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Reading Assignment:

1. (DTB) On p. 77 Nakahara talks about the orthogonal complement to the kernel of f . The

objection to this, as discussed in class, is that you can’t define an orthogonal complement without

a metric, which you may not have (and which Nakahara has not yet introduced at that point in the

text). Another problem with Nakahara’s remark is that the space spanned by the vectors hi (his

notation) is not unique, because the hi are not (in general) unique.

Let V be a vector space and U a vector subspace. Let v1 ∼ v2 if v1 − v2 ∈ U . Geometrically,

this means that v1 and v2 lie in a “plane” parallel to U . Show that ∼ is an equivalence relation. Let

V/ ∼ be denoted V/U . Show that V/U can be given the structure of a vector space (one can define

addition of equivalence classes and their multiplication by scalars).

If we now let f : V → W be a linear map and identify U with ker f , there is an obvious way to

define a mapping

f̂ :
V

ker f
→ im f. (1)

Do this, and show that the mapping is a vector space isomorphism. In an appropriate basis, f̂ is

represented by a square, invertible matrix, even though f originally may well have been represented

by a noninvertible matrix, even a rectangular matrix. It is in this sense that all matrices have an

inverse, even rectangular ones. But note that the domain of f̂ is not a subspace of V , it is a quotient

space.

If a metric is introduced into V , so that orthogonality is defined, then show how the subspace

of V which is orthogonal to ker f can be identified with the quotient space V/ ker f .

2. Let V be a vector space and U ⊆ V be a vector subspace. Let V ∗ be the dual space to V . Let

X∗ ⊆ V ∗ be the space of dual vectors that annihilate U , that is, α ∈ X∗ if α(u) = 0 for all u ∈ U .

Prove that

dimU + dimX∗ = dim V. (2)

If now we have a mapping f : V → W , show that

dim im f = dim im f∗, (3)

where f∗ : W∗ → V ∗ is the pull-back.

A remark here is that if we have a subspace U ⊆ V , one way to specify U is to specify a set

of vectors that span U (a basis in U). But a complementary way is to specify a complete set of
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covectors that annihilate U (a basis in X∗, in the notation above). U is then the simultaneous

kernel of these covectors. This is an example of switching from a space to its dual to understand a

problem, often an effective strategy.

3. (DTB) This problem concerns the adjoint f̃ of a linear operator f : V → W between two vector

spaces V and W (both over field K). It is assumed that V possesses metric g, and W possesses

metric G. In class it was explained that the adjoint f̃ : W → V can be defined as

f̃ = g−1f∗G, (4)

where f∗ is the pull-back and the metrics g and G are seen as maps between the vector spaces V

and W and their duals. Another interpretation of the metrics is in terms of scalar products, and it

gives another way to define f̃ , namely,

〈f̃w, v〉g = 〈w, fv〉G, (5)

for all v ∈ V and all w ∈ W . That is, in Eq. (5), f is assumed given and f̃ is defined by that equation

as the unique linear operator : W → V that satisfies the given condition. Show that definitions (4)

and (5) are equivalent.

4. In class we used the 2-torus T 2 on which to draw examples of 1-cycles that are or are not

homologous. You may have noticed in these examples that homologous 1-cycles can be continously

deformed into one another, and 1-cycles that are boundaries can be continuously contracted to a

point. These are special features of a torus that make it a bad example, because homology does

not have anything to do with continous deformations or contractions. The latter belong rather to

homotopy theory.

Find (that is draw) a 2-dimensional compact manifold with a cycle on it that is a boundary but

is not contractible to a point. Find one with two homologous 1-cycles that cannot be continuously

deformed into one another.


