Instructor: Matthias Reinsch
Office: 386 LeConte Hall (Office hours will be in 395 LeConte)
Office Hours: MWF 9:10-10:00 AM, and Thursday 1:10-2:00 PM
Email: mreinsch (AT) berkeley (DOT) edu
Phone: 510-642-1270

Graduate Student Instructor, Lec. 1: Ari Zitin
Office: 419 Birge Hall
Office Hours: To Be Determined
Email: zitin (AT) berkeley (DOT) edu

Graduate Student Instructor, Lec. 2: Michael Girard
Office: 420k LeConte Hall
Office Hours: To Be Determined
Email: michael (DOT) girard (AT) berkeley (DOT) edu

Lecture Section 1: MWF 8-9 AM, 213 WHEELER
Lecture Section 2: MWF 4-5 PM, 247 CORY

Discussion Sections:
Discussion Section 101: Tu 1-2 PM, 3109 ETCHEVERRY
Discussion Section 102: W 4-5 PM, 2 EVANS
Discussion Section 201: W 12-1 PM, 140 BARROWS
Discussion Section 202: Th 4-5 PM, 238 KROEBER

Text: J. R. Taylor, Classical Mechanics, University Science Books. We will cover chapters 5 through 13.

Depending on which printing of the book you have, you can find a list of errata at this link from University Science Books.

Homework:
Problem sets are due Friday at 1:15 PM. You are encouraged to discuss problems with others in the course after having thought about them yourself, but you must write up your solutions based on your own understanding (no direct copying of others' work). A quote from Prof. Richard A. Muller, "Working together but not copying. How can you do this? I'll illustrate the answer with an example. You are totally confused on a homework problem. You get together with a classmate, who shows you his or her solution. 'Ah ha!' you say. Have you copied? No -- not yet. The trick now is to go away and now work out the solution yourself, without further looking at the friend's solution. The 'Ah ha' should have been sufficient."

- Please deposit problem sets in the box labeled "Physics 105" in 251 LeConte.
- Late homeworks will not be accepted: just turn in whatever you have completed by the scheduled due date/time.
- Your lowest homework score is dropped and not included in your course grade.
- We request that solutions be hand-written. There are typically a few students who would prefer to typeset their solutions in LaTeX, and we can allow a small number of students to do this. Typically their work is very unique and easy to distinguish from other students' work. If too many students hand in LaTeX solutions, we will issue a statement for the next homework cycle that all homework must be hand-written.

Prerequisites:
The prerequisites for this course are Physics 7ABC, Math 53 and Math 54.

Exam Information:
- Midterms: October 2 and October 30. (In class. Lecture section in which you are enrolled. If you are in the afternoon lecture, you may not take the 8:00 AM exam as a practice exam)
- Final exam for Lecture Section 1: MONDAY, DECEMBER 14, 2015, 7-10 PM
- Final exam for Lecture Section 2: THURSDAY, DECEMBER 17, 2015 8-11 AM

Course Grade:
The grade for this course will be based on your homework, midterm and a final exam. The break down is,

- Homework 20% (Your lowest homework score is dropped and not included in this average)
- First Midterm 20%
- Second Midterm 20%
- Final Exam 40%
Chapters in Taylor
5. Oscillations
6. Calculus of Variations
7. Lagrange's Equations
8. Two-Body Central Force Problems
9. Mechanics in Noninertial Frames
10. Rotational Motion of Rigid Bodies
11. Coupled Oscillators and Normal Modes
13. Hamiltonian Mechanics