
Physics 222

Spring 2004

Homework and Notes 5

Due 5pm, Friday, March 5, 2004

Reading Assignment: Nakahara, pp. 135–153 and 169–191. I also recommend Frankel, pp. 3–56.

Notes. Here are some comments on the text.

The notation in Eq. 4.14, p. 134 (Eq. 4.10 on p. 102 of the first edition) is a little misleading,

since he wrote the subset X of G in the form {xj}. The point is that x1, x2, etc., in Eq. 4.14 refer

to any elements of X taken in any order, not necessarily the first, second, etc., elements of X . Some

of the xi’s in Eq. 4.10 are even allowed to be identical (but not adjacent ones). On the last line of

p. 102 (first edition), he should write ij instead of nj (this is corrected in the second edition).

In the first sentence of Sec. 4.9.4, Nakahara means π3(
�
P 2 ) (subscript 3 omitted).

1. (DTB) A problem on covering spaces. If M̄ is a covering space of a connected space M , then

M̄ covers M a certain number of times. For example, SU(2) is the double cover of SO(3). In this

problem you will show that the number of times M̄ covers M (if finite) is a divisor of the order of

π1(M). (The order of a group is the number of elements in it). Thus, the maximum number of times

that M̄ can cover M is the order of π1(M) (in this case, M̄ is the universal covering space). I’m

marking this whole problem as DTB, but parts (a) and (b) are standard material in introductory

group theory, while parts (c) and (d) are rather different material. So you may want to claim DTB

for only half of this problem.

(a) Review homework problem 1.1 on group actions. Let G be a group of finite order, and let H

be a subgroup. Let G/H be the space of cosets (left or right, it won’t matter). H is not necessarily

a normal subgroup, so G/H is not necessarily a group. Let #S stand for the number of elements in

any set S. Thus, #G is the order of G. Show that every coset of H in G has the same number of

elements, namely, #H . Conclude, therefore, that

#
( G

H

)

=
#G

#H
, (5.1)

where #(G/H) is the number of cosets. Thus, the order of H must be a divisor of the order of G.

(For example, a group with 6 elements can have subgroups of order 2 or 3, but not 4 or 5.)

(b) Let g 7→ Φg be an action of a group G on a space X . Let the orbits of the action be labelled by

representative points in them, for example [x] is the set {Φgx|g ∈ G}. For given x ∈ X , let

Ix = {g ∈ G|Φgx = x}. (5.2)
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Show that Ix is a subgroup of G. Ix is called the isotropy subgroup or stabilizer of G at x ∈ X .

(Different points of X may have different stabilizers.) Show that points in [x] can be uniquely

labelled by the cosets in G/Ix. Conclude, therefore, that the number of distinct elements in an orbit

is #G/#Ix.

(c) Let M be a connected topological space. Let M̄ be another space that satisfies all the conditions

of a covering space (see p. 149 of Nakahara), except that we will not require that M̄ be connected.

We let p : M̄ → M be the projection map, as in the text. Let x0 be a chosen point of M , and

let F0 = p−1(x0). Notice that by the definition, F0 consists of a discrete set of points in M̄ . Let

G = π1(M, x0). Given a loop α based at x0 in M and a point x̄0 ∈ F0, you can follow the lift of α

as you go around α, and you will return at another point of F0. This specifies a map Φ : F0 → F0.

[Here we are invoking the theorem discussed in class, that given a path α : [0, 1] → M such that

α(0) = x0, and given a point x̄0 ∈ p−1(x0), there exists a unique smooth curve in M̄ , ᾱ : [0, 1] → M̄ ,

such that ᾱ(0) = x̄0 and such that p(ᾱ(t)) = α(t).]

The map Φ depends on the loop α, but show that it is the same map for any loop α′ that is

homotopic to α. Thus, Φ only depends on the equivalence class [α], which otherwise is an element

of G = π1(M). Write g = [α], and write Φg for the map previously denoted simply Φ, to indicate

the class of loops it depends on. Find the multiplication law for Φg1
Φg2

. Is g 7→ Φg an action of G

on F0? If not, find an action of G on F0. (Note that α ∗ β means, follow α first, then β.)

(d) Show that M̄ is connected iff F0 consists of a single orbit of the action you have constructed.

Hence conclude, in the case that M̄ is connected and #G is finite, that #F0 is a divisor of #G.

2. Nakahara, Exercises 5.3 and 5.5, p. 187 (Exercises 5.13, 5.15, pp. 148–149 of the first edition).

3. In this problem we consider the behavior of vector fields and advance maps under diffeomor-

phisms. The background is that we are given a vector field X on a manifold M , and a diffeomorphism

f : M → N . As explained in class, since f is a diffeomorphism, f∗X is a vector field on N (X ∈ � (M)

and f∗X ∈ � (N)). We wish to show that advance maps commute with the action of f , that is,

f ◦ Φt = Ψt ◦ f, (5.3)

where Φt : M → M is the advance map for X , and Ψt : N → N is the advance map for f∗X .

Let σ : [a, b] → M be an integral curve of X passing through x0 ∈ M at t = 0, and let

τ : [a, b] → N be given by τ = f ◦ σ. Show that τ is an integral curve of f∗X passing through

y0 = f(x0) at t = 0. Do this in some local coordinates (say xi on M , and yi on N). This proves

Eq. (5.3). This is an example of a proof that is easy in coordinates, but more taxing when put into

coordinate-free language.


