential (per unit
mass)

ΦEarth =
GMEarth

2R3

(
x2 + y2 + z2

)
The total force per mass on a fluid element is given by the combined potential ΦEarth + Φtidal.

c)

The difference δh between the height of the ocean and its mean height h̃ is a function of θ alone
due to axisymmetry. To first order in δh the total potential on a fluid element at r = R+ δh(θ) is

GMEarth

2R3
R2

(
1 +

2δh(θ)

R

)
+
GMmoon

2d3
R2

(
1− 3 cos2 θ

)
Along the surface of the ocean, this potential must be a constant, so that the θ dependence in the
first term must cancel that of the second. A possible constant in δh is fixed by the requirement
that it averages to zero. Thus

δh(θ)

R
=
Mmoon

MEarth

(
R

d

)3(3

2
cos2 θ − 1

)
This is positive in the direction of the moon and negative 900 away, as expected.

d)

The difference between the maximum and minimum heights is of order

∆h ∼ 3

2
R

(
Mmoon

MEarth

)(
R

d

)3

For a ratio of the masses of the moon to the earth of ≈ 1/81, R ≈ 6378 km, and d ≈ 384, 404 km,
this works out to be ∆h ∼ 1 m.

e)

As the Earth rotates under the tides, it loses rotational energy to friction. The rotation rate of the
Earth is therefore slowing down. This requires that a torque be exerted on the tidally distorted
earth by the moon. A little geometry convinces one that the tidal bulge must not point exactly at
the moon but so that the high point of the tide lags the time the moon is at the zenith.
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