
Physics 250

Fall 2015

Homework 13

Due Monday, November 30, 2015

Reading Assignment: Lecture notes for Monday, Nov. 16 and Friday, Nov. 19; Nakahara, 244–247;

250–251; 253–254; 261–282; 287–293. In Monday’s lecture I went quickly over or skipped a number

of topics covered by Nakahara in Chap. 7 because they are usually covered in GR courses, which

I assume you’ve either had or will have some day. Probably the most important fact from this set

of topics is that given (M, g), there is a unique connection that is metric-compatible (∇g = 0) and

torsion-free (T µ = 0), namely, the Levi-Civita connection. This is the standard case used in con-

ventional general relativity. I skipped some topics altogether, such as Riemann normal coordinates.

On Friday I presented an introduction to the Hodge star, which I will conclude on Monday.

Notes. On pp. 258–259, Nakahara is trying to point out that if the connection coefficients Γµ
αβ vanish

in some coordinate system, then it means that the rule of parallel transport (in those coordinates)

is that the parallel transported vector has the same components as the original vector. This applies,

for example, to parallel transport in a vector space, using linear coordinates. One can similarly

define such a (trivial) connection on any parallelizable manifold, which includes group manifolds.

Obviously, if the connection coefficients vanish (in some coordinates), then the curvature tensor

Rµ
ναβ vanishes (in all coordinates).

On p. 253, Nakahara says that the variational condition gives the local extremum of the length

of a curve between two points. Actually, it is only a stationary point, in general (a kind of a saddle

point in function space).

On p. 265, Nakahara’s equation (7.68b) is wrong, but he never uses it in the subsequent deriva-

tion. Just below that, I can’t see what dividing by x′ has to do with anything. Actually, the

derivation of the geodesic equations are much easier if you just use a Lagrangian. In the present

case, let

L(x, y, x′, y′) =
1

2

x′2 + y′2

y2
, (13.1)

where the 1/2 is only for convenience. (Also, we could have used the square root of the above

expression, but the answers will be the same and the above expression is easier to work with.) You

will find the Euler-Lagrange equations give you the geodesic equations immediately, and also (by

Noether’s theorem on the ignorable coordinate x) they give you the integral (7.69).

On pp. 275–277, Nakahara derives the expression for the Weyl tensor, following the “elegant”

coordinate-free approach of Nomizu. This derivation includes “straightforward but tedious” calcu-

lations. I found it straightforward and not so tedious just to do it in coordinates. Here are my main

results. Write ḡµ = e2σ gµν . Then you find,

Γ̄µ
αβ = Γµ

αβ + δµα σ,β + δµβ σ,α − gαβ g
µτ σ,τ . (13.2)
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Then define

Bµν = σ;µν − σ,µσ,ν + 1
2
gµν(g

αβσ,α σ,β). (13.3)

Then calculate the Riemann tensor, and you find,

R̄µναβ = e2σ(Rµναβ + gµβ Bνα − gµα Bνβ + gαν Bµβ − gβνBµα). (13.4)

Taking traces, you find

R̄µν = Rµν − (m− 2)Bµν − gµν B
α
α, (13.5)

and

R̄ = e−2σ[R − 2(m− 1)Bα
α], (13.6)

where m = dimM . Then substitute back, eliminate Bµν in favor of R̄µν and Rµν . This brings in

trB = Bα
α, and you eliminate that using Eqs. (13.5) and (13.6). You get an expression involving

barred and unbarred tensors, which can be put into the form,

W̄µ
ναβ = Wµ

ναβ , (13.7)

where

Wµναβ = Rµναβ +
1

m− 2
(gµβ Rαν − gµα Rβν + gαν Rµβ − gβν Rµα)

+
1

(m− 1)(m− 2)
(gµα gβν − gµβ gαν)R. (13.8)

I have not yet done the part of Chap. 7 on the derivation of the Einstein equations via a

variational principle. I’m going to go deeper into the geometry of variational principles starting this

week before going into that question.

In the handwritten notes I used a certain notation, and a different one in lecture, for the same

thing. The two are

sgn

(

µ1 . . . µr

ν1 . . . νr

)

= δµ1...µr

ν1...νr
. (13.9)

1. (DTB) Consider the Poincaré half-plane, with metric

g =
dx2 + dy2

y2
. (13.10)

See pp. 265–266, and watch out for the error noted above. We only use the region y > 0. The

geodesics in this metric are calculated in the book.

(a) Using the methods of Sec. 7.8.4, compute the curvature 2-form, Rα
β . The Poincaré half-plane

is a surface of constant negative curvature.
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(b) Find the Killing vector fields for this metric. Do this any way you like, but I found them by

writing the Killing vector field in the form,

X
∂

∂x
+ Y

∂

∂y
, (13.11)

and then finding a differential equation for X and Y .

(c) Show that the Killing vectors form a Lie algebra.

One can show that the advance maps generated by the Killing vectors for this problem can be

expressed as fractional linear transformations,

z′ =
az + b

cz + d
, (13.12)

where z = x+ iy. The identity component of the isometry group is SO(2, 1).

2. (DTB) Let A = Aµ θ
µ be a 1-form, where θµ = dxµ so we are working in a coordinate basis. It

was shown in class that

d†A = −
1

√

|g|

(

√

|g|Aµ
)

,µ
, (13.13)

where indices are raised and lowered with gµν . It was also mentioned that this is the same as

−Aµ
;µ, (13.14)

where the covariant derivatives are computed with respect to the Levi-Civita connection. If you

have taken a relativity course such formulas will be familiar; if not, they can be derived rather easily

from the fact that

Γµ
µν =

∂

∂xν
ln
√

|g|, (13.15)

in the Levi-Civita connection.

(a) Let

B =
1

2
Bµν θ

µ ∧ θν (13.16)

be a 2-form on any space with a metric, where we continue writing θµ = dxµ. Find an expresion

similar to (13.13) for d†B. Find out how it is related to

Bµν
;ν . (13.17)

(b) Maxwell’s equations in vacuum in curved spacetime, expressed in terms of the Hodge star, are

dF = 0 and d†F = 0. Since F = dA, these imply d†dA = 0. Also, the condition for Lorentz gauge

is d†A = 0, so in Lorentz gauge, the vector potential satisfies

△A = 0, (13.18)

where

△ = d†d+ dd†. (13.19)

Express △A in terms of covariant derivatives with respect to the Levi-Civita connection.


