
Physics 250

Fall 2015

Homework 12

Due Friday, November 20, 2015

Reading Assignment: Lecture notes for Monday, Nov. 9 and Friday, Nov. 13. The topics covered

in lecture this week were connection, torsion and curvature. I tried to cover these from three

standpoints: First, the intuitive one, based on infinitesimals and coordinate-based calculations;

second, the rigorous approach based on the covariant derivative operator ∇; and third, the one

based on Cartan’s method of converting everything possible into the language of differential forms,

and introducing the idea of tensor-valued differential forms and the covariant exterior derivative D.

As I have explained, my approach to this topic is to introduce the connection first, and cover

the topics that depend only on a connection, before introducing a metric. Nakahara, on the other

hand, kind of mixes the subjects together. So to follow the flow of logic in the lectures it is necessary

to skip around a bit in the book.

With this in mind, please read Nakahara, pp. 247–253 and 255–260, that is, everything about

connections but skipping the parts that pertain to a metric. Also, in lecture I presented Cartan’s

approach to torsion and curvature, which is covered by Nakahara in pp. 283–286. Nakahara intro-

duces non-coordinate bases late in the discussion, and when he does, they are orthonormal bases.

But an orthonormal basis is only meaningful if you have a metric, and all of Cartan’s formalism for

torsion and curvature is independent of a metric (and thus works in arbitrary bases, coordinate or

non-coordinate). I have introduced non-coordinate bases at the beginning because it is much too

restrictive and counter to the geometrial philosophy to be chained to coordinate bases, and because

the covariant exterior derivative is such a powerful tool.

We will take up metrics this week.

1. (DTB) Let {eµ} be an arbitrary basis of vector fields (not necessarily a coordinate basis) and

let {θµ} be the dual basis of 1-forms. Define the connection 1-form (really a matrix of 1-forms),

ωµ
ν = Γµ

αν θ
α, (12.1)

the torsion 2-form (a vector-valued 2-form),

T µ = dθµ + ωµ
ν ∧ θν , (12.2)

and the curvature 2-form (tensor-valued 2-form),

Rµ
ν = dωµ

ν + ωµ
σ ∧ ωσ

ν . (12.3)

Although we loosely talk about T µ as the torsion tensor, really for fixed value of µ this is a

2-form whose value on a pair of vectors is one component of the vector into which those two vectors
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are mapped. The torsion tensor itself can be written,

T = eµ ⊗ T µ, (12.4)

and similarly the curvature is

R = eµ ⊗ θν ⊗Rµ
ν . (12.5)

The expression (12.4) gives the torsion in terms of its components with respect to the given

basis. To believe that the definition has a geometrical meaning, independent of basis, we should

show that the answer does not change when we change basis.

Let Mµ
ν(x) be a field of nonsingular matrices, that map one basis into another according to

e′µ = eν M
ν
µ. (12.6)

It follows from this that the dual basis transforms according to

θ′µ = (M−1)µν θ
ν . (12.7)

Like the fields of frames (primed and unprimed), the field of matrices Mµ
ν is in general only defined

locally.

(a) Find ω′µ
ν in terms of Mµ

ν and ωµ
ν , that is, find the transformation law for the connection

1-forms under a change of basis.

Comments and Hint: In class we derived the transformation law for the connection coefficients

under a change of coordinates,

Γ′σ
µν =

∂x′σ

∂xγ

( ∂2xγ

∂x′µ∂x′ν
+

∂xβ

∂x′ν

∂xα

∂x′µ
Γγ
αβ

)

, (12.8)

but I recommend that you do not try to use this in finding the transformation law of ωµ
ν . The

reason is that (12.8) gives the transformation law of Γ under a coordinate transformation, while in

this problem we are interested in more general, non-coordinate bases. However, once you have your

answer, you should be able to check that (12.8) is a special case.

I suggest you approach this problem by starting with the definition of the connection coefficients,

∇αeβ = Γγ
αβ eγ , ∇′

µe
′

ν = Γ′σ
µν e

′

σ, (12.9)

where ∇α = ∇eα and ∇′

µ = ∇e′
µ
. Then, in terms of the connection 1-forms,

∇eα = eβ ⊗ ωβ
α, ∇e′µ = e′ν ⊗ ω′ν

µ. (12.10)

and then use (12.6) and (12.7) to solve for ω′µ
ν . Use the notation

eµ(f) = f,µ, (12.11)

and note that

df = f,µ θ
µ. (12.12)
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(b) Now show that (12.4) is independent of the basis. It is part of the definition of the D operator

(covariant exterior derivative) that when it acts on a tensor it produces another tensor.

2. (DTB) The most important results that follow from the definitions (12.4) and (12.5) are

(DT )µ = dT µ + ωµ
ν ∧ T ν = Rµ

ν ∧ θν , (12.13)

and

(DR)µν = dRµ
ν + ωµ

σ ∧Rσ
ν − ωσ

ν ∧Rµ
σ = 0. (12.14)

These were proven in class, and in the notes. These are the Cartan versions of the first and second

Bianchi identities.

The usual statement of the first Bianchi identity is this: If the torsion vanishes, then

Rµ
[ναβ] = 0, (12.15)

where the square brackets [. . .] mean to completely antisymmetrize in the enclosed indices. This was

shown in class.

The usual statement of the second Bianchi identity is this: If the torsion vanishes, then

Rµ
ν[αβ;σ] = 0. (12.16)

Here the semicolon is the usual notation in the GR literature for the components of the covariant

derivative, that is,

Rµ
ναβ;σ = (∇σ R)µναβ . (12.17)

Starting from (12.14) (which notice is true whether or not the torsion vanishes), show that (12.16)

holds when the torsion vanishes.


