Physics 250
Fall 2008
Homework 7

## Due Friday, October 17, 2008

Reading Assignment: Nakahara, pp. 196-206. See also Frankel, pp. 52-84, 125-136, 145-154.
Notes. Equation (5.83), p. 202, is meaningless. Please ignore it. Also, Eq. (5.89), p. 203, should $\operatorname{read} \theta=p_{\mu} d q^{\mu}$. Otherwise the material on pp. 191-204 is ok.

1. (DTB) Nakahara Exercise 5.15, p. 199 (Exercise 5.32, p. 161 of the first edition).
2. (DTB) As was discussed in class, the Lie derivative $L_{X}$ obeys the Leibnitz rule when acting on tensor products. As was also discussed, the exterior product $\wedge$ is an antisymmetrized tensor product.
(a) Let $\alpha \in \Omega^{r}(M)$ and $\beta \in \Omega^{s}(M)$. Find and expression for $L_{X}(\alpha \wedge \beta)$ in terms of $L_{X} \alpha$ and $L_{X} \beta$.
(b) The Cartan formula is

$$
\begin{equation*}
L_{X}=i_{X} d+d i_{X} \tag{7.1}
\end{equation*}
$$

where $X \in \mathfrak{X}(M)$, valid when both sides act on differential forms. Show that the right hand side obeys the same rule when acting on $\alpha \wedge \beta$ as does $L_{X}$ in part (a).
(c) Show that the Cartan formula (7.1) is valid when acting on 0 -forms and 1 -forms.
(d) Explain why parts (a)-(c) prove the Cartan formula in all cases (that is, when acting on arbitrary differential forms).
3. As explained in the notes, a symplectic manifold $M$ is a manifold endowed with a 2-form $\omega$ such that $d \omega=0$ ( $\omega$ is closed) and $\operatorname{det} \omega_{\mu \nu} \neq 0$ ( $\omega$ is nondegenerate; $\omega_{\mu \nu}$ is the component matrix of $\omega$ in some chart). Such an $\omega$ is referred to as a symplectic 2-form. The nondegeneracy condition can be stated in a coordinate-free manner by saying that $\omega(X, Y)=0$ for all $Y$ iff $X=0$. Here $\omega$ means $\omega$ evaluated at some point $z \in M, X, Y \in T_{z} M$, and the condition is to hold at all $z \in M$.

Since $\operatorname{det} \omega_{\mu \nu} \neq 0$, the Poisson tensor with components $J^{\mu \nu}$, defined by

$$
\begin{equation*}
J^{\mu \nu} \omega_{\nu \alpha}=\delta_{\alpha}^{\mu} \tag{7.2}
\end{equation*}
$$

is defined. It can be used to compute Poisson brackets by

$$
\begin{equation*}
\{A, B\}=A_{, \mu} J^{\mu \nu} B_{, \nu} \tag{7.3}
\end{equation*}
$$

In these equations, components are taken with respect to an arbitrary coordinate system (call it $z^{\mu}$ ) on the symplectic manifold. Do not assume that these coordinates are the usual $\left(q_{i}, p_{i}\right)$ coordiantes of a mechanical system, indeed, the definition of a symplectic manifold says nothing about the existence of such coordinates.

Prove the Jacobi identity for the Poisson bracket,

$$
\begin{equation*}
\{\{A, B\}, C\}+\{\{B, C\}, A\}+\{\{C, A\}, B\}=0 . \tag{7.4}
\end{equation*}
$$

It will probably be easiest to do this in coordinates.
Although the definition of a symplectic manifold says nothing about the existence of canonical $(q, p)$ coordinates, it can be shown that such coordinates always exist locally on a symplectic manifold. This is Darboux's theorem. But do not use this theorem in proving Eq. (7.4), that is, Darboux's theorem is too big a hammer to smash a small nut, namely, the Jacobi identity. Just do the calculation in an arbitrary coordinate system.
4. Hamiltonian mechanics in noncanonical coordinates. Let $P=\mathbb{R}^{6}$ be the phase space of a charged particle of charge $e$ moving in a magnetic field $\mathbf{B}(\mathbf{x})$, with coordinates $q_{i}=x_{i}$ and $p_{i}$, $i=1,2,3$, where $p_{i}$ is the canonical momentum of the particle, given in terms of its velocity by

$$
\begin{equation*}
\mathbf{p}=m\left(\mathbf{v}+\frac{e}{c} \mathbf{A}(\mathbf{x})\right) \tag{7.5}
\end{equation*}
$$

Use coordinates $z^{\mu}=(\mathbf{x}, \mathbf{v})$ on phase space. Write the symplectic form $\omega$ in terms of the differentials $d x_{i}, d v_{i}$. Write the Hamiltonian as a function of $(\mathbf{x}, \mathbf{v})$. Translate Hamilton's equations,

$$
\begin{equation*}
i_{X} \omega+d H=0 \tag{7.6}
\end{equation*}
$$

into these coordinates, and solve for $\dot{\mathbf{x}}, \dot{\mathbf{v}}$.
This calculation sheds light on why the usual Hamiltonian for a particle in a magnetic field looks so complicated. It is because the proper way to view the effect of a magnetic field on the classical dynamics is to say that it modifies the symplectic form, not the Hamiltonian.

