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The Variational Method†

1. Introduction

Very few realistic problems in quantum mechanics are exactly solvable, so approximation meth-

ods are a virtual necessity for understanding the physics of real systems. In Notes 23 we considered

bound state perturbation theory, which allows us to find the discrete energy eigenvalues and eigen-

states of a system that is close to a solvable system. But what do we do when there is no exactly

solvable system close to a given system, as often happens in practice? One answer is the variational

method, which we discuss in these notes.

The variational method is particularly useful for finding approximations to the ground state

energy and eigenfunction of a system. It is harder to use for excited states, with some exceptions

that we will mention in this set of notes. Nevertheless, the variational method is a vital one in the

repertoire of techniques useful in quantum mechanics.

2. A Theorem on Variational Estimates to the Ground State Energy

The variational method is based on a certain theorem regarding variational estimates to the

ground state energy. As we state and prove the theorem, we will make some remarks indicating how

it is used in practice.

Let H be a Hamiltonian which is assumed to have some bound states. Let the discrete (bound

state) energy eigenvalues be orderedE0 < E1 < E2 . . .. The eigenvalues are allowed to be degenerate.

There may also be a continuous spectrum above some energy, as often happens in practice.

Let |ψ〉 be any normalizable state. We do not assume it is normalized because unnormalized

states are convenient in practice. Then the theorem states that

〈ψ|H |ψ〉
〈ψ|ψ〉 ≥ E0. (1)

That is, the expectation value of energy with respect to the state |ψ〉 is an upper bound to the

ground state energy.

The theorem does not tell us how far above the ground state energy the left hand side of the

inequality (1) is, so it would not seem to be of much help in estimating the ground state energy. It

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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would be better if we also had a lower bound, so E0 would be bracketed between two numbers. There

are methods for finding lower bounds to energy levels, but they require some extra information and

extra work. See Ballentine, Quantum Mechanics, for more details. In practice the state |ψ〉 is chosen
to be an approximation to the ground state, based on physical intuition or other criteria, and the

upper bound on E0 that is obtained is often quite useful.

To prove the theorem let |φ〉 be a normalized version of the state |ψ〉,

|φ〉 = |ψ〉
√

〈ψ|ψ〉
, (2)

so that

〈φ|φ〉 = 1 (3)

and
〈ψ|H |ψ〉
〈ψ|ψ〉 = 〈φ|H |φ〉. (4)

Now let us decompose |φ〉 into a component lying in the ground state eigenspace and a compo-

nent orthogonal to this eigenspace. We write the decomposition as

|φ〉 = a|0〉+ |ǫ〉, (5)

where |0〉 is a normalized state lying in the ground eigenspace,

〈0|0〉 = 1, H |0〉 = E0|0〉, (6)

where a is a complex number, and where |ǫ〉 is the component orthogonal to the ground state

eigenspace, so that

〈0|ǫ〉 = 0. (7)

If the ground state is nondegenerate, then |0〉 can be taken to be the normalized ground state itself.

Then by squaring Eq. (5) and using (7), we have

〈φ|φ〉 = 1 = |a|2 + 〈ǫ|ǫ〉, (8)

since the cross terms vanish.

Now Eq. (4) becomes

〈φ|H |φ〉 = |a|2E0 + 〈ǫ|H |ǫ〉, (9)

where again the cross terms cancel. We add and subtract E0 from H in the second term, using

Eq. (8), to obtain

〈φ|H |φ〉 = E0 + 〈ǫ|H − E0|ǫ〉. (10)

The operator H −E0 is a nonnegative definite operator (see Eq. (1.65)), so the second term is ≥ 0.

This is because the eigenvalues of H−E0 are just those of H , shifted downward by E0, that is, they

are (0, E1 − E0, E2 − E0, . . .), which are all nonnegative. This proves Eq. (1).
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Notice that if the wave function |ψ〉 is a good approximation to the ground state wave function,

so that |ǫ〉 is small, then the error in the energy (the second term in Eq. (10)) is of second order

in |ǫ〉. Thus, rather crude approximations to the ground state wave function often give rather good

estimates of the ground state energy.

3. Families of Trial Wave Functions

If we compute the expectation value of the energy with respect to a family of wave functions

then all the answers are upper bounds to the true ground state energy, and the lowest one must be

the closest. This leads to a criterion for the best estimate for the ground state wave function: it is

the one that minimizes the energy. We call the members of the family “trial wave functions.”

In practice we often choose a continuous family of trial wave functions. Let λ be a continuous

parameter, and let us write the family as |ψ(λ)〉. Then we define a function of λ, really an energy

function,

F (λ) =
〈ψ(λ)|H |ψ(λ)〉
〈ψ(λ)|ψ(λ)〉 . (11)

We minimize this by finding the root λ0 of

∂F

∂λ
= 0, (12)

so that the best estimate to the ground state wave function out of the family is |ψ(λ0)〉 and the best

estimate for the ground state energy is F (λ0). Of course we must check that the root of Eq. (12)

is actually a minimum. This procedure is easily generalized to the case of multiple parameters,

λ = (λ1, . . . , λn), for which we find the roots of ∂F/∂λi = 0 (the critical points of the function F ).

We note that a critical point of the function F is not necessarily a minimum. It could be a

maximum, a saddle point, or something more complicated. The choices are partially classified by the

second derivative matrix, ∂2F/∂λi∂λj , evaluated at the critical point. If this matrix has all positive

eigenvalues, then the critical point is a minimum; if it has all negative eigenvalues, then the critical

point is a maximum; if some eigenvalues are positive and some negative, then the critical point is a

saddle; and if some eigenvalues vanish, then the second derivative matrix alone is not sufficient to

classify the critical point.

4. A One-Dimensional Example

As an example suppose we wish to find the ground state energy and wave function of a particle

in one dimension moving in the well V (x) = |x|. We take m = 1, so the Hamiltonian is

H =
p2

2
+ |x|. (13)

This problem can be solved exactly in terms of Airy functions, which shows that the ground state

energy is E0 = −y1/21/3, where y1 is the first negative root (moving away from zero) of Ai′(y) = 0.

This gives E0 = 0.808, approximately.
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As a crude trial wave function let us use the Gaussian,

ψ(a, x) = e−ax2

, (14)

where a is the variational parameter. Actually we know that Gaussians are the exact ground state

wave functions of harmonic oscillators, not the potential in Eq. (13). But at least the trial wave

function and the exact ground state wave function have no nodes (see Sec. 6.4), so they have that

in common.

The calculation is straightforward. The normalization integral is

〈ψ|ψ〉 =
∫ +∞

−∞

dx e−2ax2

=

√

π

2a
, (15)

the integral for the kinetic energy is

〈ψ|p
2

2
|ψ〉 = 1

2

√

πa

2
, (16)

and that for the potential energy is

〈ψ|V |ψ〉 = 2

∫

∞

0

x dx e−2ax2

=
1

2a
. (17)

Altogether, the function we wish to minimize is

F (a) =
a

2
+

1√
2πa

. (18)

We differentiate, finding

F ′(a) =
1

2
− 1

2
√
2πa3

, (19)

which has the root

a0 =
1

(2π)1/3
. (20)

This gives the estimate for the ground state energy,

F (a0) =
3

2

1

(2π)1/3
= 0.813. (21)

This compares favorably with (and is an upper bound to) the exact ground state energy of E0 =

0.808. Notice how good the estimate of the energy is, in spite of the crudeness of the trial wave

function.

5. Lagrange Multipliers for Normalization

In practice the normalization denominators in Eq. (11) are often inconvenient. One possibility

is simply to normalize each member of the set of trial wave functions so those denominators are not

present. But often it is easier to enforce normalization by using Lagrange multipliers. This means
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that out of some family of trial wave functions |ψ(λ)〉, of which only a subset is normalized, we

minimize the expectation value of the Hamiltonian with respect to the normalized subset.

To use the Lagrange multiplier method, we introduce the function,

F (λ, β) = 〈ψ(λ)|H |ψ(λ)〉 − β
(

〈ψ(λ)|ψ(λ)〉 − 1
)

, (22)

and then require
∂F

∂λ
= 0 and

∂F

∂β
= 0. (23)

The Lagrange multiplier β is in effect another variational parameter. The second equation implies

normalization.

As an example of the Lagrange multiplier method, let {|n〉, n = 0, 1, . . .} be any orthonormal

basis (not usually the eigenbasis ofH , since we don’t know what that is). For example, H might be a

one-dimensional oscillator in a potential we cannot handle easily, and {|n〉} might be the eigenbasis

of the harmonic oscillator. Then the unknown ground state |ψ〉 can be expanded in the orthonormal

basis,

|ψ〉 =
∞
∑

n=0

cn|n〉. (24)

There is no approximation in this, but we do not know what the coefficients cn are.

But in practice, for example, on computers, we can only handle a finite basis, so we write

|ψ〉 =
N−1
∑

n=0

cn|n〉, (25)

where N is finite, and we regard the coefficients cn, not as the exact expansion coefficients in the

given basis, but rather as parameters of a trial wave function. Then the function F of Eq. (22)

becomes

F ({cn}, β) =
N−1
∑

m,n=0

c∗n〈n|H |m〉cm − β
(

N−1
∑

n=0

|cn|2 − 1
)

. (26)

The coefficients cn are complex, so we want to vary with respect to their real and imaginary parts.

An equivalent procedure is to vary with respect to cn and c∗n, treated as independent complex

variables. This gives

∂F

∂c∗n
=

N−1
∑

m=0

〈n|H |m〉cm − βcn = 0, (27a)

∂F

∂cn
=

N−1
∑

m=0

c∗m〈m|H |n〉 − βc∗n = 0, (27b)

∂F

∂β
=

N−1
∑

n=0

|cn|2 − 1 = 0. (27c)
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The second equation is the complex conjugate of the first equation and gives no additional infor-

mation. The first equation shows that the Lagrange multiplier β is the eigenvalue of the truncated,

N × N matrix of matrix elements of H with respect to the given basis, while the coefficients cn

are the eigenvectors of this matrix. The third equation shows that the eigenvectors are normalized.

Let us denote the eigenvalues of this matrix by βn, ordered so that β0 ≤ β1 ≤ . . . ≤ βN−1. We see

that the eigenvalues of truncated matrix and the corresponding, normalized eigenvectors are critical

points of the energy function (26). The minimum eigenvalue β0 and corresponding eigenvector are

a true minimum of the functional.

When finding the energy eigenvalues of a Hamiltonian on a computer it is natural to truncate an

infinite basis set to some finite size and to diagonalize that matrix, because there is little choice. It is

also natural to hope that the eigenvalues of the truncated matrix will be good approximations to the

exact eigenvalues of the Hamiltonian, and to hope that they will converge to those exact eigenvalues

as N → ∞. What the theorem proved in Sec. 2 adds to this is the fact that the minimum eigenvalue

of the truncated matrix, β0, is actually an upper bound to the true ground state energy, β0 ≥ E0.

Moreover, if we increase the size of the truncation, this minimum eigenvalue can only decrease,

thereby coming closer to the true eigenvalue. This is because when we increase N we are considering

a larger family of trial wave functions that includes all the trial wave functions at a lower level of

truncation. The minimum energy of the larger set must be less than or equal to the minimum energy

of the smaller set contained in it.

The variational parameters cn in the example (25) can be regarded as linear parameters, that

is, coefficients in a linear combination of wave functions, while the parameter a in the example (14)

can be regarded as a nonlinear parameter, because the trial wave function depends nonlinearly on

it. The parameters of trial wave functions can be of either kind, and in general the set of trial wave

functions is not a vector subspace of the Hilbert space but rather some other type of subset.

6. The Hylleraas-Undheim Theorem

In the case of purely linear parameters, as in the trial wavefunction (25), a theorem proved

by Hylleraas and Undheim goes considerably beyond the simple theorem proved in Sec. 2. In the

following it is convenient to reinterpret the notation En, by indicating degeneracies by repetitions

of the values En for successive n. For example, if the ground state were 2-fold degenerate and the

first excited state nondegenerate, then we would have E0 = E1 < E2 < E3, etc. Then it turns out

that not only is β0 an upper bound to E0, but in fact βn ≥ En for all n = 0, . . . , N − 1. That is, all

the eigenvalues of the truncated matrix are upper bounds to the corresponding exact eigenvalues.

Moreover, if we consider two different truncations of the exact expansion (24), one with the first

M basis states and the second with the first N basis states, with M < N , then it can be shown that

β(N)
m ≤ β(M)

m ≤ β
(N)
N−M+m, (28)

for m = 1, . . . ,M , where the dimension of the matrix is indicated in parentheses. In particular, if
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N =M + 1, then

β(M+1)
m ≤ β(M)

m ≤ β
(M+1)
m+1 , (29)

for m = 1, . . . ,M . In other words, the eigenvalues of the truncated matrix of size M and that of

size M + 1 interleave each other.

In Eq. (24) we imagined that the Hilbert space was infinite-dimensional, as it often is in practice.

But if it has dimension N where N is finite, then the first N basis states |n〉 span the whole space,

and the eigenvalues of the N ×N matrix of the Hamiltonian are the exact eigenvalues. In that case,

Eq. (28) becomes (for a truncation M < N),

Em ≤ β(M)
m ≤ EN−M+m, (30)

for m = 1, . . . ,M , and we get not only upper bounds but also lower bounds on some of the exact

energies (but still only an upper bound for the ground state energy).

7. Variational Estimates for the Excited States

If the family of trial wave function contains any nonlinear parameters, then in general we obtain

only an upper bound to the ground state energy, and no bounds at all, either upper or lower, on

the excited state energies. Nevertheless, there are circumstances when we can obtain rigorous upper

bounds on some excited state energies, even with nonlinear variational parameters. Suppose for

example that the ground state |0〉 (assumed nondegenerate, for simplicity) were exactly known.

Then by choosing trial wave functions |ψ〉 that are orthogonal to the exact ground state, 〈0|ψ〉 = 0,

we would obtain an upper bound to the first excited state energy E1. This is easily proved by same

methods used to prove Eq. (1). Unfortunately, if we are using the variational method, we probably

do not know what the ground state wave function is. Of course we can find an estimate to it by

using the variational method, but making our trial wave functions orthogonal to an estimate of the

ground state is not good enough to give us a bound on the excited states. So this idea is not very

useful in practice.

Sometimes however it is possible to find trial wave functions that are orthogonal to the exact

ground state, without knowing what that ground state is. Suppose for example we have a one-

dimensional potential that is invariant under parity, V (x) = V (−x). Then we know that the ground

state is even under parity and the first excited state is odd. By choosing a family of trial wave

functions that are odd under parity, they are guaranteed to be orthogonal to the ground state, and

the variational method with this set will give an upper bound to the first excited state energy E1.

More generally in any system with an exact symmetry the variational method can be used to

obtain an upper bound to the minimum energy level in each symmetry class, for example, in each

set of wave functions with a given value j, in a system with rotational invariance (where j is the

quantum number of the total angular momentum of the system).
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Problems

1. I borrowed this problem from Professor Eugene Commins. First some background. The Coulomb

potential gives to an infinite number of bound states, because it is a long-range potential. Other,

short range, potentials have only a finite number of bound states. In a 3-dimensional problem, the

number of bound states can range from zero to infinity. If the potential is weak enough and short

range enough, there may not be any bound states at all. In one dimension, however, a potential

which is overall attractive, in a certain sense, always possesses at least one bound state, even if it is

very weak.

Consider a 1-dimensional problem, with Hamiltonian

H =
p2

2m
+ V (x), (31)

where −∞ < x < +∞. Assume that V (x) vanishes for |x| > R. For |x| < R, the potential is allowed

to do almost anything (it may be positive in some places, and negative in others). Write down an

expression for the expectation value of the energy for the Gaussian wave function,

ψ(x) =
1

√

a
√
π
exp

(

− x2

2a2

)

, (32)

and evaluate the integrals you can evaluate. Use the result to show that a bound state exists if the

potential satisfies
∫

V (x) dx < 0. (33)

We may call such a potential “overall attractive.”

Now try the same trick in 3 dimensions and show that it does not work. Assume V (x) = 0 for

r > R, and use the wave function

ψ(x) =
1

(

a
√
π
)3/2

exp
(

− r2

2a2

)

. (34)

2. Consider a central force problem in three dimensions, with potential V (r). Suppose that it has

at least one bound state. Use the variational principle to prove that the ground state is an s-wave.

3. Consider a system with a nondegenerate ground state. According to nondegenerate perturbation

theory (see Eq. (23.23)), the second order correction to the ground state energy is always ≤ 0. Does

this imply that the first order estimate to the energy, ǫ0+ 〈0|H1|0〉, is an upper bound to the ground

state energy? No, because we have no control over the higher order terms of the series, which in any

case may not converge.

(a) Find a proof that the first order estimate to the ground state energy is actually an upper bound

to the true ground state energy.
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(b) Now allow the ground state to be degenerate. When we turn on the perturbation H1, the ground

state will in general split. Show that the estimate in first order perturbation theory for the lowest

of these levels is a rigorous upper bound to the ground state energy.


