
Physics 222

Spring 2004

Homework and Notes 6

Due 5pm, Friday, March 12, 2004

Reading Assignment: Nakahara, pp. 191–204, 207–208, 216–222. See also Frankel, 58–80, 89–94,

125–136.

Notes. Equation (5.83), p. 202, is meaningless. Please ignore it. Otherwise the material on

pp. 191–204 is ok. I skipped the classical mechanics of Hamiltonian vector fields in class, but it

is an interesting application of differential forms. Classical mechanics is geometrical at heart (see

below). I also skipped the material on integration of forms in lecture, but we will come back to it.

Next week we will work through some basics of the differential geometry of Lie groups, and then do

integration of differential forms.

1. (DTB) The Kronecker tensor δ is a type (1, 1) tensor. Make sure you understand the difference

between a tensor at a point x ∈ M and a tensor field. δ at a point x ∈ M is a map,

δ|x : T∗
x M × TxM →

�
, (6.1)

whereas as a field δ is a map,

δ : � ∗(M) × � (M) → � (M) : (α, Y ) 7→ α(Y ), (6.2)

where the final formula defines δ. Let X ∈ � (M), and compute LXδ (the Lie derivative of δ along

X).

2. (DTB) Nakahara Exercise 5.15, p. 199 (Exercise 5.32, p. 161 of the first edition).

3. (DTB) As was discussed in class, the Lie derivative LX obeys the Leibnitz rule when acting

on tensor products. As was also discussed, the exterior product ∧ is an antisymmetrized tensor

product.

(a) Let α ∈ Ωr(M) and β ∈ Ωs(M). Find and expression for LX(α∧β) in terms of LXα and LXβ.

(b) The Cartan formula is

LX = iXd + diX , (6.3)

where X ∈ � (M), valid when both sides act on differential forms. Show that the right hand side

obeys the same rule when acting on α ∧ β as does LX in part (a).

(c) Show that the Cartan formula (6.3) is valid when acting on 0-forms and 1-forms.



– 2 –

(d) Explain why parts (a)–(c) prove the Cartan formula in all cases (that is, when acting on arbitrary

differential forms).

4. A problem on coordinate and noncoordinate bases. Only part (a) is marked DTB.

(a) (DTB) Let xµ be the coordinates in a chart on manifold M . Inside the domain of the chart,

the vector fields {∂/∂xµ} form a basis in the tangent spaces to M , that is, if these vector fields are

evaluated at a point p ∈ M , then they form a set of m = dim M linearly independent vectors in

TpM , for each p in the domain of the chart. These vector fields are said to form a coordinate basis.

Let {eµ, µ = 1, . . . , m} be a new set of vector fields that are also linearly independent at each

point p in some region contained in the domain of the chart xµ. Notice that the µ subscript on eµ is

not a component index, rather it serves to label the vector fields. The eµ can be expanded as linear

combinations of the coordinate basis vectors,

eµ = eν
µ

∂

∂xν
, (6.4)

where eν
µ are the expansion coefficients. These are functions of position in M .

Show that the set {eµ} is also a coordinate basis, that is, that there exist scalars yµ such that

eµ =
∂

∂yµ
, (6.5)

if and only if

[eµ, eν ] = 0, (6.6)

where [ , ] is the Lie bracket. This is a local construction.

Whether or not the set {eµ} is a coordinate basis, the Lie brackets of the basis fields among

themselves are interesting. These Lie brackets are themselves vector fields, and so can be expanded

as linear combinations of the basis vectors. That is, an expansion of the form,

[eµ, eν ] = cσ
µν eσ (6.7)

exists. The expansion coefficients cσ
µν are called the structure constants, although in this context

they are not constant (they are functions of position).

(b) Let M be the configuration space of a mechanical system in classical mechanics, with coordi-

nates xµ imposed (in some chart). These are what are called “generalized coordinates” in classical

mechanics, meaning that they are not necessarily Cartesian coordinates (nor for that matter is M

necessarily a vector space
�

m ).

A configuration point at position x ∈ M may be given any velocity. The combination of the

position and velocity of the configuration constitutes what we call the dynamical state of the system,

because the knowledge of the dynamical state allows us to determine the subsequent evolution. The
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velocity is specified by the time derivatives ẋµ, which can be regarded as the components in the

coordinate basis of the velocity vector V ∈ TxM ,

V = ẋµ ∂

∂xµ
. (6.8)

The state space of the system is the space of all possible dynamical states, that is, all possible

configurations with all possible velocities at a given configuration. This space is the tangent bundle

TM . (See the lecture notes for the definition of TM .)

The Lagrangian is usually regarded as a function L(xµ, ẋµ), but we can see it abstractly as a

scalar L : TM →
�
. The equations of motion (the Euler-Lagrange equations) are

dpµ

dt
=

∂L

∂xµ
, (6.9)

where pµ is the canonical momentum, defined by

pµ =
∂L

∂ẋµ
. (6.10)

Suppose we write the tangent vector V as a linear combination of some other basis {eµ} (besides

the coordinate basis {∂/∂xµ}),

V = ẋµ ∂

∂xµ
= vµ eµ, (6.11)

which defines the components vµ with respect to the new basis (itself not necessarily a coordinate

basis). Then we can transform the Lagrangian from the variables ẋµ to the variables vµ. We write

this tranformation,

L(xµ, ẋµ) = L̄(xµ, vµ), (6.12)

using a new symbol L̄ to indicate that the Lagrangian has been expressed in terms of new variables.

Also, let us define

πµ =
∂L̄

∂vµ
, (6.13)

which as it turns out are the components of the momentum with respect to the basis dual to {eµ}.

Find a nice equation of evolution for dπµ/dt in terms of the derivatives of the Lagrangian L̄

and the structure constants of the basis.


