Physics 250

Fall 2008
Homework 12
Due Friday, November 21, 2008

Reading Assignment: Nakahara, pp. 289-293. For more on Hodge star theory and harmonic forms, see Frankel, pp. 361-374. As usual, Frankel gives a good supplement to the material in Nakahara.

Notes. Regarding Nakahara's use of a noncoordinate basis in Sec. 7.9, he usually means an orthonormal basis when he talks about a noncoordinate basis, whereas in class I have usually used the symbols $\left\{\theta^{\mu}\right\}$ to stand for any basis, coordinate or noncoordinate, orthonormal or not, because almost everything in this section goes through without modification in the general case.

On p. 290, Nakahara calls ϵ a "tensor," but as I showed in class, it does not transform as a tensor. For that reason, in class I refrained from raising indices on ϵ, creating things like Nakahara's Eq. (7.171b). Instead, I used Ω (which is a tensor).

The following are useful identities when dealing with the permutation (or Levi-Civita) symbol ϵ. First,

$$
\begin{equation*}
\epsilon_{\mu_{1} \ldots \mu_{r} \nu_{1} \ldots \nu_{m-r}} \epsilon_{\sigma_{1} \ldots \sigma_{r} \nu_{1} \ldots \nu_{m-r}}=(m-r)!\operatorname{sgn}\binom{\mu_{1} \ldots \mu_{r}}{\sigma_{1} \ldots \sigma_{r}} \tag{1}
\end{equation*}
$$

where $\operatorname{sgn}()$ means ± 1 if the first row of integers is an even/odd permutation of the bottom row, and 0 otherwise. This is my notation, no one else uses it as far as I know. The ($m-r$)! occurs because we have a contraction between two sets of indices, here the ν 's, in which the objects contracted are completely antisymmetric. The sgn() notation can be written in terms of a matrix of Kronecker δ 's,

$$
\operatorname{sgn}\binom{\mu_{1} \ldots \mu_{r}}{\sigma_{1} \ldots \sigma_{r}}=\left|\begin{array}{ccc}
\delta_{\sigma_{1}}^{\mu_{1}} & \cdots & \delta_{\sigma_{r}}^{\mu_{1}} \tag{2}\\
\vdots & & \vdots \\
\delta_{\sigma_{1}}^{\mu_{r}} & \cdots & \delta_{\sigma_{r}}^{\mu_{r}}
\end{array}\right| .
$$

This notation is a generalization of the ϵ symbol, since

$$
\begin{equation*}
\epsilon_{\mu_{1} \ldots \mu_{r}}=\operatorname{sgn}\binom{12 \ldots r}{\mu_{1} \mu_{2} \ldots \mu_{r}} . \tag{3}
\end{equation*}
$$

In many cases $\operatorname{sgn}()$ behaves like a big Kronecker δ, for example,

$$
\begin{equation*}
\operatorname{sgn}\binom{\alpha \beta \gamma}{\mu \nu \sigma} \theta^{\mu} \wedge \theta^{\nu} \wedge \theta^{\sigma}=3!\theta^{\alpha} \wedge \theta^{\beta} \wedge \theta^{\gamma} \tag{4}
\end{equation*}
$$

This is because the $\operatorname{sgn}()$ part of the expression vanishes unless ($\mu \nu \sigma$) is a permutation of $(\alpha \beta \gamma)$, and there are 3 ! such permutations, each of which gives the same answer. So we can just choose one of these permutations and multiply the answer by 3 !. The easiest one is to choose $\mu=\alpha, \nu=\beta$, $\sigma=\gamma$.

I used the symbol \langle,$\rangle for the scalar product of forms instead of ($,$) , since the rounded brackets$ were used earlier for pairing a form with a chain (a vector and a dual vector, instead of two vectors). Thus, in my notation, (,) does not require a metric, while \langle,$\rangle does.$

Notice that when Nakahara computes the covariant Laplacian (actually, the negative of the Laplacian in usual physics parlance) on p. 294, he uses the Levi-Civita connection in deriving Eq. (7.188). Hodge star theory and the definition of d^{\dagger} use a metric, but not a connection.

1. (DTB) Work in curved, four-dimensional space-time. In class we showed that the covariant derivative of a Dirac spinor was defined by

$$
\begin{equation*}
\nabla_{\gamma} \psi=\psi_{, \gamma}-\frac{i}{4} \Gamma_{\gamma \beta}^{\alpha} \sigma_{\alpha}^{\beta} \psi \tag{5}
\end{equation*}
$$

Here as in the book Greek indices α, β, γ etc. at the beginning of the Greek alphabet (vierbein indices) refer to components with respect to an orthonormal vierbein $\left\{e_{\alpha}\right\}$, and Greek indices in the middle of the Greek alphabet, $\mu, \nu, \lambda, \kappa$ etc. (coordinate indices) refer to coordinates x^{μ} in some coordinate system (although in lecture I didn't follow this convention). The vierbein is specified by

$$
\begin{equation*}
e_{\alpha}=e_{\alpha}^{\mu}(x) \frac{\partial}{\partial x^{\mu}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
g\left(e_{\alpha}, e_{\beta}\right)=\eta_{\alpha \beta} \tag{7}
\end{equation*}
$$

where $\eta_{\alpha \beta}=\operatorname{diag}(1,-1,-1,-1)$ is the Minkowski metric. All vierbein indices are raised and lowered with $\eta_{\alpha \beta}$. The comma notation when used with vierbein indices, as in Eq. (5), means, for example,

$$
\begin{equation*}
\psi_{, \gamma}=e_{\gamma} \psi=e_{\gamma}{ }^{\mu} \psi_{, \mu}=e_{\gamma}{ }^{\mu} \frac{\partial \psi}{\partial x^{\mu}} \tag{8}
\end{equation*}
$$

A gauge transformation in general relativity is a local Lorentz transformation on the vierbein,

$$
\begin{equation*}
e_{\alpha}^{\prime}=\Lambda_{\alpha}^{\beta} e_{\beta} \tag{9}
\end{equation*}
$$

where $\Lambda^{\alpha}{ }_{\beta}$ is the matrix of a Lorentz transformation as in special relativity,

$$
\begin{equation*}
\Lambda_{\gamma}^{\alpha} \Lambda_{\delta}^{\beta} \eta_{\alpha \beta}=\eta_{\gamma \delta} \tag{10}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left(\Lambda^{-1}\right)^{\alpha}{ }_{\beta}=\Lambda_{\beta}{ }^{\alpha} . \tag{11}
\end{equation*}
$$

Note that $\Lambda_{\alpha}{ }^{\beta}$ in Eq. (9) depends on x.
Use the following conventions for the transformation of a Dirac spinor under Lorentz transformations in special relativity (don't try to follow Nakahara, I think there are errors in his presentation). There is a wide variety of conventions used in the literature for the formalism of the Dirac equation, but I think the ones I use here are the most common in physics (they are essentially those of Bjorken and Drell). Nakahara uses some non-standard conventions.

A contravariant vector transforms according to

$$
\begin{equation*}
X^{\prime \alpha}=\Lambda(g)_{\beta}^{\alpha} X^{\beta} \tag{12}
\end{equation*}
$$

where $g \in S L(2, \mathbb{C})$, and the spinor transforms according to

$$
\begin{equation*}
\psi^{\prime}=D(g) \psi \tag{13}
\end{equation*}
$$

where $D(g)$ is a 4×4 spinor (Dirac) representation of the proper orthochronous Lorentz group. This representation has the properties,

$$
\begin{gather*}
D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{1} g_{2}\right) \tag{14}\\
D(g)^{-1} \gamma^{\alpha} D(g)=\Lambda(g)^{\alpha}{ }_{\beta} \gamma^{\beta}, \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\gamma^{0} D(g)^{\dagger} \gamma^{0}=D(g)^{-1} \tag{16}
\end{equation*}
$$

Here γ^{α} are the usual Dirac matrices, which satisfy the anticommutation relations,

$$
\begin{equation*}
\left\{\gamma^{\alpha}, \gamma^{\beta}\right\}=2 \eta^{\alpha \beta} \tag{17}
\end{equation*}
$$

The relation between infinitesimal Lorentz transformations and infinitesimal spinor transformations is the following. If an infinitesimal Lorentz transformation is written in the form,

$$
\begin{equation*}
\Lambda(g)^{\alpha}{ }_{\beta}=\delta_{\beta}^{\alpha}+\epsilon \Omega_{\beta}^{\alpha} \tag{18}
\end{equation*}
$$

where ϵ is just a reminder that the correction is small and where

$$
\begin{equation*}
\Omega_{\alpha \beta}=-\Omega_{\beta \alpha} \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
D(g)=1-\frac{i}{4} \epsilon \Omega_{\alpha \beta} \sigma^{\alpha \beta} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma^{\alpha \beta}=\frac{i}{2}\left[\gamma^{\alpha}, \gamma^{\beta}\right] \tag{21}
\end{equation*}
$$

Show explicitly that $\nabla_{\alpha} \psi$ transforms as a spinor (in its Dirac indices) and as a covector (in the index α).
2. (DTB) Let $A=A_{\mu} \theta^{\mu}$ be a 1 -form on a manifold with a metric g. It was shown in class that

$$
\begin{equation*}
d^{\dagger} A=-A_{; \mu}^{\mu} \tag{22}
\end{equation*}
$$

In this problem we use the Levi-Civita connection.
(a) As discussed in class, the inhomogeneous Maxwell equation in general relativity (with a 4dimensional, pseudo-Riemannian manifold) is

$$
\begin{equation*}
F_{; \nu}^{\mu \nu}=J^{\mu} \tag{23}
\end{equation*}
$$

where we set $c=1$ and use Heaviside-Lorentz units (which get rid of the 4π 's). It was reported in class that this equation is equivalent to

$$
\begin{equation*}
d^{\dagger} F=J, \tag{24}
\end{equation*}
$$

where J is the current 1-form,

$$
\begin{equation*}
J=J_{\mu} d x^{\mu} . \tag{25}
\end{equation*}
$$

Let

$$
\begin{equation*}
B=\frac{1}{2} B_{\mu \nu} \theta^{\mu} \wedge \theta^{\nu} \tag{26}
\end{equation*}
$$

be an arbitrary 2 -form on an arbitrary manifold with a metric g. Compute $d^{\dagger} B$ in terms of the components $B_{\mu \nu}$. Use only covariant derivatives, as in Eq. (22) above, to make it obvious that the answer is a tensor. Once you have your answer, specialize to the case $B=F$ to prove Eq. (24).

Note, based on the quoted answer (24) above, you might guess that

$$
\begin{equation*}
d^{\dagger} B=B_{\mu}{ }^{\nu}{ }_{; \nu} \theta^{\mu}, \tag{27}
\end{equation*}
$$

but remember that $d F=0$ while B is arbitrary, so don't jump to conclusions.
(b) In class we showed that if f is a scalar, then

$$
\begin{equation*}
\Delta f=-f^{; \mu}{ }_{; \mu} . \tag{28}
\end{equation*}
$$

If $A=A_{\mu} \theta^{\mu}$ is a 1 -form, we might guess that

$$
\begin{equation*}
\triangle A=-A_{\mu}^{;}{ }_{; \nu} \theta^{\mu} . \tag{29}
\end{equation*}
$$

Work out $\triangle A$ in terms of components, write the answer purely in terms of covariant derivatives, and see if the guess is right.

