
Notes 1

Lecture Notes on Manifolds, Tangent Vectors and Covectors

The lecture of Tuesday, February 24, 2004 did not follow my written notes very closely,

so I have written up a version somewhat closer to the actual lecture. The figures are drawn

by hand and are separate.

We begin with differentiable manifolds. Most of the “spaces” used in physical ap-

plications are, in fact, differentiable manifolds. After a while we will drop the qualifier

“differentiable” and it will be understood that all manifolds we refer to are differentiable.

We will build up the definition in steps.

A differentiable manifold is basically a topological manifold that has “coordinate sys-

tems” imposed on it. Recall that a topological manifold is a topological space that is

Hausdorff and locally homeomorphic to
�

n . The number n is the dimension of the mani-

fold. On a topological manifold, we can talk about the continuity of functions, for example,

of functions such as f : M →
�

(a “scalar field”), but we cannot talk about the derivatives

of such functions. To talk about derivatives, we need coordinates.

Generally speaking it is impossible to cover a manifold with a single coordinate system,

so we work in “patches,” technically charts. Given a topological manifold M , a chart on M

is a pair (U, φ), where U ⊂ M is an open set and φ : U → V ⊂
�

n is a homeomorphism.

See Fig. 1. Since φ is a homeomorphism, V is also open (in
�

n ), and φ−1 : V → U exists.

If p ∈ U is a point in the domain of φ, then φ(p) = (x1, . . . , xn) is the set of coordinates of

p with respect to the given chart. We use upper (contravariant) indices for the coordinates.

Note that the number of coordinates n is the dimension of M (otherwise φ cannot be a

homeomorphism).

Given a chart, it becomes possible to talk about the smoothness of a scalar field on M ,

that is, a function f : M →
�
. That is, we just express f as a function of the coordinates

f(x1, . . . , xn), and declare that f is smooth if this coordinate function is smooth. Actually,

this is abuse of notation, since f depends on points p of M , not on coordinate n-tuples. We

should really write f ◦ φ−1 instead of f above, that is, f ◦ φ−1 : V →
�

is a real-valued

function of a collection of real coordinates, so its partial derivatives are meaningful. Thus,

smoothness is defined relative to a given chart.

In this course smooth will mean C∞, that is, a smooth function is one that possesses

continuous derivatives of all orders. It is convenient in differential geometry (and in this

course) to assume that all functions are smooth (where this is meaningful), unless otherwise

specified. Thus we will not have to qualify every theorem we encounter with warnings
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about how many continuous derivatives are needed for the theorem to be true (an irritating

aspect of a lot of mathematical literature). We will not, however, assume that functions

are analytic, since this is too strong for much of differential geometry, and is not needed in

any case. (We make an exception to this when we discuss complex manifolds.)

Since in general M cannot be covered by a single coordinate chart, we introduce the

concept of an atlas, which is a collection of charts {(Ui, φi)} such that the open sets Ui

cover M ,
⋃

i

Ui = M, (1.1)

that is, every point of M is contained in at least one chart, and such that a certain compat-

ibility condition is satisfied for any two charts that overlap. The compatibility condition is

required so that functions that are smooth in one chart remain smooth in an overlapping

chart. Let (Ui, φi), (Uj , φj) be two charts on M such that Ui ∩ Uj 6= ∅ (see Fig. 2). In the

diagram the two “coordinate spaces”
�

n are drawn separately for convenience (two copies

of
�

n), but you can combine them if you want. A point p in the overlap region Ui ∩Uj has

two sets of coordinates, the “i-coordinates” φi(p) = (x1, . . . , xn) and the “j-coordinates”

φj(p) = (x′1, . . . , x′n). The i- and j- coordinates occupy regions (open sets) Ri = φi(Ui∩Uj)

and Rj = φj(Ui ∩ Uj) of the two coordinate spaces, and by mapping coordinates to points

and back to coordinates again we can define a map ψij : Ri → Rj , where

ψij = φj ◦ φ
−1

i . (1.2)

(Actually ψij is this function restricted to the domain Ri.) Note that ψ−1

ij exists since φi

and φj are invertible. Then the compatibility condition is that ψij and ψ−1

ij be smooth,

which guarantees that the smoothness of functions does not depend on the chart. An atlas

is a collection of charts that cover M such that any two charts with nonempty overlap

satisfy this compatibility condition.

In more ordinary language, the function ψij gives the “new” coordinates as functions

of the “old” coordinates,

x′µ = x′µ(xν), (1.3)

and ψ−1

ij is the inverse function,

xν = xν(x′µ). (1.4)

Thus, ψij or ψ−1

ij is a “coordinate transformation.” The compatibility condition implies

that all partial derivatives of all orders of both of these functions exist. This means in

particular that the Jacobian matrix and its inverse,

Jµ
ν =

∂x′µ

∂xν
, (J−1)ν

µ =
∂xν

∂x′µ
, (1.5)
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exist. But since these matrices are inverses of one another, each matrix is nonsingular.

Two comments on this definition of charts and atlases. In practice, we often use

coordinate systems for which the map φ or φ−1 does not exist everywhere, that is, there are

“coordinate singularities.” An example of this is ordinary spherical coordinates (θ, φ) at

the north or south pole, where the angle φ is not defined, or on one meridian (Greenwich,

for example) where the angle φ jumps discontinuously from 2π to 0. Such coordinates

are excluded from the formalism presented here, or at least the domain U of definition of

the coordinates must be restricted (excluding the “bad points”) so that the map φ is a

homeomorphism. If we do that, then ordinary spherical coordinates make a perfectly good

chart for the sphere S2, but the chart does not cover all of the sphere. This is an example

of how in general a manifold cannot be covered by a single chart (for the sphere at least

two overlapping charts are necessary).

A second comment is that in the applied, nongeometrical literature it is common to

confuse a manifold with some standard system of coordinates on it (for example, Euler an-

gles on SO(3)). Thus, coordinate singularities are confused with supposed “singularities”

of the manifold itself (which do not exist). Understanding a geometrical object by means

of some coordinate representation always runs the risk of confusing the idiosyncracies of

the coordinate system with geometrical issues on the manifold itself that have an invariant

meaning. It is part of the philosophy of geometrical methods that we think as much as

possible in terms of the invariant (coordinate-independent) geometrical constructions on a

manifold itself. Nevertheless, it must be noted that a differentiable manifold is one upon

which coordinates can be imposed, so it is never wrong to look at something through a coor-

dinate representation. Traditional (nongeometrical) physics literature tends to view things

exclusively through coordinate representations (often examining how those representations

change under a change of coordinates, in order to extract invariant meaning). The modern

mathematical literature, on the other hand, sometimes goes to the other extreme, never

putting anything in coordinate language no matter how convoluted it may be to say it in

purely geometrical language. In this course we will try to strike a balance between these

two points of view.

Obviously there is an infinite number of ways of imposing an atlas on a given manifold.

In order that two atlases agree as to which functions are smooth, it is necessary that the

atlases satisfy a compatibility condition. This is that any two charts taken from either

of the two atlases must satify the compatibility condition for charts given above. This

compatibility condition for atlases is an equivalence relation, so the space of all possible

atlases on a given topological manifold breaks up into equivalence classes, such that all
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atlases in a given equivalence class agree on which functions are smooth. An equivalence

class of compatible atlases constitutes a differentiable structure on M , and a topological

manifold plus a differentiable structure consitutes a differentiable manifold. Henceforth all

manifolds we encounter will be assumed to be differentiable manifolds.

This definition of a differentiable manifold leaves open the possibility that a given

topological manifold can possess more than one differentiable structure, and, indeed, this

happens. In physical applications, however, manifolds are usually “born” with one obvious

differentiable structure imposed on them (for example, they may arise as submanifolds of
�

n), and the alternative possibile differentiable structures play no role. As far as I know,

there are no physical applications for such alternative differentiable structures. In this

course we will always assume that there is one differentiable structure we are working with

(usually an obvious one).

What we have defined so far is a manifold without boundary. It is also possible to

have a manifold with boundary. The official definition is given in the text, and will not be

repeated here (it takes a little thinking to see what it means). Here we will just give two

examples. The subset of
�

3 defined by

x2 + y2 + z2 = 1 (1.6)

is just the 2-sphere S2, a manifold without boundary, ∂S2 = 0. The subset of
�

3 defined

by

x2 + y2 + z2 ≤ 1 (1.7)

is the 3-disk D3, a manifold with boundary, ∂D3 = S2. Manifolds with boundary are

more difficult to handle than manifolds without boundary, since the boundary points are

exceptional and obey special rules. In the following, when we say simply “manifold,” we

will mean a manifold without boundary.

Consider now mappings between (differentiable) manifolds, f : M → N (see Fig. 3).

Let dimM = m and dimN = n (the manifolds do not have to have the same dimension).

Let x ∈M and y ∈ N be points such that y = f(x), and let φ be a chart on M containing x

and ψ a chart on N containing y. Then we will say that f is smooth at x if the coordinate

representation of f (in the given charts), ψ ◦ f ◦ φ−1, is smooth. Note that in coordinates,

the derivative matrix of f ,

Di
j =

∂yi

∂xj
, (1.8)

is an m× n matrix (rectangular, if the dimensions of M and N are different).
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As a special case, let N =
�
. Then we have a scalar field, f : M →

�
. The set of all

smooth scalar fields on a manifold will be denoted by

�
(M) = {f : M →

�
|f smooth}. (1.9)

The coordinate functions xi : U →
�

(the i-th coordinate in a chart on M) are like

scalar fields, but they are only defined locally (inside the chart U). For many purposes,

they can be treated as scalar fields. This confuses people who have learned that a “scalar”

is something that is invariant under changes of coordinates.

As another special case, consider c : I →M , where I = [a, b] ∈
�

is an interval. Then

c is a parameterized curve, see Fig. 4.

Another example is a map f : M → N that is an isomorphism insofar as the differen-

tiable structure is concerned. This is a mapping f that is a bijection (so f−1 exists), and

such that both f and f−1 are smooth. Such a map is called a diffeomorphism. If there exists

a diffeomorphism between two manifolds, they are said to be diffeomorphic. Notice that if

“smooth” were replaced by “continuous”, the definition would be that of a homeomorphism.

Since smoothness implies continuity, a diffeomorphism is always a homeomorphism, but the

converse is not true. But since M and N are homeomorphic if they are diffeomorphic, they

must have the same dimension, dimM = dimN , since dimension is a topological invariant.

This means that if you write f in terms of local charts on the two manifolds, the matrix

Di
j of Eq. (1.8) above is a square matrix (the Jacobian). Moreover, since both f and f−1

are smooth, the inverse Jacobian exists, and both Jacobian matrices are nonsingular (just

like in the compatibility condition between charts).

Now we turn to the concept of a tangent vector. This is a case in which the official

definition is somewhat unintuitive, but a good intuitive understanding is necessary to use

differential geometry effectively. So we will begin with intuitive ideas, and build up to the

formal definition.

The word “vector” has many different meanings. The original meaning of the word

is something that carries something from one place to another, for example, a mosquito is

a vector of disease. In
�

n , a vector is a displacement from one point to another along a

straight line, and such vectors (if based at a common point such as the origin) can be added

and multiplied by scalars, that is, they form a vector space. On a manifold (such as S 2,

see Fig. 5), one can talk about displacements from one point p to another p1 along some

path, but such displacements cannot be added or multiplied by scalars (no such definition

is useful). The exception is when the base p and tip p1 of the displacement are close

together, since a small region of the manifold can be approximated by a plane (of the same
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dimensionality as the manifold). If the manifold is imbedded in some higher dimensional
�

n space, then the plane in question can be thought of as the tangent plane to the manifold

at the point p. Then small vectors form something like a vector space (as long as they

remain small, the tangent plane is a good approximation to the surface of the manifold).

A first, intuitive idea of a vector X tangent to a manifold M at a point p is simply a

small displacement based at p, as illustrated in Fig. 5. There are two obstacles to be dealt

with, however, before this can be turned into a precise definition. The first is that “small”

has no precise meaning. In fact, usually when using tangent vectors there is some small

elapsed parameter (“time”) in the background, call it ∆t, and the vector is to be seen not

as one specific displacement, but rather part of a motion that takes place (going from p

to p1) in time ∆t. By dividing suitable quantities by ∆t, we obtain derivatives that are

ordinary numbers and not infinitesimals. The motion in question can be thought of as a

small part of a parameterized curve passing through p at t = 0.

The second obstacle is that we require a definition of a tangent vector that is intrinsic

to the manifold, one that does not rely on any picture of an imbedding space with tangent

planes sticking out into that space (and colliding with one another). If the manifold M (or

its imbedding space) were a vector space, we could subtract points p1 − p, and use that as

a measure of the small displacement, but on a general manifold the subtraction of points

is not meaningful. Therefore we shift attention to the functions defined on M , that is, the

scalar fields, and consider the difference f(p1)−f(p), where f : M →
�
. This is meaningful,

because we can subtract values of f . In this way we are led to associate with the tangent

vector X a differential operator acting on scalar fields,

Xf = lim
∆t→0

f(p1) − f(p)

∆t
=
df

dt
(0), (1.10)

where the d/dt is the convective derivative of f along the small segment of parameterized

curve joining p and p1. It is evaluated at t = 0 because we are assuming that the parame-

terized curve passes through p at t = 0. This is a second interpretation of a tangent vector

at a point p ∈ M , that is, as a differential operator d/dt along a curve passing through p.

By this interpretation, X is a linear mapping X :
�
(M) →

�
.

The curve passing through p at t = 0 and p1 at t = ∆t is free to do anything it wants

when we move out of the neighborhood of p. In effect, we only need an infinitesimal segment

of the curve to define the action of the d/dt operator. But we cannot talk precisely about

an infinitesimal segment of a curve, so we talk about finite curve segments, that is mappings

c : [a, b] → M , a < 0 < b, which satisfy c(0) = p. We will consider any two such curves
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equivalent if they have the same d/dt operator at t = 0, that is, c1 ∼ c2 if

d(f ◦ c1)

dt

∣

∣

∣

∣

t=0

=
d(f ◦ c2)

dt

∣

∣

∣

∣

t=0

, for all f ∈
�
(M). (1.11)

Here we are being careful to indicate the convective derivative of a scalar field f along a

curve c by (d/dt)(f ◦c), since f ◦c : [a, b] →
�

is a function whose t derivative is meaningful.

(The simpler notation df/dt is abusive.) Then any curve in an equivalence class of such

curves serves to define the same d/dt operator. This leads to a precise definition of a

tangent vector to M at p: Such a vector X is an equivalence class of curves X = [c], all

passing through p at t = 0 and satisfying the above equivalence relation (see Fig. 6). This

equivalence class is also interpreted as a map

X :
�
(M) →

�
: f 7→

d(f ◦ c)

dt
(0), (1.12)

for any c in the equivalence class X.

Finally, let us introduce a chart on M containing p, and let {xi} be the coordinates.

Then by the chain rule
df

dt
=

∑

i

∂f

∂xi

dxi

dt
, (1.13)

where we revert to the simpler (but abusive) notation for the convective derivative of scalars.

The convective derivative of an arbitrary scalar f is expressed in terms of the convective

derivatives of the coordinates xi. But for any scalar, (df/dt)(0) = Xf , where X is the given

vector. Let us define

Xi = Xxi =
dxi

dt
(0), (1.14)

and call the numbers (X1, . . . , Xn) the components of X with respect to the coordinates

{xi}. Then

Xf =
∑

i

Xi ∂f

∂xi
, (1.15)

where the partial derivatives are evaluated at p. Since f is arbitrary, we can write

X =
∑

i

Xi ∂

∂xi

∣

∣

∣

∣

p

, (1.16)

which provides yet another interpretation of a tangent vector at p ∈ M , namely, as a first

order, linear, partial differential operator acting at p (on scalar fields, producing a number).

Finally, let us consider what happens if we have two overlapping charts, with coordi-

nates {xi} and {x′ i}. Then X has two representations,

X =
∑

i

Xi ∂

∂xi

∣

∣

∣

∣

p

=
∑

i

X ′ i ∂

∂x′ i

∣

∣

∣

∣

p

, (1.17)
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where

X ′ i = Xx′ i =
dx′ i

dt
(0) =

∑

j

∂x′ i

∂xj

dxj

dt
(0) =

∑

j

∂x′ i

∂xj
Xj , (1.18)

where the partial derivatives are evaluated at the point p. This is what would be called the

transformation law for contravariant vectors in old-fashioned tensor analysis. In this sense,

contravariant vectors are tangent vectors.

In Eq. (1.16) X is a vector and theX i are just numbers, so the operators (∂/∂xi)|p must

be vectors. This is certainly correct, these are first order differential operators evaluated

at p. But what is the equivalence class of curves associated with (∂/∂xi)|p? The answer is

shown in Fig. 7, where the coordinate mesh (due to some chart) in the neighborhood of the

point p is illustrated. One of the curves corresponding to (∂/∂x1)|p is just the coordinate

line passing through p on which all the xi’s are constant except x1. The parameter along

this line is just the coordinate x1 itself. This curve (and any other equivalent to it in

the sense of Eq. (1.11)) constitutes the equivalence class for (∂/∂x1)|p. This gives a nice

interpretation to the rule of calculus, that ∂/∂x1 means holding all the xi fixed except x1,

which is allowed to vary.

Equation (1.16) illustrates another fact, which is that the vectors {∂/∂xi)|p} (in some

chart) form a basis for the space of all tangent vectors to M at p. This space is denoted

TpM , and is called the tangent space to M at p. It is a real vector space that can be

thought of as the space of all first order, linear differential operators evaluated at p. This is

the intrinsic definition of the tangent space that we desired; notice that the tangent space

at one point does not “collide” with the tangent space at any other point. Another fact

which emerges from Eq. (1.16) is that the dimension of the tangent space is the same as

that of the manifold,

dimTpM = dimM. (1.19)

This of course is what we expect, based on “tangent plane” diagrams like Fig. 5. All

the different tangent spaces at different points are n-dimensional, real vector spaces (n =

dimM), and so are isomorphic to one another, although there is no natural isomorphism

between them (unless we introduce additional geometrical structure).

Now we turn to covectors. As we know, every real vector space V is associated with a

dual space V ∗, consisting of real-valued linear maps on that vector space. The dual space

to the tangent space TpM , (TpM)∗, is usually denoted T ∗p M , and is called the cotangent

space at p ∈M . An element of the cotangent space is variously called a covector, cotangent

vector, or 1-form.

The most important example of a covector is one associated with a scalar field f :
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M →
�
, which a vector X ∈ TpM maps into a real number Xf by Eq. (1.15). In that

equation, if we regard f as fixed and X as variable, we have the specification of a linear

map : TpM →
�
, associated with the scalar f , which by convention is denoted df |p. That

is, we define

df |p : TpM →
�

: X 7→ Xf =
∑

i

Xi ∂f

∂xi

∣

∣

∣

∣

p

. (1.20)

Thus, df |p is a covector at p. It is called the differential of the scalar f at p.

The most confusing thing for novices about this definition is that there is nothing

small or “infinitesimal” about df |p. In traditional theoretical physics the notation df usu-

ally denotes a small increment in the function f . This kind of notation was also used in

mathematics in the nineteenth century and earlier, but in more modern times the meaning

of the symbol df has morphed into something like that given by (1.20), in which df |p is an

operator (acting on vectors), instead of a value. The relation between the two notations

is the following. In the traditional notation, the small increment df is associated with a

small change in the variables upon which f depends (this is usually implicit in the use of

this notation). That is, there is a small displacement vector, call it X, in the space of vari-

ables upon which f depends (as we would say in old-fashioned language). In more modern

language, would say that X is a small tangent vector at a point p to a manifold M , small

because only a small movement in M results from a change ∆t = 1 in the parameter of one

of the curves associated with X. Then

(df)traditional = (df |p)(X). (1.21)

In other words, the traditional interpretation of df is the (small) value of the operator df |p

acting on a (small) vector. The operator df |p is not small.

The coordinates xi in some chart are examples of (local) scalar fields, and their differ-

entials dxi|p are of interest. If we allow one of these to act on an arbitary vector X ∈ TpM ,

we obtain,

(dxi|p)(X) = Xxi = Xi, (1.22)

according to the definition (1.20) and Eq. (1.14). Now let α ∈ T ∗p M be an arbitary covector

at p. We define the components of α with respect to a given chart by

αi = α
( ∂

∂xi

∣

∣

∣

p

)

(1.23)

(this is the normal definition of the components of a covector in V ∗, you just let the covector

act on a basis in V ). We will frequently use Greek letters for covectors. Also, the use of
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a lower (“covariant”) index on the components of a covector is conventional, just as we

use upper (“contravariant”) indices on the components of a tangent vector. Then we can

evaluate the action of α on any vector X ∈ TpM in component language just by linearity.

That is, we use Eq. (1.16) to write,

α(X) = α
(

∑

i

Xi ∂

∂xi

∣

∣

∣

p

)

=
∑

i

Xiα
( ∂

∂xi

∣

∣

∣

p

)

=
∑

i

Xiαi. (1.24)

But by Eq. (1.22) this can also be written,

α(X) =
∑

i

αi(dx
i|p)(X). (1.25)

Since this is true for arbitrary X, we have

α =
∑

i

αi dx
i|p, (1.26)

and we see that the set {dxi|p} (the differentials of the coordinates at p) forms a basis in

T∗p M . In fact, this basis in T ∗p M is dual to the basis {(∂/∂xi)|p} in TpM , as follows from

setting X = (∂/∂xj)|p in Eq. (1.22):

(dxi|p)
( ∂

∂xj

)∣

∣

∣

p
=

∂

∂xj
xi = δi

j . (1.27)

Notice that the components of the differential of a function df |p are given by the “chain

rule”:

df |p =
∑

i

∂f

∂xi

∣

∣

∣

p
(dxi)|p. (1.28)

Finally, suppose we have two overlapping charts with coordinates {xi} and {x′ i}, so that

α ∈ T∗p M has two representations:

α =
∑

i

αi dx
i|p =

∑

i

α′

i dx
′ i|p. (1.29)

But by Eq. (1.28) we have

dxi|p =
∑

j

∂xi

∂x′ j
dx′ j |p, (1.30)

or,

α′

i =
∑

j

∂xj

∂x′ i
αj , (1.31)

which is the transformation law for the components of “covariant vectors” in old-fashioned

tensor analysis. Thus, covectors or cotangent vectors are the same as “covariant vectors”.
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This concludes our basic introduction to tangent vectors and covectors on a manifold.

Quite a few of the formulas on the preceding pages would be unnecessary if we were com-

pletely commited to “thinking geometrically,” and avoiding coordinate representations as

much as possible. But the traditional way of viewing problems in physics is through coordi-

nate representations, so it is worthwhile to explain the connections with the more modern

and abstract points of view. Notice that several of the formulas above are “obvious” under

an old interpretation of the symbols involved, for example, Eq. (1.28) is the chain rule.

So far we have only been talking about tangent and cotangent vectors at a point, but

now we shall say a few things about tangent and cotangent vector fields. The basic idea

is simple; a tangent vector field on a manifold M is an assignment of a tangent vector at

each point of M , and similarly for a covector field. Nevertheless, to avoid confusion you

will often find it important to distinguish carefully between a field and a geometrical object

defined at a point. We will use the same symbols (X, Y , etc.) for tangent vector fields

as we use for tangent vectors at a point, and likewise the same symbols (α, β, etc.) for

covector fields as for covectors at a point. Thus you must keep clear by context which is

meant (any notation distinguishing the two would be awkward). When talking about fields,

we drop the specification of the point at which something is evaluated, and components of

vectors or covectors become functions of position (although note that the components are

only defined within the domain of a given chart). For example, the expression for a vector

field X or covector field α in terms of its components can be written,

X =
∑

i

Xi(x)
∂

∂xi
, α =

∑

i

αi(x) dx
i, (1.32)

where x represents a point of M with coordinates xi.

Another point of view on vector and covector fields relates them to bundles. We define

the tangent bundle to a manifold M , denoted TM (without any p subscript) as the set of

all tangent vectors to M at all points of M :

TM =
⋃

p∈M

TpM, (1.33)

and similarly the cotangent bundle, denoted T ∗M , is the set of all covectors at all points p

of M :

T∗M =
⋃

p∈M

T∗p M. (1.34)

A vector (at a point) X ∈ TM is a tangent vector to M at some point p, so we can define

a mapping (a projection) π : TM → M such that π(X) is the point of M where X is
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attached. In other language,

π(TpM) = p, (1.35)

showing the action of π on the subset TpM of TM (and thereby defining π). Similarly, for

the cotangent bundle, we define a projection map π : T ∗M →M such that if α is a covector

(at a point) in T ∗M , then π(α) is the point at which α is attached. Equivalently,

π(T∗p M) = p. (1.36)

Of course the two π’s are not the same.

In terms of bundles, we can say that a vector field is a map X : M → TM , such that

the vector X(p) is actually attached to p, that is, such that

π(X(p)) = p. (1.37)

Similarly, a covector field is a map α : M → T ∗M , such that

π(α(p)) = p. (1.38)

We shall denote the set of all (smooth) vector fields on M by � (M), and the set of all

(smooth) covector fields by � ∗(M).

Recall that a vector at a point is regarded as a map X :
�
(M) →

�
. For a vector field

X, we have vectors acting on the scalar at every point, so a vector field can be considered

a map, X :
�
(M) →

�
(M). In local coordinates, this is just

Xf =
∑

i

Xi(x)
∂f

∂xi
. (1.39)

Similarly, a covector at a point is a map of a vector (at the same point) to a real number,

so a covector field α can be regarded as a map α : � (M) →
�
(M), given explicitly in local

coordinates by

α(X) =
∑

i

αi(x)X
i(x). (1.40)


