
Physics 250

Fall 2015

Homework 9

Due Friday, October 30, 2015

Reading Assignment: Nakahara, pp. 207-225. See also Frankel, pp. 80–109, 391–410.

Notes. We have skipped Nakahara’s section 5.5 (on the integration of differential forms). We’ll

return to that next week.

On p. 208, Nakahara has an exercise to show that O(1, 3) (the Lorentz group) has four con-

nected components. This was mentioned in class (the four components are resolved by parity and

time reversal). The identity component consists of the “proper” Lorentz transformations, the ones

that do not reverse time or change the orientation of the spatial axes. This group (the identity

component) has a double cover representing Lorentz transformations on spinors, which turns out

to be SL(2,C). The 4-component Dirac spinors are Lorentz transformed by a direct sum of two

inequivalent representations of SL(2,C).

On p. 210, Nakahara’s Eq. (5.112) is meaningless, at least in the center term, since there is

no meaning to the bracket of vectors at a specific point g ∈ G (unless g = e). This is just sloppy

notation in proving the theorem, which is done right in the notes.

On p. 212, Nakahara’s definition of a 1-parameter subgroup is fine, it is a homomorphism

φ : R → G (φ was denoted σ in the lectures). But in Eq. (5.118) he wants to define a vector field

associated with the 1-parameter subgroup as the vector field that has the 1-parameter subgroup

as an integral curve. The problem with this is that you cannot define a field by means of a single

integral curve, which in general does not explore the whole manifold. You can use a single integral

curve to define a vector at each point of the curve, but it doesn’t make a whole field. So at this

point I stop reading up through Eq. (5.122). This subject is treated more carefully without such

sloppy reasoning in the lecture notes.

On p. 213, the paragraph beginning with “Conversely, . . .” is covering the same territory covered

in lecture, but I think it’s done more clearly in lecture. Nakahara’s notation σ(t, g) means the same

thing as Φt g in the lecture notes. When he writes,

dσ(t, g)

dt
= X, (9.1)

what he means is that X is the vector field whose advance map is σ (his notation) or Φ (mine). This

is the general relation between vector fields and advance maps (on any manifold). I would write it

this way,
d

dt

∣

∣

∣

t=0
Φ∗

t = X, (9.2)

where X ∈ X(M), Φt : M → M is the advance map, and both sides are understood to act on F(M).

Again, I think this material is covered more clearly in the notes.
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On p. 216, Nakahara defines the action of a Lie group on a manifold. His map σ : G×M → M

is what I called Φ in lecture. Actually, I’ve tended to use the alternative notation, Φ(g, x) = Φg x,

where x ∈ M , so that Φg : M → M . The remark at the top of p. 217 is a warning about an

upcoming abuse of notation, in which Φg x is simply written gx.

On p. 224, Nakahara calls ada the “adjoint representation”. I don’t know anyone else who uses

that terminology. I used the notation Ia for what he calls ada (it is the “inner automorphism”

action). What he calls the “adjoint map” is what most people call the “adjoint representation.”

1. (DTB) In class we developed the differential geometric theory of Lie algebras of a group by

using left-invariant vector fields. But one can also define right-invariant vector fields. Do these

give a different definition of the Lie algebra of a group (that is, of the Lie algebraic structure on

TeG = g)? In this problem we explore this question.

(a) A right-invariant vector field is defined by XR
V |a = (Ra∗|e)V , where the R superscript means

“right,” and a ∈ G, V ∈ g. When necessary to distinguish right- and left-invariant vector fields,

we will write XR
V and XL

V , otherwise we will assume XV (without a superscript) is left-invariant.

Let σR(t) be the integral curve of XR
V passing through e at t = 0. Show that σR(t) = σL(t), where

σL(t) = σ(t) is the integral curve of the left-invariant vector field XL
V , passing through e at t = 0,

which was discussed in lecture.

Hint: Do this by showing that XR
V = XL

V when evaluated at a point on the integral curve

σL(t) = σ(t). The easiest way I found to do this was to represent a vector at a point by an

equivalence class of curves [c], and to note that the tangent map F∗ can be defined by F∗[c] = [F ◦c].

Thus, we can drop any superscript and just write σ(t) = exp(tV ), as in the lecture notes. Find

an expression for other integral curves of XR
V (with other initial conditions) in terms of exp(tV ).

(b) Suppose we define a new bracket [ , ]R of elements V,W ∈ g by writing

[V,W ]R = [XR
V , XR

W ]|e. (9.3)

What is the relation between this bracket and the bracket defined in class (which used left-invariant

vector fields)?

Hint: Think about the geometrical meaning of the Lie bracket in terms of the commutativity of

flows. By this time you should know how to compute flows for arbitrary initial conditions for both

left- and right-invariant vector fields, in terms of exp(tV ).

2. (DTB) Induced vector fields were discussed in class. We are given an action of a Lie group G

on a manifold M by means of diffeomorphisms Φg : M → M . We let V ∈ g. We associate V with a

vector field VM ∈ X(M) by writing,

VM =
d

dt

∣

∣

∣

∣

t=0

Φ∗

exp(tV ), (9.4)
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where it is understood that both sides act on F(M). More explicitly, this is

(VMf)(x) =
d

dt

∣

∣

∣

∣

t=0

f(Φexp(tV )x), (9.5)

for all x ∈ M , f ∈ F(M).

Since we are using the symbol Φ for the action of G on M , let us use the symbol Ψ for advance

maps. If X is a vector field (on any manifold), let the corresponding advance map be denoted by

ΨX,t. The relation between the advance map and the vector field is

X =
d

dt

∣

∣

∣

∣

t=0

Ψ∗

X,t, (9.6)

where again both sides are acting on scalar fields.

Returning to the induced vector field VM , note that its integral curves are given by the action

of the 1-parameter subgroup exp(tV ) on an initial point, that is,

ΨVM ,t x = Φexp(tV ) x. (9.7)

(a) If V,W ∈ g, express the Lie bracket [VM ,WM ] in terms of the Lie algebra bracket [V,W ]. Hint:

I found it useful to introduce the notation,

Kx : G → M : g → Φgx, (9.8)

and then to use K∗

x to pull back functions from M to G, where brackets can be evaluated. Note

that imKx is the orbit of the group action through x.

(b) Find the induced vector fields for the actions g 7→ Lg and g 7→ Rg−1 of G on itself.

(c) The adjoint representation (my terminology, not Nakahara’s) is the linear representation of G

acting on its own Lie algebra, g 7→ Adg, where Adg : g → g is a linear map defined by

AdgW = (Ig∗|e)W. (9.9)

Here Ig is the inner automorphism, Ig : G → G : a 7→ gag−1. The infinitesimal generator of this

action is a vector field on g. However, since g is a vector space, the value of the vector field at any

point W ∈ g can be regarded as just another vector in g, parameterized by the point W at which

the field is evaluated. That is, the vector can be translated parallel to itself to move its base to the

origin. With this understanding, show that

adV W =
d

dt

∣

∣

∣

∣

t=0

Adexp(tV )W = [V,W ], (9.10)

where adV W is standard notation for this infinitesimal generator. As you see, it is an alternative

notation for the bracket of elements of g.


