D Digression on quaternions. Quaternions don't have anything to do with homotopy, but they are related to SU(2), so we'll say something about them now. Recall any \(u \in SU(2) \) can be written

\[
u = x_0 \mathbf{1} - i \mathbf{2} \mathbf{. \phi}
\]

where \((x_0, x_1, x_2, x_3) \) are the Cayley-Klein parameters and \(\sum_{i=0}^{3} x_i^2 = 1 \).

Thus every element of \(SU(2) \) corresponds to a unit vector in \(\mathbb{R}^4 \) and vice versa, and \(SU(2) \cong S^3 \subset \mathbb{R}^4 \).

We get the quaternions if we drop the constraint on the 4 \(x \)'s and let them run all over \(\mathbb{R}^4 \). Thus if \(q \in \mathbb{H} \) (the set of quaternions), then

\[
q = x_0 \mathbf{1} - i \mathbf{2} \mathbf{. \tilde{\phi}}
\]

and \(\mathbb{H} \cong \mathbb{R}^4 \), with a multiplication rule given by the expression above and the algebra of Pauli matrices. Sometimes this is written

\[
q = x_0 \mathbf{1} + x_1 \mathbf{\hat{i}} + x_2 \mathbf{\hat{j}} + x_3 \mathbf{\hat{k}},
\]

where \(\mathbf{\hat{i}}^2 = \mathbf{\hat{j}}^2 = \mathbf{\hat{k}}^2 = -1 \). Here in a sense we have a representation of the quaternions by means of \(2 \times 2 \) matrices.

Obviously any vector in \(\mathbb{R}^4 \) can be written as a magnitude \(r \) times a unit vector, so

\[
q = r \textbf{u}, \quad 0 \leq r, \quad u \in SU(2)
\]

The elements of \(SU(2) \) are the unit quaternions. This is like the complex numbers, every \(z \in \mathbb{C} \) can be written \(z = re^{i\phi} \) where \(o < r \) and \(e^{i\phi} \in U(1) \). Multiplication of quaternions is noncommutative since \(SU(2) \) is abelian.
Return to $\mathbf{SU}(2)$ as a cover of $\mathbf{SO}(3)$. Let's divorce ourselves from the eqns. of evolution for $R(t)$ and $U(t)$ and look at topological aspects.

\[\mathbf{SU}(2) \cong S^3 \]

Not a very realistic representation of the relation between $\mathbf{SU}(2)$ and $\mathbf{SO}(3)$.

\[\mathbf{SO}(3) \cong \mathbb{RP}^3 \]

Let $R(t)$ be a path in $\mathbf{SO}(3)$ starting at $R(0) = I$. We wish to find a path $U(t)$ in $\mathbf{SU}(2)$ such that $p : U(t) \rightarrow R(t)$. Since p^{-1} is double-valued, there is no unique answer. But if we require that $U(0) = 1$ and that $U(t)$ be continuous, then the answer is unique. First, $U(0) = +1$ picks one of the two preimages at $t = 0$. Then, for each small step we make in $R(t)$, only one of the two possible preimages is possible if we demand $U(t)$ be continuous, because one of the preimages is close to the path of $U(t)$ developed already and the other is far away. Note that U and $-U$ are on opposite sides of S^3 and never come close together. The path $U(t)$ created in this way is the lift of $R(t)$. It is like the lift we will see later in fiber bundle theory, except the law of "parallel transport" is determined by continuity.

Now let $R(t)$ be a loop, i.e. $R(T) = I$. This loop belongs either to the trivial or nontrivial class of $\pi_1(\mathbf{SO}(3)) = \mathbb{Z}_2$. We now show that $R(t)$ is trivial iff $U(T) = +1$, where $U(t)$ is
the lift of $R(t)$. This tells us the state of the neutron after the classical rotation has returned to the identity.

If $R(t)$ is contractable (trivial), we wish to show that $U(T) = +1$. Suppose not, i.e. suppose $U(T) = -1$. Then the lift of the loop $R(t)$ is an open path $U(t)$ in $SU(2)$ that ends at $U(T) = -1$. Now as we contract $R(t)$ down to the constant loop $c: I \to SO(3): t \mapsto I$, the lift of the contracting curve is a path $U(t)$ that must end on either $+1$ or -1, since $R(T) = I$. At the beginning of the contraction, $U(T) = -1$ (we are supposing), while at the end we have the lift of the constant loop in $SO(3)$ which is the constant loop $[0,T] \to SU(2): t \mapsto 1 \in SU(2)$. But the endpoint cannot change continuously from -1 to $+1$, while the lifting process is continuous. A continuous function that takes values in a discrete set must be constant. So the assumption $U(T) = -1$ must be wrong, and we must have $U(T) = +1$.

Conversely, suppose we have a loop $R(t)$ on $SO(3)$ that lifts into a loop $U(t)$ on $SU(2)$, i.e. a path that ends in $U(T) = +1$. Since $SU(2) \cong S^3$ is simply connected, this loop is contractable. As it contracts, its projection onto $SO(3)$ contracts continuously to the constant loop. Therefore $R(t)$ belonged to the trivial class.
Now we give the official definition of a covering space.

Let M, \overline{M} be connected topological spaces with a map $p: \overline{M} \to M$ such that

1. p is surjective
2. for each $x \in M$ there exists a connected open neighborhood $V \subset M$ containing x such that $p^{-1}(V)$ is a disjoint union of open sets $\{V_a\}$ in \overline{M}, each mapped homeomorphically onto V by p, $p(V_a) = V$, $\forall a$.

Then \overline{M} is a covering space of M. If \overline{M} is simply connected, then it is the universal covering space.

Remarks. We require M to be connected, because otherwise we might as well talk about the cover of each component (piece) of M separately:

![Diagram]

And we require \overline{M} to be connected, because otherwise M can be thought of as having more than one cover, each of which can be treated separately:

![Diagram]
Look at requirement (2), regarding open sets, in the case of $SU(2)$ covering $SO(3)$. Represent $SO(3)$ as the northern hemisphere of S^3, let $R \in SO(3)$, and let V be a neighborhood of it:

Then look at $p^{-1}(V)$ on $SU(2)$, represented as the whole of S^3:

$\mathbb{R}P^3 \rightarrow S^3 \rightarrow p^{-1}(V) = V_1 \cup V_2$

$V_1 \cap V_2 = \emptyset$

It means that in the neighborhood of each pre-image of $p^{-1}(R)$, $SU(2)$ "looks like" $SO(3)$, topologically speaking. The fact that $V_1 \cap V_2 = \emptyset$ means that the preimages are well separated from each other, and remain so as R moves around on $SO(3)$. This is what allows us to make a unique choice of preimage, when we are lifting a curve and following it around by demanding continuity.

Apropos lifts, a theorem.

Thm. Let $\alpha : I \rightarrow M$ be a continuous path on M with $\alpha(0) = x_0$, and let \overline{x}_0 be a choice of a point in $p^{-1}(x_0)$. Then there exists a unique continuous path $\tilde{\alpha} : I \rightarrow \overline{M}$ such that
\(\bar{x}(0) = \bar{x}_0 \) and \(p(\bar{x}(t)) = x(t), \ t \in \mathbb{R} \).

The covering space is intuitively an "unrolling" of the original space, e.g. \(SU(2) \) is obtained by "unrolling" \(SO(3) \) once. The metaphor is especially clear in the case of the circle. We now examine \(\pi_1(S^1) \). Previously we argued on intuitive grounds that \(\pi_1(S^1) = \mathbb{Z} \), wrapping rubber bands around doorknobs, etc. Now we outline a more rigorous proof. Nakahara's discussion of this point is hard to follow.

Identify \(S^1 \) with the unit circle in the complex plane:

\[
\begin{align*}
S^1 & \cong \mathbb{C}^\times, \ x \in \mathbb{R}. \\
& \downarrow \quad e^{ix}, \ x \in \mathbb{R}.
\end{align*}
\]

Introduce map \(p : \mathbb{R} \to S^1 : x \mapsto e^{ix} \). \(p^{-1} \) has an infinite number of branches, e.g. \(p^{-1}(1) = \{ \ldots, -2\pi, 0, 2\pi, 4\pi, \ldots \} \).

\(\mathbb{R} \) is a covering space of \(S^1 \). Wrap \(\mathbb{R} \) around in a helix that sits over \(S^1 \) to make the projection more geometrical. Notice that there is an open interval \(V \) around \(\theta \in S^1 \) such that \(p^{-1}(V) \) is the union of an \(\infty \) number of pre-images \(V_x \), disjoint.

Each local part of the circle "looks like" the local part of \(\mathbb{R} \).
in a neighborhood of each preimage.

Thus, \(\mathbb{R} \) is a covering space of \(S^1 \), in fact it is the universal cover since \(\pi_1(\mathbb{R}) = \{ e \} \) (since \(\mathbb{R} \) is contractible).

Now let \(\alpha: I \to S^1 \) be a loop on \(S^1 \) based at 1, so

\[
\alpha(0) = \alpha(1) = 1.
\]

Let \(\tilde{\alpha}: I \to \mathbb{R} \) be the lifted loop starting at \(\tilde{\alpha}(0) = 0 \) in \(\mathbb{R} \). Since \(\alpha(1) = 1 \), \(\tilde{\alpha}(1) \) must belong to \(p^{-1}(1) \), i.e., \(\tilde{\alpha}(1) \) must be \(2\pi n \) for some \(n \in \mathbb{Z} \). Note that \(\tilde{\alpha} \) is not a loop if \(n \neq 0 \).

Now let \(\alpha, \alpha' \) be two loops on \(S^1 \) constructed as above with lifts \(\tilde{\alpha}, \tilde{\alpha}' \) both starting at 0 and ending at \(2\pi n \) and \(2\pi n' \). Then we have that \(\alpha \sim \alpha' \) iff \(n = n' \).

Proof. First suppose \(\alpha \sim \alpha' \). Then there is a homotopy that deforms \(\tilde{\alpha} \) into \(\tilde{\alpha}' \). Lift each curve of the deformation; this will create a homotopy deforming \(\tilde{\alpha} \) into \(\tilde{\alpha}' \). But the endpoint of \(\tilde{\alpha} \) or \(\tilde{\alpha}' \) cannot change discontinuously, and so cannot
change at all. Thus \(n = n' \). Conversely, suppose \(n = n' \),
so the lifted curves \(\tilde{a}, \tilde{a}' \) start and end at the same points.
Since \(B \) is simply connected, any two curves connecting the
same points can be continuously deformed into one another.
Do this, and use \(\phi \) to project the deformation onto \(S' \), whereupon
we obtain a deformation of \(a \) into \(a' \). Thus \(a \sim a' \).

Thus we conclude that there is a one-to-one, onto
mapping between homotopy classes in \(\pi_1(S') \) and the integers \(\mathbb{Z} \). With a little more effort, we can show that multiplication
of homotopy classes corresponds to addition in \(\mathbb{Z} \). Thus,
\[
\pi_1(S') = \mathbb{Z}.
\]

\(B \) is the universal covering space of \(S' \); \(S' \) has been
"unrolled" an \(\infty \) number of times.

It is not necessary to unroll all the way. Consider
the single edge \(\text{ABA} \) of the Möbius strip, itself a circle,
and the center line \(\text{CC} \), which is also a circle.

\[\begin{array}{c}
B \\
\downarrow P \\
C \\
P \uparrow \\
A \\
\downarrow P \\
C \\
P \uparrow \\
A \\
B \\
\end{array}\]

Define \(\phi: \text{ABA} \to \text{CC} \), and \(\text{ABA} \) becomes a covering space of
\(\text{CC} \). One circle covers another (twice).
In another example, the 2-torus T^2 is a double cover of the Klein bottle. Finding the map $p : T^2 \rightarrow \text{Klein}$ will be left as an exercise. The 2-torus itself has a universal cover, $p : \mathbb{R}^2 \rightarrow T^2$. The plane is divided into parallelograms, with opposite sides identified.

It turns out that every connected space M has a covering space, although if M is simply connected then its only cover is M itself (covering once). If M is not simply connected, then it possesses one or more covers. The following is a construction of \tilde{M}, the universal covering space of M.

Let M be connected and $x_0 \in M$. Let $G = \pi_1(M, x_0)$, so elements $g \in G$ are equivalence classes of loops based at x_0.

Let (x, y) be a (point, path) pair, where $x \in M$ and y is a continuous path $[0, 1] \rightarrow M$, with $y(0) = x_0$, $y(1) = x$. It is redundant to write (x, y), since $x = y(1)$, but it is notationally convenient. Then let $(x, y) \sim (x', y')$ if $x = x'$ and y homotopic to y'. This is an equivalence relation. Define \tilde{M} as the space of all equivalence classes,

$$\tilde{M} = \{ [(x, y)] | x \in M, y \text{ a path } x_0 \rightarrow x \}.$$
Also, define \(\phi : \tilde{M} \to M : [(x,y)] \mapsto x \).

\[[(x,y)] = [(x,y')] = \text{one point of } \tilde{M} \]

\[[(x,y'')] = \text{a different point of } \tilde{M} \]

We want to show that \(\tilde{M} \) is the universal cover of \(M \), but first it is better to get some feel for what \(\tilde{M} \) looks like. To specify a point of \(\tilde{M} \), we must first choose a point \(x_0 \in M \) and then an equivalence class of curves connecting \(x_0 \) to \(x \). The projection \(\phi \) just throws away the information regarding the equiv. class and returns \(x \).

It turns out the equivalence classes of paths connecting \(x_0 \) to \(x \) can be labelled by elements of \(G = \pi_1(M,x_0) \). This is obvious in the case \(x = x_0 \), since then the paths are loops based at \(x_0 \) and the equiv. classes of paths connecting \(x_0 \) to \(x \) are the elements of \(G \). But it is true even when \(x \neq x_0 \), too. Since \(G \) is a discrete group, the specification of a point \(\tilde{x} \in \tilde{M} \) requires a point \(x \in M \) plus a choice from a discrete set (i.e., \(G \)).

To label the homotopic equivalence classes of paths \(\gamma \) taking \(x_0 \to x \), let \(\Gamma \) be a standard (fixed) path from \(x_0 \) to \(x \) and
let γ be any path \(x_0 \to x \):

Then associate paths \(\gamma \) (\(x_0 \to x \)) with loops \(\alpha \) (based at \(x_0 \)) by

\[
\alpha = \gamma \times \Gamma^{-1}.
\]

Then it's easy to see that \(\gamma \times \gamma' \) (homotopic, as in picture above, but \(\gamma \) not \(\gamma'' \)) iff \(\alpha = \alpha' \). Thus, equivalence classes of paths \(\gamma \) (\(x_0 \to x \)) can be labelled by equivalence classes of loops \(\alpha \) (based at \(x_0 \)), i.e., by elements of \(G = \pi_1(M, x_0) \). Therefore the number of preimages of \(p^{-1}(x) \), for any \(x \in M \), is the number of elements in \(G \) (the order of \(G \)). (This may be infinite.) The number of preimages of \(\phi \alpha \) under \(p \) is independent of \(x \in M \); it is "the number of times" \(\Gamma \) covers \(M \).

But note that the labelling of points of \(p^{-1}(x) \) by elements of \(G \) depends on the choice of the standard path \(\Gamma \). Thus there arises the question of whether this labelling is the "same" as we had for points of \(p^{-1}(x_0) \), that is, is it continuously connected with the labelling we used at \(x_0 \)?

Here is a partial answer. It turns out we can label points of \(p^{-1}(x) \) by elements of \(G \) in a continuous manner over any simply connected region of \(\mathbb{E} \cdot M \). Let \(V \) be such a region (\(x_0 \) need not be in \(V \)), let \(x_1 \) be a chosen point in \(V \), and
let Γ be a standard path going from x_0 to x_1.

Now let x be any point in V and let τ_x be a path from x_1 to x. We wish to use this to label points of $p^{-1}(x)$, i.e. equiv. classes of curves $\gamma : (x_0 \to x)$. Again associate a path γ ($x_0 \to x$) with a loop α based at x_0 by

$$\alpha = \gamma * \tau_x^{-1} * \Gamma^{-1}.$$

Again, $\alpha \sim \alpha'$ iff $\gamma \sim \gamma'$. This follows since Γ is fixed, and since V is simply connected, any 2 paths τ_x, τ_x' ($x_1 \to x$) are homotopic. Thus, not only are points of $p^{-1}(x)$ labelled by elements of G (as before), but the labelling is continuous as x moves around inside V. This shows that

$$p^{-1}(V) \cong V \times G,$$

which, since G is a discrete set, means that $p^{-1}(V)$ consists of a discrete set of sets V_g ($g \in G$) which are disjoint and homeomorphic to V. So \overline{M} is a covering space, by the definition.

However, the continuous labelling of points of $p^{-1}(x)$ by elements $g \in G$ cannot be extended to all of M (unless it is simply connected, in which case G has only one element and $\overline{M} \cong M$.) So, in general, $\overline{M} \neq M \times G$. In fiber bundle language, we would say that the fiber bundle is nontrivial.
Here are some exercises if you want to understand this construction better.

1. Show that the branches (points) of $p^{-1}(x)$ can be labelled continuously by elements of G as x moves along a path starting at x_0, as long as the path does not cross itself. What happens if the path does cross itself (what happens to the labelling)? In particular, suppose the path returns to x_0, making a loop?

2. Show that N is simply connected, hence the universal covering space.

One more remark. If M is a group manifold, then N (the universal covering group) can be given the structure of a group, and \tilde{p} is a homomorphism. This is the relation between $SU(2)$ and $SO(3)$, and B and S^1.
Now we develop notation for groups, in order to talk about $\pi_1(M)$ for various M.

Let G be a group and $X = \{a,b,c,\ldots\}$ a finite collection of elements of G. If every element $g \in G$ can be written as products of powers of a,b,c,\ldots, written in some order, including negative powers, then G is said to be finitely generated and X to be the set of generators. For example, we might have aba^{-1}, $a^{-2}b^2a$, etc. If two identical generators are adjacent, they may be combined, e.g. $ab^2a^{-2}c = aba^{-1}c$.

If any generator to the zero power occurs, we drop it, since $a^0 = e = 1$ = identity. A product of generators obeying these rules will be called reduced. If every element of G can be written uniquely as a reduced product of generators, then G is said to be freely generated.

If G is finitely generated by $X \subseteq G$ but not freely, then there are relations connecting the generators. For example, an Abelian group with two generators $X = \{a,b\}$ will satisfy the relation $ab = ba$. This means that elements $g \in G$ can be written as reduced products in more than one way. We handle this case by going back to the free group, and then dividing by a subgroup.

Let F be the free group constructed out of n generators (x_1,\ldots,x_n). Think of the generators as an alphabet. A word is a product of powers of letters,

$$x_{i_1}^{j_1}x_{i_2}^{j_2}\cdots x_{i_s}^{j_s},$$

where $i_k \in \mathbb{Z}$ and $1 \leq j_k \leq n$. If a word is reduced according to the rules above, then it is said to be reduced. Let F = set of reduced words. F acquires the structure of a group when we define
the product

multiplication by concatenating, then reducing \(\mathcal{W} \). The identity is the word

of length zero.

Suppose \(G \) is generated by \(\{x_1, \ldots, x_n\} \) but not freely. Then we can define a map

\[
f : F \to G
\]

which just maps reduced words in \(F \) into the same expression in \(G \).

However, this map is not injective if \(G \) is not free, i.e., there will be more than one word in \(F \) that gives rise to a given element of \(G \) (for example, \(xy \) and \(yx \) if \(G \) is Abelian). The map is, however, surjective, since we are assuming the \(\{x_1, \ldots, x_n\} \) generate \(G \).

The map \(f \) is also a group homomorphism, because the rules for combining words in \(F \) also work in \(G \). Therefore, \(G = F / \ker f \), where \(\ker f \) is the normal subgroup of \(F \) that is mapped onto the identity in \(G \). Words in \(F \) that play the role of \(g^{-1} \) in \(G \) are called relations.

\(\ker f \) is specified by constraints on the generators, also called relations. Some examples will give the idea.

Let \(G \) be an Abelian group, gen. by \(\{x, y\} \). The relation is \(xyx^{-1}y^{-1} = 1 \). We write \(G = \{x, y ; xyx^{-1}y^{-1}\} \) as the presentation of \(G \). Another example, \(G = \mathbb{Z}_4 \). Here we have one generator and one relation, \(G = \{x ; x^4\} \).

More formally, \(C = \text{constrained subgroup of } G \) is defined by

\[
C = \text{gen} \{ grg^{-1} | g \in G, r \in \mathbb{R} \}
\]

where \(RC \mathcal{G} \) is the set of relations. \(C \) is a normal subgroup.
Now some more homotopy groups. First the torus:

\[\pi_1(\mathbb{T}^2) \cong \{A, B; ABA^{-1}B^{-1}\} = \mathbb{Z}^2. \]

Square with opposite sides identified. Obvious guesses for generators of \(\pi_1(\mathbb{T}^2) \) are loops \(A, B \). But clearly \(ABA^{-1}B^{-1} \) is contractible, so the group is

Next Klein bottle. Square with a twisted identification:

This time \(ABAB^{-1} \) is contractible, and

\[\pi_1(\text{Klein bottle}) = \{A, B; ABAB^{-1}\} = \text{non-Abelian}. \]

Now remark on relation between homotopy and homology. The relation involves the commutator subgroup of an arbitrary group, which I now explain.

Let \(G \) be any group and let \(C \) be generated by all elements of the form, \(xyx^{-1}y^{-1}, \ x, y \in G \).

called the commutator of \(x \) and \(y \) group elements.
C is called the **commutator subgroup**.

Thus: C is normal. Proof: Let $g \in G$, then

$$gxyx^{-1}y^{-1}g^{-1} = (gxg^{-1})(gyg^{-1})(gx^{-1}g^{-1})(gy^{-1}g^{-1})$$

$$= x'y'x^{-1}y^{-1}$$

where $x' = gxg^{-1}$

$$y' = gyg^{-1}$$. Hence $gCg^{-1} = C$, $\forall g \in G$. Thus the quotient group G/C is defined.

Thus: G/C is Abelian. It is a kind of Abelianized version of G.

Proof: Let $[g_1], [g_2]$ be two coacts of C. Then

$$g_1g_2(g_2^{-1}g_1^{-1}g_2g_1) = g_2g_1, \quad \Rightarrow \in C$$

So $[g_1g_2] = [g_2g_1] = [g_1][g_2],[g_2][g_1]$, $\frac{G}{C}$ is Abelian.

Thus: Let K be a simplicial complex, let $G = \pi_1(K)$ and $C = \text{commutator subgp. of } G$. Then

$$\Rightarrow \quad H_1(K, \mathbb{Z}) \cong \frac{\pi_1(K)}{C}.$$ Proof omitted.

Example: with Klein bottle, $\pi_1(M) = \{x, y; xyxy^{-1}\}$. To divide by commutator subgroup, append extra relation $xyx^{-1}y^{-1}$. If $xyx^{-1} = 1$ and $xy = yx$, then $x(xy)y^{-1} = x(xy)y^{-1} = x^2 = 1$.

Thus, $H_1(\text{Klein})$ is the Abelian group generated by x, y with the relation $x^2 = 1$, i.e., it is $\mathbb{Z} \times \mathbb{Z}_2$.