Physics 222
Spring 2004
Homework and Notes 5
Due 5pm, Friday, March 5, 2004

Reading Assignment: Nakahara, pp. 135-153 and 169-191. I also recommend Frankel, pp. 3-56.

Notes. Here are some comments on the text.

The notation in Eq. 4.14, p. 134 (Eq. 4.10 on p. 102 of the first edition) is a little misleading,
since he wrote the subset X of G in the form {z;}. The point is that z1, x2, etc., in Eq. 4.14 refer
to any elements of X taken in any order, not necessarily the first, second, etc., elements of X. Some
of the z;’s in Eq. 4.10 are even allowed to be identical (but not adjacent ones). On the last line of
p. 102 (first edition), he should write ¢; instead of n; (this is corrected in the second edition).

In the first sentence of Sec. 4.9.4, Nakahara means 73(RP?) (subscript 3 omitted).

1. (DTB) A problem on covering spaces. If M is a covering space of a connected space M, then
M covers M a certain number of times. For example, SU(2) is the double cover of SO(3). In this
problem you will show that the number of times M covers M (if finite) is a divisor of the order of
m1(M). (The order of a group is the number of elements in it). Thus, the maximum number of times
that M can cover M is the order of 71 (M) (in this case, M is the universal covering space). I'm
marking this whole problem as DTB, but parts (a) and (b) are standard material in introductory
group theory, while parts (¢) and (d) are rather different material. So you may want to claim DTB

for only half of this problem.

(a) Review homework problem 1.1 on group actions. Let G be a group of finite order, and let H
be a subgroup. Let G/H be the space of cosets (left or right, it won’t matter). H is not necessarily
a normal subgroup, so G/H is not necessarily a group. Let #S stand for the number of elements in
any set S. Thus, #G is the order of G. Show that every coset of H in G has the same number of
elements, namely, #H. Conclude, therefore, that

G #G

~)y == 5.1

#(7) = (5.1)

where #(G/H) is the number of cosets. Thus, the order of H must be a divisor of the order of G.

(For example, a group with 6 elements can have subgroups of order 2 or 3, but not 4 or 5.)

(b) Let g — ®, be an action of a group G on a space X. Let the orbits of the action be labelled by

representative points in them, for example [x] is the set {®,x|g € G}. For given x € X, let

I, ={g9 € G|®4z = z}. (5.2)



Show that I, is a subgroup of G. I, is called the isotropy subgroup or stabilizer of G at x € X.
(Different points of X may have different stabilizers.) Show that points in [z] can be uniquely
labelled by the cosets in G/I,. Conclude, therefore, that the number of distinct elements in an orbit

is #G/#1,.

(c) Let M be a connected topological space. Let M be another space that satisfies all the conditions

of a covering space (see p. 149 of Nakahara), except that we will not require that M be connected.
We let p : M — M be the projection map, as in the text. Let 29 be a chosen point of M, and
let Fy = p~1(xg). Notice that by the definition, Fyy consists of a discrete set of points in M. Let
G = m (M, x0). Given a loop a based at xg in M and a point Ty € Fp, you can follow the lift of «
as you go around «, and you will return at another point of Fy. This specifies a map ¢ : Fy — Fp.

[Here we are invoking the theorem discussed in class, that given a path a : [0,1] — M such that
a(0) = xo, and given a point Zo € p~!(z¢), there exists a unique smooth curve in M, & : [0,1] — M,
such that @(0) = Zp and such that p(a(t)) = a(t).]

The map ® depends on the loop «, but show that it is the same map for any loop o’ that is
homotopic to «. Thus, ® only depends on the equivalence class [«], which otherwise is an element
of G = m(M). Write g = [a], and write ®, for the map previously denoted simply ®, to indicate
the class of loops it depends on. Find the multiplication law for ®4 ®4,. Is g — ®, an action of G
on Fy? If not, find an action of G on Fy. (Note that « * 8 means, follow « first, then [.)

(d) Show that M is connected iff Iy consists of a single orbit of the action you have constructed.
Hence conclude, in the case that M is connected and #G is finite, that #F} is a divisor of #G.

2. Nakahara, Exercises 5.3 and 5.5, p. 187 (Exercises 5.13, 5.15, pp. 148-149 of the first edition).

3. In this problem we consider the behavior of vector fields and advance maps under diffeomor-
phisms. The background is that we are given a vector field X on a manifold M, and a diffeomorphism
f: M — N. Asexplained in class, since f is a diffeomorphism, fxX is a vector field on N (X € X(M)
and fxX € X(N)). We wish to show that advance maps commute with the action of f, that is,

fO(I)t - \Ijtof7 (53)

where ®; : M — M is the advance map for X, and ¥, : N — N is the advance map for fx+X.

Let o : [a,b] — M be an integral curve of X passing through x¢ € M at t = 0, and let
7 : [a,b] — N be given by 7 = f oo. Show that 7 is an integral curve of fxX passing through
yo = f(xo) at t = 0. Do this in some local coordinates (say z° on M, and y* on N). This proves
Eq. (5.3). This is an example of a proof that is easy in coordinates, but more taxing when put into

coordinate-free language.



