Physics 250
Fall 2008
Homework and Notes 3
Due Friday, September 17, 2008

Reading Assignment: Nakahara, Chapter 3. I also recommend Frankel, pp. 333-354.

1. Read the notes below.

(a) Let G be a free, finitely generated Abelian group of rank 2, which according to the theorems
is isomorphic to Z2. Identify the generators (z1,7s) with the vectors (0,1) and (1,0). Let H be
the subgroup of G that is generated by (2,6) € Z2. Find generators (y1,%2) of G such that H is
generated by a multiple of y;.

(b) Show that every row and every column of an element of GL(r, Z) is relatively prime (the integers

have no common factors except +1).

Notes. The following are some notes on the subject of finitely generated Abelian groups, which one
must work with to compute homology groups over the integers Z. In the following we quote some
theorems without proof.

Finitely generated Abelian groups are important in our approach to homology theory because
the triangulations that we use to study the topology of a manifold have only a finite number of faces,
edges, vertices, etc. As was explained this week, faces, edges, vertices, etc. are technically examples
of oriented simplexes of different dimensionalities. For example, the “edges” of our triangulation will
be oriented 1-simplexes. With a motivation that comes from line, surface, volume, etc. integrals, we
also consider linear combinations of these 1-simplexes with integer coefficients, as objects of various
dimensionalities that we might integrate over. Such objects are called chains. The fact that we are
using integer coefficients in forming our chains means that the homology groups we ultimately derive
will be considered to be over the integers Z. (But later we will want to think about homologies over
other sets of coefficients, such as R or Zy, the integers modulo 2.)

Thus, the set of chains (of a given dimensionality) that we will consider consists of all linear
combinations with integer coefficients of some set of simplexes (of the given dimensionality). A given
chain can be identified by a vector of integers, the coefficients (nq,...,n,), where r is the number of
“basis” simplexes. The space of such chains is Z", which can be viewed geometrically as an integer
lattice in r-dimensional space. This set is not a vector space according to the technical definition
of a vector space (because Z is not a field), but it obviously has many of the properties of a vector
space (you can add chains, the rule is just the addition of integer vectors). Technically, the set of
chains (of a given dimensionality) is best regarded as an Abelian group, in which the zero chain,

corresponding to vector (0,...,0), is the identity and the “multiplication law” is vector addition.



The set of chains of dimensionality & (in some triangulation of a manifold M) is denoted Cy(M).
Based on what has been said, it is clear that Cy (M) is isomorphic to Z", where r is the number
of k-simplexes in the triangulation. We also want to consider the set of k-dimensional chains that
are cycles, denoted by Zi (M), and the set of k-dimensional chains that are boundaries, denoted by
By (M). As explained in class, Z;(M) is a subgroup of Cy (M), and By (M) is a subgroup of Zy (M),
that is,

Bu(M) € Z4(M) € Cy(M), (1)
with each subset relation actually meaning “subgroup.” Each of these subgroups can be thought

of geometrically as sublattices of the group it is contained in. The homology groups we will be

interested in are quotient groups,
Hy(M) = Zx(M)/Br(M), (2)

and, as explained in class, they are independent of the triangulation, that is, they are topological
invariants.
So we turn to the theory of Abelian groups. First, we define a finitely generated Abelian group

as one for which every g € G can be written in the form,

9= Z niTi, (3)
=1

where (x1,...,x5) is a list of elements of G and n; € Z. Notice that there is no attempt to say that s
is “minimal” in any sense, or that the x; are “linearly independent.” In fact, some of the z; could be
zero, or duplicates, or “linear combinations” of others, insofar as this definition is concerned. Given
a finitely generated Abelian group, the generators are not unique, in fact, even their number is not
unique. In the following discussion (and in our treatment of homology) we will only be interested
in finitely generated Abelian groups.

There are two kinds of finitely generated Abelian groups, those that are free and those that are

not free. If every element g € G (henceforth assumed to be Abelian and finitely generated) for some

choice of generators (x1,...,x,) can be written uniquely in the form
kA
9= Z Ty, (4)
i=1
for some integer vector (ny,...,n,) € Z", then the group is said to be free and of rank r. For the case

of a free group, the generators that enter into the definition of freeness are fixed in number (that is,
the number r, the rank, is a fixed characteristic of the group). The free group itself is isomorphic
to Z". The chain group Cx(M) is an example of a free Abelian group.

For a free, finitely generated Abelian group, the generators (x1,...,x,) are not unique, even if
their number (r) is. Given one set of generators, we can create another set that will work just as

well, by writing

yi = ZMij zj, (5)
=1



where the r x r matrix M must belong to the group GL(r,Z). This group is defined as the group of
all r X r integer matrices that have an integer matrix as an inverse. An integer matrix belongs to

this group if and only if its determinant is +1.

Theorem. Every subgroup of a free, finitely generated Abelian group is a free, finitely generated

Abelian group.

Let G be a free, finitely generated Abelian group of rank r, which therefore is isomorphic to
Z", and let H be a subgroup. Geometrically, H is a sublattice of G. Think, for example, of the case
r=1,sothat G=Z={...,-1,0,1,2,...},and let H ={...,—2,0,2,4,...}. That is, let H consist
of the even integers. This is a sublattice of the one-dimensional lattice. Nakahara denotes this H
by 2Z. As an abstract group, H is also isomorphic to Z, but as a subgroup of G, it contains only
one half of G. For the case r = 2, for practice you may try drawing a 2-dimensional integer lattice
(for G) and then pick out a pair of “basis vectors” that “span” (generate) a 2-dimensional sublattice
(for H), but one that is not the whole lattice G. For the case r = 2 other possible subgroups H
are one-dimensional sublattices. And the “zero-dimensional” sublattice is just the trivial subgroup
containing the identity, H = {0}. If you think about these examples, then the theorem above should
be plausible. You will also see that if the rank of G is r, then the rank of its subgroup H is some
integer p with 0 <p <.

This theorem implies that both Zx(M) and By (M) are free, finitely generated Abelian groups
(because they are subgroups of C(M)). Geometrically, they can be seen as sublattices of Z", where
Cr(M)=7Z".

The quotient group of a free, finitely generated Abelian group G and one of its subgroups (which

must be free) is not necessarily free. You can see this already in the one-dimensional case, in which

7

— =7, =1{0,...,k— 1}, 6

Zo—m=y } (6)
where the quotient group is the “cyclic” group of order k (so called because if you take the generator
and keep adding it to itself, you come back to 0 periodically). The quotient group is not a lattice,
but rather a discrete analog of a circle. The following theorem generalizes this one-dimensional case

to arbitrary dimensions.

Theorem. Let G be a free, finitely generated Abelian group of rank r, and let H be a subgroup.
Then it is always possible to choose the generators (x1,...,x,) of G so that every element h € H

can be written uniquely in the form,
P
i=1

where p < r, n; € Z, and k; > 1. Thus, H = ZP, and H is generated by (kix1,...,kyzp) (integer
multiples of the first p generators of G), and H is of rank p. The case p = 0 means that H is the
trivial subgroup {0}.



This theorem contains the previous one, but provides more information. The next theorem

follows rather easily from it.

Theorem. Let G be a free, finitely generated Abelian group of rank r, and let H be a subgroup.
Then

%%Zklx...kaPXZx...xZ, (8)

where k; > 1 and there are r — p final factors of Z.

In fact the form given by this theorem for G/H is the general form for an arbitrary (free or
non-free) finitely generated Abelian group. To see this, let A be an arbitrary (free or non-free)
finitely generated Abelian group, with generators (z1,...,zs), and remember how nonunique the
generators are. Nevertheless, since they are generators, every element a € A can be written in the

form
a = anxl (9)
=1

This equation can be regarded (for given generators) as specifying a map f : Z° — A. This map
is clearly onto, so img f = A. The kernel of this map, the set of integer vectors (ni,...,ns) in
7Z* that map onto 0 € A, constitute a subgroup of Z*. Therefore the quotient group Z*°/(ker f), is
isomorphic to A (by the theorem proved in class on kernels and images of group homomorphisms).
But with Z* identified with G and ker f identified with H in the theorem above, this shows that
A is isomorphic to some number of products of Z; with k& > 1 times some number of product of
Z. If a factor Zy with k = 1 occurs, then this factor can be discarded (as far as abstract groups
are concerned), because Z; is just the trivial group {0}. If you have redundant generators z; in the
original set of generators, or if you have one set of generators and then throw in some more that are
dependent on the ones already given, then this just produces more factors Z; in the final product.
The number of factors of Z in the final product, however, is independent of the choice of generators.

Thus, an arbitrary (free or non-free) finitely generated Abelian group can be seen geometrically
as a kind of a discrete analog of a cylinder (some number of lines crossed with some number of
circles), sort of a multidimensional nanotube. Homology groups, being quotient groups of a free

Abelian group with a subgroup, are always of this form.
2. Nakahara, problem 3.1, p. 120 (p. 87 in the first edition).

3. Nakahara, problem 3.2, p. 120 (p. 88 in the first edition).

More notes. Nakahara’s Chapter 3 has many defects in its details, which you will see if you read
the chapter carefully. If you find yourself confused by something he says, don’t assume that it is
your fault. Ask me about it if you want to be sure.

Note that Nakahara often writes 0 when he means {0}, that is, the Abelian group containing

just one element. This leads to confusing looking things like 0/0, when he means {0}/{0}. The



latter is perfectly well defined. Each group, the numerator and the denominator, has one element,
the identity, so the quotient group has just one element, too, the coset which is the whole group.
The quotient group is also the trivial Abelian group, so {0}/{0} = {0}.

Nakahara writes @ when I would write x, for example, his Z & Z is what I would write as
72 =7 x 7, (it is the set of ordered pairs of integers, (n1,n2)).

Nakahara’s Lemma 3.2 and Theorem 3.2 (p. 97) are confusing because he never mentions that
you have to change basis to bring the generators in the form he discusses, nor does he discuss the
nonuniqueness in the generators. This is taken care of by the notes above. Some of the other

theorems in the chapter are awkwardly done, for example, Theorem 3.5, p. 110.



