
Physics 222

Spring 2004

Homework and Notes 12

Due 5pm, Wednesday, May 12, 2004

Note: I am making this homework due one day after the last day of class. I will hold office hours

1–2pm on Wednesday, May 12.

Reading Assignment: Nakahara, pp. 348–373, and as far as we get into Chapter 10.

Notes. In lecture I did (or will) cover most of the material in Nakahara’s Chapter 9, but I tried

to make it more clear and motivated. So you might find it most useful to read the lecture notes

first, then Nakahara’s Chapter 9. This chapter does what can be done with fiber bundles before you

introduce a connection, which is the subject of Chapter 10.

On p. 351, Nakahara requires the transition functions tij to satisfy conditions (9.6a–c), but

these conditions follow immediately from the definitions of the tij (his Eq. (9.4)). (You do not have

to impose any extra requirements.)

On p. 352, below Eq. (9.8), Nakahara says that the gi should be homeomorphisms. For all our

applications, they should be diffeomorphisms. In the following paragraph, I think Nakahara means

Γ(M, E) for the set of sections over M (he has F instead of E).

On the last line of p. 353, Nakahara writes f ′ = tijf , but he should swap f and f ′. This error

was also in the first edition.

In Sec. 9.2.3 on bundle maps, a little thought will show that just preserving fibers is not a

strong enough condition on a map between fiber bundles that is supposed to define a kind of a

bundle homomorphism. (It’s obvious that a proper definition must also involve the group and the

transition functions.) The proper definition is given in Steenrod. I never used this concept in lecture.

In class I shall present an alternative definition of the pullback of a bundle, from that used by

Nakahara in Sec. 9.2.5. His definition is clever geometrically, but I think not very motivated. I will

make it a special case of the reconstruction of a bundle.

Nakahara’s statement at the bottom of p. 356, about π2 having maximal rank m, makes no

sense. π2 maps a 2m-dimensional manifold to another one, so the maximal rank is 2m. I do not

know what he is trying to say in this section. If anyone can figure it out, please let me know.

On p. 357, Nakahara never actually says what the “homotopy axiom” is. But the theorem that

a bundle is trivial if the base space is contractible is an important one, and worthy of a special name.

I shall skip the material on the canonical line bundle, since we skipped Chapter 8.

On p. 359, in the first paragraph of Sec. 9.3.2 (on Frames), Nakahara seems to be saying that

the components of the basis vectors are “unit vectors” in their own basis. This is a trivial statement

of linear algebra and rather pointless in this context.
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I will probably skip the material on Whitney sum bundles and tensor product bundles in lecture,

due to lack of time.

On p. 363, the fact that the structure group has a natural action on every principal fiber bundle

is important. I gave a couple of motivating examples in lecture because the general statement of

this fact (Nakahara’s Eq. (9.41), essentially reproduced in lecture) is (to me) rather unmotivated.

On p. 364, second paragraph, he means si(p) instead of s1(p). If you have a principal fiber

bundle, then, as pointed out in class, the fibers are diffeomorphic to the structure group, but they

are not groups since they have no preferred origin. But if you choose an origin by some prescription,

then you automatically get a specific identification of the fiber with the structure group. This is

what a local section does: it picks out one point on each fiber (over the local Ui), which serves as an

“origin” for the fiber. Conversely, if you use the local trivialization φi, with constant group element

(say, g = e), then this maps Ui onto P creating a local section. This is what Nakahara calls the

“canonical local section.” I’d prefer not to call it “canonical”, since anything that depends on the

local trivialization is highly arbitrary.

In Example 9.7, Nakahara never actually explains why the U(1) bundle over S2 is relevant for

the Dirac monopole. This will be explained in class. On p. 365, below Eq. (9.44), he says, “Take a

transition function tNS(p) of the form . . ., so that tNS(p) may be uniquely defined on the equator.”

What he means is that tNS must be periodic on the equator, since it is supposed to be a smooth

function. But there is no reason why it should be einφ. As explained in class, the real issue is

that a local gauge transformation can change tNS(φ) into any other function belonging to the same

homotopy class of π1(S
1), but it cannot change that homotopy class. The function tNS(φ) = einφ

belongs to homotopy class n, so every given tNS(φ) can be gauged into einφ for some n.

Nakahara’s definition of the Hopf map would look simpler to the eye of a physicist if he changed

the sign on Eq. (9.53b) and wrote the result in the form, ξ = 〈z|σ|z〉, as discussed in class. As

we say, ξ is the “direction” the spinor z is “pointing in.” This is common language in quantum

mechanics, but it only works for a spin 1/2 particle (for other spins, the expectation value of the

spin operator is not in general a unit vector, and it does not specify the spinor, even to within a

phase).

Notice that an example of Eq. (9.64) (for n = 3) was proved in a homework. The proof for

general n is similar.

On p. 370, Nakahara gives a definition of a fiber bundle associated with a principal fiber bundle

as (P × F )/G (the action of G on P × F is given by his Eq. (9.66)). In class I explained associated

bundles in terms of the reconstruction program. I think I know why Nakahara does it his way, it

leads to a useful point of view in Kaluza-Klein theories, for example. But for now I did not want to

multiply constructions when one would do.

On p. 371, Nakahara mentions the obstruction to the construction of the spin bundle. This

concerns the possibility of defining Dirac or Weyl spinors over a topologically nontrivial space-time

(for example, with worm holes). It involves the cohomology classes of the space-time manifold, not
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over
�

but over � 2. This topic is given a nice discussion by Frankel.

1. In class we showed that S1 bundles over S2 are characterized by homotopy classes in π1(S
1).

That is, the transition function tNS , which maps the equator onto the S1, lies in a homotopy class

which characterizes the bundle topologically. We found the Hopf bundle π : S3 → S2 has homotopy

class −1 (or +1 if you use Nakahara’s definition of π).

In homework 1, problem 2, you worked out the homogeneous space SO(3)/SO(2), and found

that it was S2. As pointed out in class, the foliation of a Lie group G into cosets by a Lie subgroup

H always endows G with the structure of a principal fiber bundle, in which H is the structure group.

This is one circle bundle over a sphere. The orthogonal frame bundle on S2 with the usual metric

is another circle bundle over S2, also a principal fiber bundle. Find the homotopy classes of these

two bundles.

2. Nakahara problem 9.2, p. 372 (problem 2, p. 328, of the first edition).

3. A problem on the Frobenius theorem. As discussed in class, a k-distribution over a manifold M

(dim M = m) is an assignment of k-dimensional subspaces (k ≤ m) in the tangent spaces TxM for

all x ∈ M (or perhaps only over some region U ∈ M). The assignment is assumed to be smooth. We

say that a k-distribution (in some region) is integrable if there exists an (m− k)-parameter family of

k-dimensional surfaces in the region which are everywhere tangent to the distribution. The surfaces

are only required to exist locally.

Let X , Y be vector fields on M which lie in a k-distribution ∆. If ∆ is integrable, then the

integral curves of both X and Y must lie in the surfaces tangent to ∆. Therefore if we follow the

integral curves of X or Y in any order for any elapsed parameters, we must always remain on a given

surface. Considering infinitesimal elapsed parameters, we see that the Lie bracket [X, Y ] must be

tangent to the surface, that is, it must lie in the distribution. Thus, we have a theorem, that if ∆ is

integrable and X, Y ∈ ∆, then [X, Y ] ∈ ∆. It turns out the converse is also true (at least locally):

if for every vector fields X, Y ∈ ∆, we have [X, Y ] ∈ ∆, then ∆ is (locally) integrable.

Let θα, α = 1, . . . , m − k be a set of linearly independent 1-forms which annihilate ∆. Show

that the following four conditions are equivalent:

(i) For every X, Y ∈ ∆, [X, Y ] ∈ ∆.

(ii) dθα(X, Y ) = 0 for all vector fields X, Y ∈ ∆.

(iii) There exist 1-forms λα
β such that dθα = λα

β ∧ θβ .

(iv) dθα ∧ Ω = 0, where Ω = θ1 ∧ . . . ∧ θm−k.


