
Physics 222

Spring 2004

Homework and Notes 1

Due Friday, January 30, 2004

About Homework: I will try to have weekly homework, but there may be some weeks without

it. Nakahara’s problems are usually not very good, so I will try to do better. The homework will

be made available on the web site by Friday of each week, and will be due at 5pm on Friday of the

following week, in the envelope hanging outside my office (449 Birge).

In any homework exercise marked “DTB” (meaning, “Done This Before”), you may get full

credit by simply stating, “DTB”. Please also say where you have done it before, such as, “Math 799

at Appalachian State Teacher’s College” or “Self Study”.

Reading Assignment: Nakahara, Chapter 1 (for overview of applications) and pp. 67–77.

1. (DTB) A common way to obtain equivalence classes is through a group action. Let G be a

group and M a space. A group action is an association between elements g ∈ G and bijections

Φg : M → M , such that ΦgΦh = Φgh. Properly speaking, the action itself is the mapping : g 7→ Φg .

Note that the space of bijections of M onto itself is itself a group, with composition being the

multiplication law. Thus, a group action can be regarded as a group homomorphism between G and

this space of bijections. In many physical applications, M is a differentiable manifold and the maps

Φg are diffeomorphisms (terminology to be explained later). The maps Φg are then transformations

of M onto itself (rotations, Lorentz transformations, canonical tranformations, etc).

(a) Given a group action on a space M , we may consider two points x, y ∈ M as equivalent if

y = Φgx for some g ∈ G. Show that this is an equivalence relation. The equivalence class [x] is

called the orbit of x under the group action; for example, think of the spheres (S2) which result by

applying rotations SO(3) to a point of
� 3 . Thus, the space M is broken up into disjoint subsets,

the orbits of the group action.

(b) Given a group G and a subgroup H , the left cosets of H are the sets [g] = {gh|h ∈ H}, where

g is the representative element of the coset. Similarly, the right coset of H containing g is the set

{hg|h ∈ H}. Show that the left and right cosets are orbits of (two different) group actions of H on

G (identify the respective group actions). (Left and right cosets are sometimes denoted gH and Hg,

respectively.)

(c) In Nakahara’s exercises 2.6 and 2.7, he wants you to show that the relation defined is an

equivalence relation by appealing to the definition of an equivalence relation. Do these problems

instead by showing that equivalent points lie on the orbit of some group action. In problem 2.6,
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G = SL(2, � ) and M = H , and in problem 2.7, G is any group that acts on itself (M = G) by

conjugation.

Here is a confusing point regarding the terminology of group actions. The group action defined

above is sometimes called a “left action.” In this course, all group actions will be left actions, so

we’ll omit the “left”. But for reference, here is the definition of a “right action.” A right action of a

group G on a space M is an association between elements g ∈ G and bijections Φg of M onto itself

such that ΦgΦh = Φhg for all g, h ∈ G (the Φ products are in the reverse order from a left action).

Any right action is closely associated with a left action (this is why we will only use left actions in

this course). To see this, suppose we have a right action : g 7→ Φg. Then define a different mapping

between the group and the same set of bijections Φg of M onto itself by Ψg = Φg−1 . Then

ΨgΨh = Φg−1Φh−1 = Φh−1g−1 = Φ(gh)−1 = Ψgh. (1)

Thus, the map : g 7→ Ψg is a left action.

2. Let SO(3) be the usual group of proper rotations, with the usual action on
� 3 . Let SO(2) be

the subgroup of rotations about the z-axis. Let R ∈ SO(3) and write R in Euler angle form,

R = Rz(α)Ry(β)Rz(γ). (2)

Consider the left cosets of SO(2) within SO(3). If two rotations belong to the same left coset, what

can you say about their Euler angles? What about right cosets?

Find the topology of the quotient space, SO(3)/SO(2) (use left cosets). Hint: Don’t try to do

this in Euler angles, they are ugly. Instead, consider the action of an arbitrary rotation in SO(3) on

the z-axis, and use it to characterize the cosets.

3. (DTB) On p. 77 Nakahara talks about the orthogonal complement to the kernel of f . The

objection to this, as discussed in class, is that you can’t define an orthogonal complement without

a metric, which you may not have (and which Nakahara has not yet introduced at that point in the

text). Another problem with Nakahara’s remark is that the space spanned by the vectors hi (his

notation) is not unique, because the hi are not (in general) unique.

Let V be a vector space and U a vector subspace. Let v1 ∼ v2 if v1 − v2 ∈ U . Geometrically,

this means that v1 and v2 lie in a “plane” parallel to U . Show that ∼ is an equivalence relation. Let

V/ ∼ be denoted V/U . Show that V/U can be given the structure of a vector space (one can define

addition of equivalence classes and their multiplication by scalars).

If we now let f : V → W be a linear map and identify U with ker f , there is an obvious way to

define a mapping

f̂ :
V

kerf
→ im f. (3)

Do this, and show that the mapping is a vector space isomorphism. In an appropriate basis, f̂ is

represented by a square, invertible matrix, even though f originally may well have been represented
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by a noninvertible matrix, even a rectangular matrix. It is in this sense that all matrices have an

inverse. But note that the domain of f̂ is not a subspace of V , it is a quotient space.

If a metric is introduced into V , so that orthogonality is defined, then show how the subspace

of V which is orthogonal to ker f can be identified with the quotient space V/ kerf .

4. Let V be a vector space and U ⊆ V be a vector subspace. Let V ∗ be the dual space to V . Let

X∗ ⊆ V ∗ be the space of dual vectors that annihilate U , that is, α ∈ X∗ if α(u) = 0 for all u ∈ U .

Prove that

dim U + dim X∗ = dim V. (4)

If now we have a mapping f : V → W , show that

dim im f = dim im f∗, (5)

where f∗ : W∗ → V ∗ is the pull-back.

A remark here is that if we have a subspace U ⊆ V , one way to specify U is to specify a set

of vectors that span U (a basis in U). But a complementary way is to specify a complete set of

covectors that annihilate U (a basis in X∗, in the notation above). U is then the simultaneous

kernel of these covectors. This is an example of switching from a space to its dual to understand a

problem, often an effective strategy.


