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1. Introduction

In Notes 46 we introduced the Dirac equation in much the same manner as Dirac himself did,

with the motivation of curing the problems of the Klein-Gordon equation. We saw that the Dirac

equation, unlike the Klein-Gordon equation, admits a conserved 4-current with a nonnegative defi-

nite time component, so that it can be interpreted as a probability 4-current. On the other hand,

the Klein-Gordon equation has one problem that is shared with the Dirac equation, the existence

of negative energy solutions, for which we have no interpretation as yet. We might suppose that

the negative energy solutions could simply be declared to be nonphysical, but this turns out to be

impossible, as we will see. In addition, the velocity operator in the Dirac theory is strange, being a

purely spin operator when we might have expected something purely spatial on the nonrelativistic

analogy. The same velocity operator appears in the spatial part of the probability current. It is how-

ever encouraging that the Dirac equation automatically produces the correct interaction of the spin

with a magnetic field, with the (almost exactly) correct g-factor for an electron. To summarize, as a

candidate relativistic wave equation for the electron, the Dirac equation presents some remarkable

successes, some strange features, and some others with no obvious physical interpretation.

The purpose of these notes is to explore some solutions of the Dirac equation and their prop-

erties, in order to accumulate some results that will be useful for later work, to reveal some further

successes of the Dirac equation, and to explore some of the puzzling aspects of the theory in order

to understand them better and to lay the foundation for their ultimate resolution.

We begin by exploring the properties of free particle solutions of the Dirac equation, including

the negative energy solutions. The free particle solutions form a basis of orthonormal eigenfunctions

that will be useful for later work, especially when we turn to the second quantization of the Dirac

field. We do not manage at this time to obtain a physical interpretation of the negative energy free

particle solutions, but we learn some things about them, such as their energy spectrum and the fact

that, in a certain sense, they have negative momentum and spin as well as negative energy. We

then turn to the Gordon decomposition of the current, which gives some understanding as to why

the velocity appears as a spin operator in the Dirac theory. Then we present a discussion of the

Zitterbewegung, a kind of jittering motion that the Dirac electron undergoes on a rapid time scale,

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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even in the case of a free particle. The Zitterbewegung is related to the Darwin term in atomic

physics (see Notes 25). Finally, we discuss central force problems in general and then the exact

solution of the hydrogen atom for the Dirac equation. This gives us not only all the fine structure

corrections we saw in Notes 25 but also negative energy solutions. For these, however, as in the case

of the free particle, we have no interpretation as yet.

The net effect of this set of notes will be to give us experience with some exact solutions of

the Dirac equation (the free particle and the hydrogen atom), some understanding of some of the

strange features (the velocity operator), some new strange features (the Zitterbewegung), and yet

still no physical interpretation of the negative energy solutions (that will come later).

In the following treatment of free particle solutions it will be important to distinguish the

momentum operator (3-vector or 4-vector) from the corresponding vectors of c-numbers. Therefore

we will put an “op” subscript on the momentum when an operator is intended, such as pop = −ih̄∇
or pµop = ih̄ ∂µ, and omit the “op” subscript when a c-number is intended. For other operators

the distinction will not be necessary so we will omit the “op” subscripts. We will use hats on unit

vectors, as usual.

2. Free Particle Solutions of the Pauli Equation

The Pauli Hamiltonian for a free particle of spin 1
2 is H = p2

op/2m and the wave function

is a 2-component spinor. A complete set of commuting observables that also commute with the

Hamiltonian is (pop, Sz). The eigenfunctions of H that are also eigenfunctions of these observables

are
(

1
0

)

ei(p·x−Et)/h̄,

(

0
1

)

ei(p·x−Et)/h̄, (1)

where p is the momentum eigenvalue, where the first solution is an eigenfunction of Sz with eigen-

value +h̄/2 and the second with eigenvalue −h̄/2. We have included the time dependence in these

solutions, where E = p2/2m.

3. Dirac Free Particle Solutions and Spin

The Dirac Hamiltonian for a free particle is

H = cpop ·α+ βmc2. (2)

In comparison to the Pauli theory, we might expect to find eigenfunctions of H that are also

eigenfunctions of pop and (h̄/2)Σ3, the latter being the Dirac generalization of the Pauli opera-

tor Sz = (h̄/2)σ3. This does not work, however, for although pop and Σ commute with each other

(one is purely spatial and the other purely spin), and although pop commutes with H , Σ does not

commute with H . This is because Σ generates spin rotations, which rotate the vector α but not

the spatial vector pop, so the dot product pop · α is not invariant. On the other hand, orbital

angular momentum L generates spatial rotations that rotate pop but not α, so again pop ·α is not
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invariant. Obviously if we want to find an angular momentum operator that does commute with

H , it is J = L+ (h̄/2)Σ, the total angular momentum (orbital plus spin) of the Dirac particle. See

Sec. 48.17.

Although orbital and spin angular momentum are defined for the Dirac particle, they are not

separately conserved, even for a free particle. This is a reflection of the more intimate coupling of

orbital and spin degrees of freedom in the relativistic theory, as compared to nonrelativistic quantum

mechanics. Recall that for the photon, orbital and spin angular momentum are separately not even

defined, although J is.

On account of these considerations, we can expect spin to play a more complicated role in the

theory of free particle solutions of the Dirac equation than it does in the Pauli theory.

4. Free Particle Solutions of the Dirac Equation at Rest

There are four linearly independent solutions of the time-dependent Dirac equation for a free

particle at rest. These are given in Eq. (46.31), reproduced here:







1
0
0
0






e−imc2t/h̄,







0
1
0
0






e−imc2t/h̄,







0
0
1
0






e+imc2t/h̄,







0
0
0
1






e+imc2t/h̄. (3)

The first two of these have energy +mc2, and the last two have energy −mc2, as we find by applying

either H or ih̄ ∂/∂t. We have as yet no physical interpretation for the solutions of negative energy,

but they will turn out to be important so we must keep them and investigate their properties.

The solutions at rest, Eqs. (3), are eigenstates of Σ3, that is, the spin is polarized in the ±ẑ

direction in the rest frame. In following work we will want to be more general, and to allow the spin

to be polarized in an arbitrary direction in the rest frame. Let ŝ be a unit vector in the rest frame

of the particle. If (θ, φ) are the angles of ŝ in spherical coordinates, then we define the 2-component

(Pauli) spinor χ(ŝ) as the spinor “pointing in” the direction ŝ, as explained in Sec. 12.14. According

to Eq. (12.60), this spinor is

χ(ŝ) =

(

e−iφ/2 cos(θ/2)
eiφ/2 sin(θ/2)

)

, (4)

to within an overall phase which will not be important to us. In this notation the eigenspinors of

ŝ · σ are χ(±ŝ),

(ŝ · σ)χ(ŝ) = χ(ŝ), (ŝ · σ)χ(−ŝ) = −χ(−ŝ), (5)

the second of which follows by making the replacement ŝ → −ŝ in the first. For a fixed value of ŝ,

the spinors χ(±ŝ) form an orthonormal basis in the space of 2-component spinors.

Now we define two types of 4-component spinors, here broken into their upper and lower 2-

component spinors,

u0(ŝ) =

(

χ(ŝ)
0

)

, v0(ŝ) =

(

0
χ(−ŝ)

)

, (6)
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where the 0 subscript on u0 and v0 means, “at rest.” The odd thing about these definitions is that

we have used χ(−ŝ) in the definition of v0, that is, with a minus sign on the direction of spin. The

reason for this choice will be explained momentarily. These spinors are eigenspinors of the Dirac

matrix ŝ ·Σ, where

Σ =

(

σ 0
0 σ

)

(7)

(this is Eq. (48.61)). That is,

(ŝ ·Σ)u0(ŝ) = u0(ŝ), (ŝ ·Σ)v0(ŝ) = −v0(ŝ). (8)

Then the most general free-particle solutions of the Dirac equation when the particle is at rest

can be written

u0(ŝ) e
−imc2t/h̄, v0(ŝ) e

+imc2t/h̄, (9)

of which the first has energy +mc2 and the second −mc2. These are the positive- and negative-

energy solutions, respectively. If ŝ is chosen to run over two oppositely oriented unit vectors in the

rest frame, then the solutions (9) constitute a complete set of free particle solutions at rest, with

definite spins in the rest frame.

5. Boosting the Solutions at Rest

To create free particle solutions in some state of motion we apply a boost to the free particle at

rest. We first consider this problem from a classical standpoint. Let p be the desired 3-momentum

of our particle, and Λ(p) the boost that will take the particle at rest into one with momentum p.

The 4-momentum of the particle at rest is

pµ0 =

(

mc
0

)

, (10)

where again the 0-subscript means “at rest” and the 4-vector is given in (1 + 3)-notation. The

4-momentum of the particle after the boost is

pµ =

(

E/c
p

)

, (11)

where

E = E(p) =
√

m2c4 + c2p2. (12)

This is of course the standard definition of the energy of a free particle in relativity theory, but in

the following it will be important to remember that the symbol E stands for the positive square

root in Eq. (12), even when we are talking about negative energy solutions. Also, in the following

both the energy E and the 4-momentum pµ will be understood to be functions of the 3-momentum

p, which by itself characterizes the state of motion of the particle after the boost.
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We can put the boost Λ(p) into axis-rapidity form, as in Sec. 47.5. The boost must be in the

direction of the momentum p so the boost axis is

b̂ =
p

|p| , (13)

where b̂ is a unit vector, and its rapidity λ is given implicitly as a function of p by

coshλ =
E

mc2
, sinhλ =

|p|
mc

, tanhλ =
c|p|
E

=
|v|
c
, (14)

where v is the velocity of the particle after the boost. With this axis and rapidity, we have Λ(p) =

Λ(b̂, λ). The action of a boost in axis-rapidity notation on an arbitrary 4-vector is given explicitly

by Eq. (47.34). Applying that equation, we can check that

pµ = Λ(p)µν p
ν
0 . (15)

We shall sometimes write this as p = Λp0, using simply p and p0 for the 4-momenta with components

pµ and pµ0 .

We turn now to the quantum side of the boost, that is, boosting the free particle solutions at

rest, Eqs. (9), of the Dirac equation. In this process it will be convenient to use covariant notation

insofar as possible. As for the exponents in Eq. (9), notice that

mc2t = (mc)(ct) = p0µ x
µ = p0 · x, (16)

in the notation of Eq. (47.104) for the Minkowski scalar product of two 4-vectors. Therefore we can

write the positive and negative energy solutions for a free particle at rest as

u0(ŝ) e
−i(p0·x)/h̄, v0(ŝ) e

+i(p0·x)/h̄. (17)

Under the Lorentz transformation Λ(p), a Dirac 4-component wave function ψ(x) is mapped

into D(p)ψ
(

Λ(p)−1 x
)

, as explained in Sec. 48.4, where we define

D(p) = D
(

Λ(p)
)

. (18)

Under this mapping, the exponents in Eq. (17) transform according to

p0 · x 7→ p0 · (Λ−1 x) = (Λ p0) · x = p · x = pµx
µ, (19)

where we use the identity (47.105). This calculation is essentially the same as that presented in

Sec. 48.5. As for the matrix D(p), the D-matrix in axis-rapidity notation is given by Eq. (48.75).

Here we express the hyperbolic functions of half-angles in terms of the energy and momentum of

the particle after the boost, as follows:

cosh
λ

2
=

√

coshλ+ 1

2
=

√

E +mc2

2mc2
,

sinh
λ

2
=

√

coshλ− 1

2
=

√

E −mc2

2mc2
,

tanh
λ

2
=

√

E −mc2

E +mc2
=

√

E2 −m2c4

(E +mc2)2
=

c|p|
E +mc2

.

(20)
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Substituting these into Eq. (48.75), we obtain the explicit form of the D-matrix,

D(p) =

√

E +mc2

2mc2





1
cp · σ
E +mc2

cp · σ
E +mc2

1



 . (21)

Under the Lorentz transformation D(p) acts on the spinors u0(ŝ), v0(ŝ), giving us boosted

spinors that we will write as

u(p, ŝ) = D(p)u0(ŝ), v(p, ŝ) = D(p)v0(ŝ), (22)

without the 0-subscript. The boosted positive and negative energy solutions are now

u(p, ŝ) e−i(p·x)/h̄, v(p, ŝ) e+i(p·x)/h̄. (23)

If we apply H or ih̄∂/∂t to these to obtain their energies, we find that the positive energy solutions

have energy E, given in terms of the momentum p which parameterizes the boost by Eq. (12), while

the negative energy solutions have energy −E. We see that when we boost a negative energy solution

at rest, we obtain a solution whose energy is even more negative. Thus, the energy spectrum of the

free particle Dirac Hamiltonian consists of a positive energy part ranging from +mc2 to ∞, and a

negative energy part ranging from −mc2 to −∞, as illustrated in Fig. 1. There is an energy gap

between −mc2 and +mc2.

0

+mc2

−mc2

Fig. 1. The energy spectrum of the free particle Dirac Hamiltonian consists of all positive energies ≥ +mc2 and all
negative energies ≤ −mc2. There is an energy gap between −mc2 and +mc2.

The free particle solutions (23) are not only eigenfunctions of energy, they are also eigenfunctions

of momentum. If we apply the operator pop = −ih̄∇ to these solutions, we find that positive

energy solutions are eigenfunctions of momentum with eigenvalue p, while the negative energy

solutions are eigenfunctions of momentum with eigenvalue−p. We see that when we boost a negative

energy solution at rest by a Lorentz transformation parameterized by p, we obtain a solution with

momentum −p (in the opposite direction of the boost). In a certain sense, the negative energy

solutions have not only negative energy but also negative momentum.
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We see that the negative energy solutions v(p, ŝ)ei(p·x)/h̄ have a momentum eigenvalue that

is the opposite of the momentum label p. The same is true for the spin label, on account of the

minus sign introduced into our definition of v0(ŝ) in Eq. (6). The purpose of that minus sign was

consistency in the labeling of the negative energy solutions; the way we have done it, both the spin

and momentum eigenvalues of those solutions are the opposite of the spin and momentum labels.

This convention will be convenient when we come to hole theory, in Notes 51.

6. Covariant Notation for Free Particle Solutions

Instead of labeling the u- and v-spinors by the 3-vectors p and ŝ, it is convenient to use 4-vectors,

as a part of a notation that is as covariant as possible. As for the momentum, we will simply label

the spinors by p, which stands for the 4-momentum pµ in Eq. (15). Since the 4-momentum p is a

function of the 3-momentum p, and since the 3-momentum p is the spatial part of the 4-momentum

p, the new momentum label carries the same information as the old.

As for the spin, let us go back to the spinors before the boost, and promote the spin 3-vector ŝ

into a 4-vector s0 by defining

sµ0 =

(

0
ŝ

)

, (24)

that is, sµ0 is a purely spatial unit vector in the rest frame of the particle. Again, the 0-subscript

means “at rest.” Notice that in the rest frame, the spin s0 is purely space-like, while the momentum

p0 is purely time-like, so we have the dot products,

p0 · p0 = m2c2, p0 · s0 = 0, s0 · s0 = −1, (25)

the last being equivalent to ŝ · ŝ = 1.

Now when we boost the particle we boost the 4-vector s0 along with it, writing

s = Λ(p)s0, or sµ = Λ(p)µν s
ν
0 . (26)

After the boost the 4-vector s is a unit space-like vector in the rest frame of the particle, that is, it

lies in the 3-dimensional hyperplane that is Minkowski orthogonal to the 4-momentum p. Because

the Minkowski scalar product is preserved under Lorentz transformations, the boosted 4-vectors p

and s satisfy the same dot product relations as the 4-vectors p0 and s0 at rest, that is,

p · p = m2c2, p · s = 0, s · s = −1. (27)

We will henceforth label the boosted spinors (22) by the 4-vectors p and s instead of the 3-

vectors p and ŝ, that is, as u(p, s) and v(p, s). The notation is slightly illogical, since u and v are

not functions of two independent 4-vectors p and s, rather p is a function of the 3-momentum p and

p and s must satisfy Eqs. (27). Nevertheless, the notation is useful and convenient. Likewise, when

we need to refer to the spinors at rest, we will henceforth write them as u(p0, s0), v(p0, s0) rather

than u0(ŝ), v0(ŝ), as above.
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Altogether, in this covariant notation, a complete set of solutions of the free particle Dirac

equation is obtained from

u(p, s)e−i(p·x)/h̄, v(p, s)e+i(p·x)/h̄, (28)

by letting p run over all of 3-momentum space and allowing s to run over two oppositely oriented

unit vectors orthogonal to p, that is, in the rest frame of the particle.

Notice that if we apply the energy-momentum 4-vector of operators pµop = ih̄ ∂µ to these solu-

tions we obtain
pµop u(p, s)e

−i(p·x)/h̄ = +pµ u(p, s)e−i(p·x)/h̄,

pµop v(p, s)e
i(p·x)/h̄ = −pµ v(p, s)ei(p·x)/h̄.

(29)

For the negative energy solutions, the energy-momentum eigenvalues are opposite the energy-

momentum label p of the solutions.

7. Geometrical Interpretation of the Spinors u(p, s) and v(p, s)

A geometrical interpretation may be given of the manner in which the spinors u(p, s) and v(p, s)

are parameterized. This takes place in 4-dimensional momentum space with coordinates pµ, that

is, E and p. This space is sketched in Fig. 2, in which the z-component is suppressed to make a

drawing possible.

v-shell

p

pµ

−pµpx

py

E

u-shell

Fig. 2. The forward and backward mass shells, the sur-
faces upon which E2 = m2c4 + c2p2, are illustrated, in
4-momentum space. Given a 3-momentum p (illustrated
in only two dimensions in the figure), we can erect the
vertical in the E direction, which intersects the forward
mass shell at the 4-momentum pµ. Directly opposite in
4-momentum space is the 4-momentum −pµ, on the back-
ward mass shell. The u-spinors are associated with the
point pµ and the v-spinors with the point −pµ, so we call
the forward mass shell the “u-shell” and the backward one
the “v-shell.”

−sµ pµ

u-shell

sµ

Fig. 3. An enlarged view of the point with coordinates
pµ on the forward (u) mass shell. The “plane” (really a 3-
dimensional space) tangent to the mass shell at this point
contains vectors that are Minkowski orthogonal to pµ, that
is, they are purely spatial in the rest frame of the particle.
Two opposite unit vectors sµ and −sµ are chosen in this
plane which specify the polarization of the spin.
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Figure 3 contains a magnified picture of the point on the forward or u- mass shell with coordi-

nates pµ. The plane tangent to the mass shell at the point is illustrated. In the diagram it is a plane,

but really it is a 3-dimensional space. Vectors in this plane are Minkowski orthogonal to pµ, so they

represent 4-vectors that are purely spatial in the rest frame of the particle. Two unit vectors in this

plane are illustrated, sµ and −sµ, which represent two polarizations for the spin, and correspond

to the spinors u(p,±s). A similar diagram applies on the backward or v-shell. By convention, the

spinor v(p, s) has 4-momentum −p and is polarized in the direction −s.

8. The Spinors u(p, s) and v(p, s) as Covariant Eigenspinors

The spinors u(p, s) and v(p, s) can be characterized in covariant notation as eigenspinors of

certain Dirac matrices. First, the spinors u(p0, s0) and v(p0, s0) at rest are eigenspinors of γ
0, as we

see from Eqs. (48.14) and (6),

γ0u(p0, s0) = u(p0, s0), γ0v(p0, s0) = −v(p0, s0). (30)

The eigenspaces of γ0 are 2-dimensional. But

γ0 =
p0 · γ
mc

=
6p0
mc

, (31)

so we have

6p0u(p0, s0) = mcu(p0, s0), (32a)

6p0v(p0, s0) = −mcv(p0, s0). (32b)

Let us now boost these equations. Applying D(p) to Eq. (32a), we find

D(p)6p0u(p0, s0) = D(p)(p0 · γ)D(p)−1D(p)u(p0, s0) =
(

p0 · (Λ−1γ)
)

u(p, s)

=
(

(Λ p0) · γ
)

u(p, s) = (p · γ)u(p, s) = 6p u(p, s) = mcD(p)u0 = mcu(p, s),
(33)

where we use Eq. (48.42) in the second equality. Applying D(p) in a similar manner to Eq. (32b)

gives us altogether

(6p−mc)u(p, s) = 0, (6p+mc)v(p, s) = 0. (34)

The spinors u(p, s) and v(p, s) are eigenspinors of 6p with eigenvalues +mc and −mc, respectively.
Equations (32) are special cases of Eqs. (34) (for the particle at rest). Equations (34) gives us

covariant way of characterizing the p-dependence of the spinors u(p, s) and v(p, s).

Please note that Eqs. (34) are purely spinor equations with no space-time dependence, and that

6p involves the c-number 4-vector pµ, not the operator vector pµop. The free particle Dirac equation

in covariant form involves the operator 4-vector (see Eq. (48.8) or (48.13)),

(6pop −mc)ψ(x) = 0. (35)

When we apply this to a positive energy solution, we get

(6pop −mc)u(p, s)e−i(p·x)/h̄ = (6p−mc)u(p, s)e−i(p·x)/h̄ = 0, (36)
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since pµop just brings out pµ from the exponent. When we apply it to a negative energy solution, we

get

(6pop −mc)v(p, s)e+i(p·x)/h̄ = (−6p−mc)v(p, s)e+i(p·x)/h̄ = 0, (37)

since pµop brings out −pµ from the exponent. We have used Eqs. (34) in the final step in both these

results.

Equations (34) can be used to construct projection operators Π±, which when applied to an

arbitrary spinor project out the positive and negative energy components. These are

Π± =
mc± 6p
2mc

, (38)

and they satisfy

(Π+)
2 = Π+, (Π−)

2 = Π−, Π+Π− = Π−Π+ = 0, Π+ +Π− = 1, (39)

which says that they are complementary projectors. They also satisfy

Π+u(p, s) = u(p, s), Π+v(p, s) = 0, Π−u(p, s) = 0, Π−v(p, s) = v(p, s), (40)

which shows how they project out the positive and negative energy components of an arbitrary linear

combination of positive and negative energy spinors.

One can also give a covariant way of characterizing the s-dependence of u(p, s) and v(p, s). It

turns out that these spinors are eigenspinors of 6sγ5, and that projection operators can be constructed

that project out the positive or negative components of spin along the spin vector s. See Prob. 1.

9. Orthonormality Relations for the Spinors u(p, s) and v(p, s)

The spinors u(p, s) and v(p, s) satisfy two types of orthonormality relations, one the adjoint and

the other the Hermitian. The adjoint relations are a bit easier to derive, so we present these first.

The relations are

ū(p, s)u(p, s′) = δss′ , (41a)

ū(p, s)v(p, s′) = v̄(p, s)u(p, s′) = 0, (41b)

v̄(p, s)v(p, s′) = −δss′ , (41c)

where s′ takes on only two values, ±s, so that s′ is a polarization the same as s or in the opposite

direction in the rest frame. There is also the completeness relation,

1 =
∑

±s

[

u(p, s)ū(p, s)− v(p, s)v̄(p, s)
]

, (42)

where 1 represents the 4× 4 identity matrix, where the sum is taken over a polarization vector and

its opposite, and the outer product of a column spinor times a row spinor is implied.
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Equation (41a) may be proved as follows:

ū(p, s)u(p, s′) = u†(p, s)γ0u(p, s′) = u†(p0, s0)D(p)†γ0D(p)u(p0, s
′
0)

= u†(p0, s0)γ
0γ0D(p)†γ0D(p)u(p0, s

′
0)

= u†(p0, s0)γ
0D(p)−1D(p)u(p0, s

′
0) = ū(p0, s0)u(p0, s

′
0),

(43)

where we use Eq. (48.78). Thus ū(p, s)u(p, s) is unchanged when referred to the rest frame. But

ū(p0, s0)u(p0, s
′
0) = u†(p0, s0)γ

0u(p0, s
′
0) = u†(p0, s0)u(p0, s

′
0) =

(

χ†(ŝ), 0
)

(

χ(ŝ′)
0

)

= δss′ , (44)

where we use Eq. (30). Equations. (41b) and (41c) may be proved similarly, as may the completeness

relation (42).

The Hermitian orthonormality relations involve a modified 4-vector p̃, defined by p̃ = Λ(−p)p0,

that is,

p̃µ = Λ(−p)µν p
ν
0 =

(

E/c
−p

)

. (45)

These are

u†(p, s)u(p, s′) =
E

mc2
δss′ , (46a)

u†(p, s)v(p̃, s′) = v†(p, s)u(p̃, s′) = 0, (46b)

v†(p, s)v(p, s′) =
E

mc2
δss′ , (46c)

where again, for given s, the vector s′ takes on only the two values, ±s. The proofs of these relations
will be left as an exercise.

10. The Gordon Decomposition of the Current

The next topic gives us some insight into why the velocity operator v = cα is a purely spin

operator in the Dirac theory, in contrast to the nonrelativistic theory. The velocity operator appears

in the Heisenberg equations of motion, in the probability current, and other places. See the discussion

in Sec. 46.8.

We will work with the covariant version of the Dirac equation for a particle interacting with an

external electromagnetic field, Eq. (48.11). We write this equation in the form,

ih̄ γν
∂ψ

∂xν
− q

c
Aνγ

νψ = mcψ. (47)

We multiply this on the left by by ψ̄γµ, which causes the current to appear on the right hand side,

ih̄
(

ψ̄γµγν
∂ψ

∂xν

)

− q

c
Aν(ψ̄γ

µγνψ) = mc (ψ̄γµψ) = mJµ. (48)
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The right hand side of this equation is real but the left hand side is not obviously so. To bring out

the reality, we take the complex conjugate of Eq. (48), which, after the use of Eq. (48.79), can be

written

−ih̄
( ∂ψ̄

∂xν
γνγµψ

)

− q

c
Aν(ψ̄γ

νγµψ) = mJµ. (49)

We add these two together. The terms involving Aν give

−q
c
Aν [ψ̄(γ

µγν + γνγµ)ψ] = −q
c
Aν [ψ̄(2g

µν)ψ] = −2ψ̄
(q

c
Aµ
)

ψ. (50)

As for the terms involving the derivatives of ψ, we use

γµγν =
1

2
{γµ, γν}+ 1

2
[γµ, γν ] = gµν − iσµν (51)

(see Eqs. (48.18) and (48.55)), to obtain

ih̄
[

ψ̄(gµν − iσµν)
∂ψ

∂xν

]

− ih̄
[ ∂ψ̄

∂xν
(gµν + iσµν)ψ

]

= 2Re(ψ̄ih̄∂µψ) + h̄
∂

∂xν
(ψ̄σµνψ). (52)

Altogether, we obtain

Jµ =
1

m
Re
[

ψ̄
(

ih̄ ∂µ − q

c
Aµ
)

ψ
]

+
h̄

2m

∂

∂xν
(ψ̄σµνψ), (53)

after dividing by 2m.

Equation (53) is the Gordon decomposition of the Dirac current. The first term is obviously

a generalization of the Klein-Gordon current (see Eq. (45.27)), with the addition of the interaction

with an electromagnetic field. The Klein-Gordon current, in turn, is a relativistic generalization of

the probability current for a spinless, nonrelativistic particle, given in Eq. (5.57). This term alone

is called the convection current, since it involves only the purely spatial operator pµop = ih̄ ∂µ, which

describes the state of motion of the particle. The second term in Eq. (53) is called the magnetization

current, since it is the relativistic generalization of the magnetization current that was introduced

in Sec. 18.6.

In summary, the Gordon decomposition of the current shows us that the velocity operator ẋ =

cα in the Dirac theory, a purely spin operator, corresponds to the entire current of the nonrelativistic

theory, including the magnetization current. We may point out that the Dirac version of the classical

v×B force that a charged particle experiences in a magnetic field is cα×B, as shown by Eq. (46.41).

That is, the magnetization current contributes to the v×B force, which is what we would expect

physically.

11. The Zitterbewegung

Other strange features of the Dirac velocity operator v = ẋ = cα that were discussed in

Sec. 46.8 included the fact that the velocity is not constant, even for a free particle, and the fact

that the different components of the velocity do not commute with one other. We return now to the
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Heisenberg equations of motion, the subject of Sec. 46.8, working for simplicity with the case of a

free particle.

Specializing the results of Sec. 46.8 to the case of a free particle, we obtain the Heisenberg

equations of motion for x and p = π, that is, ẋ = cα, ṗ = 0 (we henceforth omit the hats on the

momentum operator). As for α, we work out the Heisenberg equations of motion as follows:

ih̄ α̇i = [αi, H ] = αiH −Hαi = 2αiH − αiH −Hαi = 2αiH − {αi, H}. (54)

We write it this way because the anticommutator of α with H is easier to work out than the

commutator. Using Eqs. (46.8) we get the anticommutator,

{αi, H} = c{αi,α · p} = c{αi, αj}pj = 2c δij pj = 2cpi. (55)

Thus we have

α̇ = −2i

h̄
(αH − cp). (56)

What makes this equation easy to solve is the fact that both H and p are constants of motion.

One way to solve an operator equation like Eq. (56) is to interpret all the quantities as c-numbers,

then to solve the c-number equation as an ordinary differential equation, then to use that solution

to guess the solution to the operator equation, which can be checked by back-substitution. In this

case, the quantities H and p in the c-number equation are taken as constants. Of course operators

do not commute in general while c-numbers do, so we can expect that the c-number equation can

be wrong by an ordering of operators, which we must take into account when making the guess. In

this case the procedure is straightforward; Eq. (56) interpreted as a c-number equation can be easily

solved by Lagrange’s method of variation of parameters, and the solution makes it easy to guess the

solution to the operator equation. In this way we find the solution to the Heisenberg equation of

motion (56),

α(t) =
cp

H
+
[

α(0)− cp

H

]

e−2iHt/h̄. (57)

This can be checked by back substitution.

In this solution cp/H means the operator cp multiplied by the operator 1/H . It does not

matter which order we do the multiplication, because p and H commute (otherwise the notation

cp/H would be ambiguous). Also, we note that 1/H is defined because the spectrum of H (see

Fig. 1) has an energy gap from −mc2 to +mc2 and does not include E = 0.

To interpret this equation we multiply through by c to get the velocity operator,

v(t) =
c2p

H
+
[

v(0) − c2p

H

]

e−2iHt/h̄. (58)

We integrate this with respect to time, obtaining

x(t) = x(0) +
c2pt

H
+
[

v(0)− c2p

H

][e−2iHt/h̄ − 1

(−2iH/h̄)

]

, (59)

the solution for the position operator x(t) in the Heisenberg picture.
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The first term of Eq. (58), interpreted classically, is exactly the classical expression for the

velocity as a function of the momentum in special relativity. See Eq. (46.39). It is, moreover,

constant in time, as we expect for the velocity of a free particle in relativistic mechanics. We know,

however, that the velocity does not commute with the Hamiltonian in the Dirac theory, so the

velocity is not really a constant. The time dependence is contained in the second term in Eq. (58),

which contains the factor e−2iHt/h̄.

To understand this time dependence better, we take the expectation value of Eq. (58) with

respect to a state ψ that contains mainly positive energy solutions of energy close to +mc2, that

is, an essentially nonrelativistic state. This is all in the Heisenberg picture, so ψ is the initial wave

function. Then the Hamiltonian applied to this state brings out a quantity of order mc2, and the

operator e−2iHt/h̄ behaves like the phase factor e−2imc2t/h̄. This factor oscillates on a time scale of

order τ = h̄/mc2 ≈ 1.3× 10−21sec, which is of order α2 ≈ 1/(137)2 times smaller than the (already

short) time scale in atomic units. See Table 17.1.

For t≪ τ we can replace the exponential e−2iHt/h̄ by simply 1, and Eqs. (58) and (59) become

v(t) = v(0), t≪ τ, (60)

x(t) = x(0) + v(0)t, t≪ τ. (61)

On this time scale the expectation value of x moves in a straight line. Also, since the eigenvalues

of each component of α are ±1, the electron moves at a velocity comparable to the speed of light,

so the distance covered in time τ , before the phase factor e−2imc2t/h̄ has a chance to change sign, is

of order

cτ =
h̄

mc
, (62)

that is, the Compton wavelength.

If the particle is essentially nonrelativistic then the the expectation value of first term in Eq. (58)

is ≪ c, so it is small in comparison to the second term. But on time scales ≫ τ , the second term

averages to zero, while the integral of the first term continues to accumulate. Thus on longer time

scales, we have

v(t) =
c2p

E
, t≫ τ, (63)

x(t) = x(0) +
c2pt

E
, t≫ τ, (64)

and the expectation value of the particle position follows a straight line at constant velocity, as we

would expect from classical relativistic mechanics.

The rapid motion of the particle on a time scale of τ and a length scale of the Compton

wavelength was first pointed out by Schrödinger in 1930, who called it the Zitterbewegung, German

for “jittering motion.” An interesting feature of the Zitterbewegung is that it is not present in a

wave packet consisting solely of positive energy solutions. See Prob. 5. The Zitterbewegung, when

present, arises from the interference between the positive and negative energy solutions.
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For this reason we may question if the negative energy solutions are real. Perhaps we should just

declare them to be nonphysical, then we would not have to interpret them and the Zitterbewegung

would go away.

Unfortunately, this does not work, for quite a few reasons. First of all, we can solve the Dirac

equation for other problems besides the free particle. For example, the Dirac equation for the

hydrogen atom is exactly solvable, and it gives positive energy solutions in good agreement with

experiment, including the fine structure. These positive energy solutions can be expanded as linear

combinations of free particle solutions, but the positive energy free particle solutions by themselves

do not form a complete set. Thus, the expansion of (say) the ground state wave function of the

Dirac hydrogen atom as a linear combination of free particle solutions will necessarily contain some

negative energy components. In addition, the solution of the Dirac hydrogen atom also possesses

negative energy solutions, and we have (at this point) no more physical interpretation for them

than we do for the negative energy solutions for the free particle. But if we are going to declare

them nonphysical, we now have a problem: Are we going to declare the negative energy free particle

solutions nonphysical, or the negative energy hydrogen atom solutions? These two classes of negative

energy solutions do not span the same subspace of the Dirac Hilbert space.

On the other hand, if we accept the negative energy free particle solutions, then we must have

Zitterbewegung in any state that is a linear combination of both positive and negative free particle

solutions. But we have just seen that the Dirac hydrogen atom wave functions are precisely such

linear combinations. So does the Zitterbewegung exist in hydrogen? The answer is yes, it lies behind

the Darwin term, as explained in Sec. 25.2. We will make a more careful analysis of the relation

between the Darwin and other fine structure terms and the Dirac equation in a later set of notes,

but for now we can see that there is no option to naively discard the negative energy solutions.

Ultimately we will see that the negative energy solutions of the free particle Dirac equation are

related to positrons, the antiparticle of the electron, and that the Zitterbewegung is related to the

fact that when an electron interacts with a potential, such as the potential of the nucleus in the

hydrogen atom, there arises some finite amplitude for the formation of an electron-positron pair.

That is, for brief periods of time, at least, there exist three particles instead of just one: two electrons

and one positron. But in the early history of the Dirac equation, no one suspected the existence of

antimatter, so these interpretations lay in the future.

12. Central Force Motion and Complete Sets of Commuting Observables

In the case of a central force potential the time-independent Dirac equation can be reduced to

a pair of one-dimensional, first-order, coupled radial wave equations, a generalization of the single

second-order radial wave equation that arises in the nonrelativistic theory (see Eqs. (16.7) and

(16.11) for the latter). In some cases the Dirac radial wave equations can be solved in terms of

standard special functions of mathematical physics. The main example that we are interested in

is the Coulomb potential, but part of the analysis applies to any central force problem so we treat
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that first. The Coulomb potential (for hydrogen-like atoms) is covered in Secs. 16–18. For the rest

of these notes we use natural units (h̄ = c = 1), except at the end where we restore ordinary units

when presenting results.

We seek the energy eigenvalues and eigenfunctions of the Dirac Hamiltonian in a central force

potential, that is, we wish to solve

Hψ = Eψ, (65)

where

H = α · p+ V (r) +mβ. (66)

We identify the potential V (r) with qΦ(r) in problems with electrostatic fields.

We appeal to the fine structure model of atoms (see Notes 25) for hints as to how to proceed,

since this model incorporates relativistic effects to order (v/c)2, relative to nonrelativistic energies.

We recall that a complete set of commuting observables in the fine structure model is (H,L2, J2, Jz).

Of these, H , J2 and Jz are commuting observables also in the relativistic (Dirac) problem, since

J = L + (1/2)Σ commutes with the Hamiltonian (66). However, [L2, H ] 6= 0, as we find by a

direct calculation of the commutator, so L2 cannot be used as a member of the complete set in the

relativistic theory and must be replaced by some other operator. In a moment we will see what the

choices for this (fourth) operator are.

Accepting that J2 and Jz will be members of our complete set, we begin by looking for the

most general eigenfunction of these with quantum numbers (jmj). We work in the Dirac-Pauli

representation of the Dirac matrices, in which the matrices Σ are block-diagonal,

Σ =

(

σ 0
0 σ

)

. (67)

We break the 4-component Dirac spinor ψ into two 2-component Pauli spinors,

ψ =

(

φ
χ

)

, (68)

so that the action of the Dirac angular momentum J = L+(1/2)Σ on ψ is equivalent to the action of

two Pauli angular momenta J = L+(1/2)σ acting separately on φ and χ. Thus the eigenfunctions of

J2 and Jz in the Dirac theory are 4-component spinors ψ in which both φ and χ are eigenfunctions

of the Pauli operators J2 and Jz, with the same quantum numbers (jmj).

Eigenfunctions of (J2, Jz) in the Pauli theory are conveniently expressed in terms of spinor

spherical harmonics, which are 2-component spinors defined over the unit sphere. We define them

by

Yℓ
jmj

(θ, φ) =
∑

mℓms

Yℓmℓ
(θ, φ)χms

〈ℓsmℓms|jmj〉, (69)

where χms
for ms = ± 1

2 are the spin-up and spin-down spinors (the unit vectors in spin space),

and where in the Clebsch-Gordan coefficient s has the value 1
2 . The spinor spherical harmonics

are eigenfunctions of L2 as well as J2 and Jz, with quantum number ℓ, which, for a given value
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of j can take on only the values ℓ = j ± 1/2. Of course, j is a half-integer, j = 1
2 ,

3
2 , . . .. We

are seeing eigenfunctions of L2 here because they arise when we construct eigenfunctions of J2 and

Jz by the usual method of coupling ℓ ⊗ 1
2 , but since [L2, H ] 6= 0 we do not expect to find energy

eigenfunctions of the Dirac Hamiltonian that are also eigenfunctions of L2. In any case, the spin

spherical harmonics are eigenfunctions of L2 only as Pauli spinors, not as Dirac spinors.

The Clebsch-Gordan coefficients in Eq. (69) can be worked out by the method of Prob. 18.3.

These allow us to write out the explicit forms of the spin spherical harmonics,

Yj−1/2
jmj

=
1√
2j

(

√

j +mj Yj−1/2,mj−1/2
√

j −mj Yj−1/2,mj+1/2

)

,

Yj+1/2
jmj

=
1√

2j + 2

(−
√

j −mj + 1Yj+1/2,mj−1/2
√

j +mj + 1Yj+1/2,mj+1/2

)

,

(70)

where each Y and each Y is understood as a function of (θ, φ). We note that the spinor spherical

harmonics are orthonormal,

∫

dΩ
(

Yℓ
jmj

)†Yℓ′

j′m′

j
= δℓℓ′ δjj′ δmjm′

j
. (71)

We can now write down the most general 2-component eigenfunction of (J2, Jz) with quantum

numbers (jmj). It must be a linear combination of Yℓ
jmj

for the two values ℓ = j ± 1
2 , where each

of the coefficients is allowed to be an arbitrary function of r,

A(r)Yj−1/2
jmj

(θ, φ) +B(r)Yj+1/2
jmj

(θ, φ). (72)

From this it follows that the most general 4-component spinor that is an eigenfunction of the Dirac

operators (J2, Jz) with eigenvalues (jmj) is of the form,

ψjmj
(x) =

(

A(r)Yj−1/2
jmj

+B(r)Yj+1/2
jmj

C(r)Yj−1/2
jmj

+D(r)Yj+1/2
jmj

)

, (73)

where A(r), B(r), C(r) and D(r) are four arbitrary radial wave functions and where the upper

and lower 2-component spinors have the same (jmj) values. The radial wave functions will be

determined by demanding that ψ be an eigenfunction of the remaining members of our complete set

of commuting observables.

13. The Fourth Observable and the Operator K

Now we can see some choices for the fourth observable in the complete set of the Dirac theory,

the one that will replace L2 in the fine structure model. The simplest choice is parity, which in the

Dirac theory is discussed in Sec. 48.14. We write the Dirac parity operator as

π = πsγ
0, (74)
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where πs takes care of the spatial part of parity,

(πsψ)(x) = ψ(−x), (75)

and where γ0 takes care of the spin part. The parity operator has an arbitrary± sign (see Sec. 48.14),

which we have chosen in Eq. (75) so as to make the intrinsic parity of the electron +1. In the case of

2-component (Pauli) spinors, the parity operator consists of πs alone, which takes φ(x) into φ(−x).

See Notes 21.

When we apply πs to the Dirac spinor (73) it brings out (−1)ℓ in each term, that is, (−1)j±1/2.

Thus the A and B terms acquire opposite signs, as do the C and D terms. But when we multiply

the spinor by γ0, the lower 2-component spinor acquires an additional phase of −1. Therefore if we

require that the Dirac spinor (73) be an eigenstate of parity, then either B = C = 0, in which case

the parity is (−1)j−1/2, or else A = D = 0, in which case the parity is (−1)j+1/2. We will write the

simultaneous eigenfunctions of (π, J2, Jz) as

ψκjmj
(x) =

(

F (r)Yj−1/2
jmj

iG(r)Yj+1/2

)

, ψκjmj
(x) =

(

F (r)Yj+1/2
jmj

iG(r)Yj−1/2
jmj

)

, (76)

where the first and second spinors have parity (−1)j−1/2 and (−1)j+1/2, respectively, where the

arbitrary radial wave functions are now written as F and G and where for later convenience we have

split off a factor of i in the lower component. We see that indeed these spinors are not eigenfunctions

of L2, which has a different value in the upper and lower components.

We have introduced a new quantum number κ in Eq. (76), which is related to the eigenvalue of

a new operator K. This operator serves as well as parity for creating a complete set, but it is not

as obvious a choice. It is defined by

K = β(L ·Σ + 1). (77)

This is a scalar under spatial rotations so it commutes with J. It also commutes with parity π, that

is, it is a true scalar, not a pseudoscalar.

The fact that it also commutes with H follows from a straightforward but not very illuminating

calculation. First note the commutator [β,Σ] = 0 and the identity,

αiΣj = Σiαj = δij γ5 + iǫijk αk, (78)

which follows from the definitions (46.11) and (48.104) and which implies

{αi,Σj} = 2δij γ5, [αi,Σj ] = 2iǫijk αk. (79)

To compute [K,H ] we need the commutator,

[β(L ·Σ),α · p] = β(L ·Σ)(α · p)− (α · p)β(L ·Σ) = β[(L ·Σ)(α · p) + (α · p)(L ·Σ)]

= β{L ·Σ,α · p},
(80)
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which is expressed in terms of an anticommutator as shown. As for the latter, we migrate factors in

the second term,

(α · p)(L ·Σ) = αipiLjΣj = αiLjpiΣj + iǫijk αipkΣj , (81)

using Eq. (19.21). We continue to migrate factors in the first term in this expression,

αiLjpiΣj = αiLjΣjpi = LjαiΣjpi = −LjΣjαipi + 2δij γ5Ljpi = −(L ·Σ)(α · p), (82)

since L · p = 0. This cancels the first term of the anticommutator in Eq. (80). As for the second

term in Eq. (81), it is

iǫijk αipkΣj = iǫijk αiΣjpk = iǫijk (δij γ5 + iǫijℓ αℓ)pk = −2δkℓ αℓpk, (83)

which gives finally for the commutator (80),

[β(L ·Σ),α · p] = −2β(α · p). (84)

The other commutators we need are [K,β] = 0 and

[β,α · p] = 2β(α · p), (85)

so that on adding Eqs. (84) and (85) and assembling the pieces we obtain [K,H ] = 0.

In view of these commutators we will henceforth take (H,K, J2, Jz) as our complete set of

commuting operators, although parity π could be used in place of K.

To obtain the spectrum ofK we first note that for the Dirac angular momentum J = L+(1/2)Σ

we have

J2 = L2 + L ·Σ +
3

4
. (86)

Next we look at the square of K,

K2 = β(L ·Σ + 1)β(L ·Σ + 1) = (L ·Σ + 1)2 = (L ·Σ)2 + 2L ·Σ + 1. (87)

We evaluate the first term of this result with the help of Eq. (1.148),

(L ·Σ)2 = L2 + iΣ · (L× L), (88)

which is a little tricky, since L×L = iL is not zero, rather it is equivalent to the commutation

relations [Li, Lj] = iǫijk Lk. Thus we obtain

K2 = L2 + L ·Σ + 1 = J2 +
1

4
, (89)

and when we applyK2 to an eigenstate of J2 with eigenvalue j, it brings out j(j+1)+1/4 = (j+1/2)2.

Therefore the eigenvalues of K are ±(j + 1/2).

To apply K to the wave functions (76) we need the action of the Pauli operator L · σ on the

spinor spherical harmonics. Since the Pauli angular momentum is given by J = L+(1/2)σ, we have

J2 = L2 + L · σ +
3

4
, (90)
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which looks like Eq. (86) but is a Pauli, not a Dirac, operator. This implies

(L · σ)Yℓ
jmj

=
[

j(j + 1)− ℓ(ℓ+ 1)− 3

4

]

Yℓ
jmj

, (91)

which in turn implies, for the two values ℓ = j ± 1/2,

(L · σ + 1)Yℓ
jmj

=

{

+(j + 1
2 )Yℓ

jmj
, ℓ = j − 1

2 ,

−(j + 1
2 )Yℓ

jmj
, ℓ = j + 1

2 ,
(92)

These show that if we apply the Pauli operator L · σ + 1 to the upper and lower components of

the Dirac spinors (76), we bring out a factor of +(j + 1
2 ) in one component and −(j + 1

2 ) in the

other. But then when we multiply by β, the entire Dirac spinor acquires an overall factor, which is

the eigenvalue (j + 1
2 ) of K for the first spinor in Eq. (76) and −(j + 1

2 ) for the second. Thus the

eigenvalue of K distinguishes the two spinors in Eq. (76). It is customary in the literature to denote

the negative of the eigenvalue of K by κ, which has the value κ = −(j + 1
2 ) for the first spinor in

Eq. (76) and κ = +(j + 1
2 ) in the second. The extra minus sign is confusing, but we fear greater

confusion if we change the convention. Table 1 summarizes the relations among κ, the parity, and

the angular momentum quantum number ℓ attached to the upper and lower components of the Dirac

spinors (76).

κ ℓ(upper) ℓ(lower) π

−(j + 1
2 ) j − 1

2 j + 1
2 (−1)j−1/2

+(j + 1
2 ) j + 1

2 j − 1
2 (−1)j+1/2

Table 1. Values of ℓ quantum number for upper and lower spinors and overall parity, as a function of k, the eigenvalue
of K.

Recall that in the nonrelativistic limit, the upper 2-component spinor of the Dirac theory

becomes the Pauli spinor of the nonrelativistic theory. See Sec. 46.9. In the case of the Dirac spinors

(76), we see that the ℓ quantum number of the nonrelativistic limit is the one labeled ℓ(upper)

in Table 1, and that the radial wave function F (r) of the relativistic theory becomes R(r) of the

nonrelativistic theory. The radial wave function R(r) is discussed in Sec. 16.2.

It is common in the literature to label the eigenfunctions of (K, J2, Jz) by ψℓjmj
rather than

ψκjmj
as we have done here, where ℓ refers to ℓ(upper) in Table 1. This has the advantage of labeling

the solutions of the Dirac equation by the same quantum numbers that apply in the nonrelativistic

limit, but of course it does not imply that the Dirac wave functions are eigenfunctions of L2.

14. The Action of σ · p

Equation (76) now gives us the simultaneous eigenfunctions of (K, J2, Jz). When we demand

that these also be eigenfunctions of H we obtain equations that will determine the radial wave
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functions F (r) and G(r). We substitute the spinors (76) into the Dirac equation, obtaining

[(

0 σ · p
σ · p 0

)

+m

(

1 0

0 −1

)

+ V (r) − E

]

(

F (r)Yj∓1/2
jmj

iG(r)Yj±1/2
jmj

)

= 0, (93)

where the upper sign refers to the first spinor (76) and the lower sign to the second. The corre-

sponding values of κ are shown in Table 1.

This makes it evident that we will need to evaluate expressions of the form (σ · p)A(r)Yj±1/2
jmj

,

where A(r) is some radial function. It is easier to evaluate (σ · x)A(r)Yj±1/2
jmj

(with x instead of

p), because it is only a multiplicative operator on the x-space wave functions and not a differential

operator. Moreover, once we have the latter we can obtain the former by using the identity,

(σ · p)(σ · x) = p · x− i(σ · L) = −i
[

r
∂

∂r
+ 3 + σ · L

]

, (94)

where we use Eq. (1.148) and the fact that xi(∂/∂xi) = r(∂/∂r).

Therefore we turn our attention to evaluating

(σ · x)A(r)Yj±1/2
jmj

(θ, φ) = rA(r)

(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

Yj±1/2
jmj

(θ, φ). (95)

We see that under the action of (σ ·x) the radial part of the wave function A(r) just gets multiplied

by r. As for the angular part, it will be desirable to expand it as a linear combination of spin

spherical harmonics. To do this we freeze the radial coordinate r and work with the Hilbert space

of spinors over a sphere, in which the spin spherical harmonics Yℓ
jmj

form a complete orthonormal

basis. We denote these in ket language by |ℓjmj〉, where j = 1
2 ,

3
2 ,

5
2 , . . ., mj = −j, . . . ,+j, and

ℓ = j± 1
2 . The radial coordinate r can be regarded as just a constant for this part of the calculation.

In this notation we wish to evaluate

(σ · x)|ℓjmj〉 =
∑

ℓ′j′m′

j

|ℓ′j′m′
j〉〈ℓ′j′m′

j |σ · x|ℓjmj〉. (96)

This sum simplifies. Since σ · x is a scalar under rotations generated by J, it commutes with J and

hence with both J2 and Jz, so its matrix elements in the basis |ℓjmj〉 are diagonal in both j and

mj . Moreover it anticommutes with parity πs (it is a pseudoscalar, not a scalar), so it must map a

state with quantum number ℓ = j ± 1
2 into one with quantum number ℓ = j ∓ 1

2 . This means that

ℓ′ in the sum (96) can only take on the value ℓ′ = ℓ̃, where if ℓ = j ± 1
2 then ℓ̃ = j ∓ 1

2 . Thus the

sum (96) reduces to a single term, which in the two cases ℓ = j ± 1
2 can be written

(σ · x)|j − 1
2 , jmj〉 = αr|j + 1

2 , jmj〉,

(σ · x)|j + 1
2 , jmj〉 = βr|j − 1

2 , jmj〉,
(97)

where α and β are given by

αr = 〈j + 1
2 , jmj |(σ · x)|j − 1

2 , jmj〉, βr = 〈j − 1
2 , jmj |(σ · x)|j + 1

2 , jmj〉. (98)
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But since σ · x is Hermitian, these imply β = α∗. Finally, since (σ · x)2 = r2, we see that α is a

phase factor, |α|2 = 1.

There is some effort in evaluating the final phase α. A straightforward method is simply to

apply the matrix in Eq. (95) to the spinors (70), noting that the components of the matrix can

be written in terms of the Yℓm’s for ℓ = 1, as in Eq. (20.13). The product of Yℓm’s can then be

expressed in terms of single Yℓm’s by means of the 3-Yℓm formula, Eq. (18.59), and finally the result

can be expanded in terms of spinor spherical harmonics. After some algebra along these lines, we

find α = −1. We summarize the results by writing

(σ · x)A(r)Yℓ
jmj

= −rA(r)Y ℓ̃
jmj

, (99)

where again if ℓ = j ± 1
2 , then ℓ̃ = j ∓ 1

2 .

Now we divide both sides of Eq. (99) by r and apply (σ · p), using Eqs. (94) and (91). We find

−i
[

r
∂

∂r
+ 3 + j(j + 1)− ℓ(ℓ+ 1)− 3

4

][A(r)

r

]

Yℓ
jmj

= −(σ · p)A(r)Y ℓ̃
jmj

. (100)

Writing this out for the two cases ℓ = j ± 1
2 , we obtain

(σ · p)A(r)Yj−1/2
jmj

= i
[dA

dr
− j − 1/2

r
A(r)

]

Yj+1/2
jmj

,

(σ · p)A(r)Yj+1/2
jmj

= i
[dA

dr
+
j + 3/2

r
A(r)

]

Yj−1/2
jmj

,

(101)

which is the desired action of σ · p on 2-component eigenfunctions of (L2, J2, Jz).

15. The Radial Wave Equations

Now we may substitute Eq. (101) into the Dirac equation (93). While we are at it we will

express the radial wave functions F (r), G(r) in terms of alternative radial wave functions f(r) and

g(r), defined by

F (r) =
f(r)

r
, G(r) =

g(r)

r
, (102)

which are just like the transformation (16.10) used in the nonrelativistic theory to create what we

called version two of the radial wave equation.

The result is two coupled, 2-component equations equations for the upper and lower components

of the Dirac spinor, from which the common spinor spherical harmonic can be canceled, leaving two

coupled radial wave equations for f(r) and g(r). These are

df

dr
∓ j + 1/2

r
f(r) = [m+ E − V (r)]g(r),

dg

dr
± j + 1/2

r
g(r) = [m− E + V (r)]f(r),

(103)
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where as in Eq. (93) the upper sign corresponds to the first spinor (76) and the lower sign to the

second. These equations can also be written in terms of the quantum number κ,

df

dr
+
κ

r
f(r) = [m+ E − V (r)]g(r), (104a)

dg

dr
− κ

r
g(r) = [m− E + V (r)]f(r), (104b)

where κ = ∓(j + 1/2), as indicated in Table 1. These are the radial wave equations in the Dirac

theory that replace version two of the radial wave equation, Eq. (16.11), in the Schrödinger theory.

The nonrelativistic limit of these equations is obtained by the method of Sec. 46.9. That is, we

approximate E ≈ m ≫ V so that the right hand side of Eq. (104a) becomes 2mg(r), which allows

that equation to be solved for g in terms of f . This is then substituted into Eq. (104b) to eliminate

g and obtain an equation purely for f . This turns out to be version two of the radial Schrödinger

equation, Eq. (16.11).

16. The Hydrogen Atom

We now specialize to the case V (r) = −Ze2/r for a hydrogen-like atom. We will solve the Dirac

equation (65) for the bound states in this potential. Note that in natural units e2 = α ≈ 1/137,

so that Ze2 = Zα is a dimensionless parameter of the problem. This parameter ranges from about

1/137 for hydrogen to about 2/3 for uranium and beyond, remaining, however, always less than

unity for all known nuclei. As we will see, the ground state of the Dirac equation is a bound state

only for Zα < 1, that is, Z <≈ 137, and becomes unbound for higher Z. This lends some interest

to the question of whether nuclei with Z > 137 exist or could be made, even briefly. Note, however,

that the potential Zα/r is an idealization and that in the real world it must be modified at small

radii because nuclei are not point charges. The corrections required for this become more important

as Z increases. See Sec. 17.8 and Prob. 23.1.

Since the probability density in the Dirac theory is ψ†ψ, the normalization integral for normal-

ized bound states is
∫

d3xψ†(x)ψ(x) = 1. (105)

If we specialize this to Dirac wave functions of the form (76) and carry out the integral in spherical

coordinates, we have
∫

d3xψ†ψ =

∫ ∞

0

r2 dr(|F (r)|2 + |G(r)|2) =
∫ ∞

0

dr
(

|f(r)|2 + |g(r)|2) = 1, (106)

where we use Eq. (71). We see that a Dirac central force eigenfunction is normalizable if and only

if both f(r) and g(r) are normalizable as one-dimensional wave functions on the interval [0,∞).

We first look at the Dirac equation when r is large, so that the potential energy and the terms

that involve κ/r can be neglected. Then Eqs. (104) become

df

dr
= (m+ E)g,

dg

dr
= (m− E)f, (107)
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or,
d2f

dr2
= (m2 − E2)f,

d2g

dr2
= (m2 − E2)g. (108)

If |E| > m these have oscillatory solutions that are not normalizable and cannot represent bound

states. Likewise if |E| = m the solutions are of the form c1+c2r, which are not normalizable. We see

that the Dirac hydrogen-like atom has a continuous spectrum for E ≥ m, which corresponds to the

positive energy, continuous spectrum of the nonrelativistic hydrogen atom. But the Dirac equation

also possesses a continuous spectrum for E ≤ −m, that is, it possesses negative energy solutions,

just like the free particle.

Finally, if |E| < m then the solutions go as

f(r), g(r) ∼ exp(±
√

m2 − E2 r), r → ∞, (109)

which are normalizable if we choose the minus sign. We see that bound states are possible only in

the range |E| < m, that is, −m < E < m, and that the eigenfunctions must behave asymptotically

as exp(−
√
m2 − E2 r).

We define a new radial variable,

ρ = 2
√

m2 − E2 r, (110)

so that the asymptotic behavior of the bound state wave functions will be e−ρ/2. Then Eqs. (104)

become
df

dρ
+
κ

ρ
f =

( 1

2γ
+
Zα

ρ

)

f,

dg

dρ
− κ

ρ
g =

(γ

2
− Zα

ρ

)

,

(111)

where

γ =

√

m− E

m+ E
. (112)

Next we define new radial wave functions a(ρ) and b(ρ), in which the asymptotic behavior has been

stripped off,

f(r) = e−ρ/2 a(r), g(r) = e−ρ/2 b(r), (113)

which cause Eqs. (111) to become

da

dρ
− a

2
+
κ

ρ
a =

( 1

2γ
+
Zα

ρ

)

b, (114a)

db

dρ
− b

2
− κ

ρ
b =

(γ

2
− Zα

ρ

)

a. (114b)

We examine the behavior of the solutions near ρ = 0. We assume that the dominant behavior

of a(ρ) and b(ρ) when ρ is small is a0ρ
s and b0ρ

t, respectively, for some powers s and t, where a0 6= 0

and b0 6= 0. Then the left hand side of Eq. (114a) is dominated by (s+κ)a0ρ
s−1 and the right hand

side by b0Zαρ
t−1. Therefore if t < s the right hand side dominates, and we must have b0Zα = 0 or
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b0 = 0. But this contradicts our assumption about the leading behavior, so we cannot have t < s

and we must have s ≥ t. A similar argument applied to Eq. (114b) shows that we must have t ≥ s.

Taken together, these imply t = s. We see that both a(ρ) and b(ρ) begin with the same power s.

It then follows that to leading order both sides of both Eqs. (114) go as ρs−1, and that the

coefficients must satisfy

(s+ κ)a0 = Zαb0,

(s− κ)b0 = −Zαa0
(115)

or
(

s+ κ −Zα
Zα s− κ

)(

a0

b0

)

= 0. (116)

Thus, the determinant s2 − κ2 + (Zα)2 of the matrix must vanish, or,

s = ±
√

κ2 − (Zα)2 = ±
√

(j + 1/2)2 − (Zα)2. (117)

Because the smallest value of j + 1/2 is 1, we see that the exponent s will be real for all j as long

as Zα < 1.

The case Zα > 1 does not occur in real atoms, and even if it did, the potential would not be

pure Coulomb because nuclei are not point charges. Nevertheless there is some interest in solving

the problem anyway. We see that Zα > 1 leads to purely imaginary exponents s for small values of

j, which, as it turns out, produce wave functions that are oscillatory and not normalizable. Thus,

the usual ground state of hydrogen would disappear as a bound state for such high values of Z, and

be replaced by unbound states. This strange behavior for high Z is related to what is called the

“supercritical vacuum,” and is properly understood by methods of quantum field theory. In a sense

what happens is that for high Z the electric field becomes strong enough to pull electron-positron

pairs out of the vacuum, and thus a multiparticle situation is created.

Similar effects occur in a square well potential, if it is deep enough. You would think that the

deeper the well gets, the more tightly bound the electron would be, but in the Dirac equation that

is not so, since for deep enough wells we start to get unbound solutions. This effect is related to

what is called the “Klein paradox,” another one of the puzzling aspects of the Dirac equation, when

treated as the wave equation for a single, relativistic particle. In these notes we assume Zα < 1,

which means that s is real for all j.

Now it turns out that we can reject the minus sign in Eq. (117) on grounds of the regularity

of the wave function. If we require that the amount of probability in a region near ρ = 0 be finite,

then the integral
∫ ǫ

0

ρ2s dρ (118)

must be finite for some ǫ > 0. But this implies 2s > −1, or s > −1/2. If we demand in addition

that the expectation value of the potential energy term Zα/ρ be finite, then we obtain 2s− 1 > −1,

or s > 0. These regularity conditions are discussed in greater detail by W. Greiner, Relativistic

Quantum Mechanics. We henceforth take only the positive root for s in Eq. (117).
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If Zα is small then s is approximately j+1/2, an integer, but with a small negative correction.

With the correction s is not an integer, so the wave function behaves as a fractional power of r near

the origin. In the case j = 1/2, s is a fraction less than 1, which means that the wave functions F

and G (see Eq. (102)) go like a small negative power of r near the origin. That is, they diverge at

r = 0, unlike the nonrelativistic solution, which is regular there. In spite of the divergence, the net

probability in a neighborhood of the origin is finite, as is the expectation value of the potential, as

noted above.

17. Recursion Relations and Energy Levels

We now write a(ρ) and b(ρ) as power series,

a(ρ) = ρs
∞
∑

k=0

akρ
k, b(ρ) = ρs

∞
∑

k=0

bkρ
k, (119)

and substitute these into Eqs. (114). By equating coefficients of the different powers of ρ we obtain

recursion relations for the coefficients an and bn. These are conveniently written in matrix–vector

form,

Akxk = Bxk−1, (120)

where

Ak =

(

k + s+ κ −Zα
Zα k + s− κ

)

, B =
1

2

(

1 1/γ

γ 1

)

, (121)

and

xk =

(

ak

bk

)

. (122)

It is understood that xk = 0 for k < 0. In the following we will use letters w, x, etc., at the end

of the alphabet for 2-component vectors, and those near the beginning, a, b, etc., for scalars, for

example, ak and bk are the components of xk.

Setting k = 0 in Eq. (120) we obtain A0x0 = 0, which is Eq. (116). Since x0 6= 0 this implies

detA0 = 0, which as shown above determines s. As for x0, it is any nonzero vector in the one-

dimensional kernel of A0. For k > 0 the matrices Ak are nonsingular, since

detAk = k(2s+ k), (123)

so we can write the recursion relation as

xk = A−1
k Bxk−1, k > 0. (124)

The matrix B is also singular. We pay special attention to its image, a one-dimensional space

spanned by

w =

(

1

γ

)

. (125)
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Vector w is an eigenvector of B with eigenvalue 1,

Bw = w. (126)

The kernel of A0 is conveniently handled with the adjoint (or adjugate) of A0. If M is any 2×2

matrix, then the adjoint M̃ is defined by

M =

(

a b

c d

)

, M̃ =

(

d −b
−c a

)

, (127)

so that MM̃ = (detM)I. Thus A0Ã0 = 0 and Ã0 maps any vector into a vector in the kernel of A0.

It is convenient to choose

x0 = Ã0w =

(

s− κ Zα

−Zα s+ κ

)(

1

γ

)

=

(

s− κ+ γZα

−Zα+ γ(s+ κ)

)

. (128)

In the following we will need Bx0, which must be a multiple of w. Using Eqs. (121) and (128), we

find

Bx0 = −νw, (129)

where

ν =
Zα

2

(1

γ
− γ
)

− s. (130)

Also, for k > 0 we write

A−1
k =

Ãk

detAk
=

1

k(2s+ k)

(

k + s− κ Zα

−Zα k + s+ κ

)

=
1

k(2s+ k)
(Ã0 + kI). (131)

Now to apply the recursion relation (124) for k = 1 we must evaluate

(Ã0 + I)Bx0 = −ν(Ã0 + I)w = −ν(x0 + w), (132)

so that

x1 = A−1
1 Bx0 =

−ν
1 · (2s+ 1)

(x0 + w). (133)

Iterating the recursion relation in a similar manner, we obtain

xk =
(−1)kν(ν − 1) . . . (ν − k + 1)

k!(2s+ 1)(2s+ 2) . . . (2s+ k)
(x0 + kw). (134)

If ν is not an integer ≥ 0 then as k gets large the coefficient in front of x0 approaches 1/k!, so

that the series for both a(ρ) and b(ρ) behave like eρ. This overwhelms the factor of e−ρ/2 that we

have stripped off, making both f(ρ) and g(ρ) diverges as eρ/2 as ρ → ∞. These solutions are not

normalizable and must be rejected. We conclude that ν must be a nonnegative integer, ν = N , with

N ≥ 0. Then xk = 0 for k > N , and both a(ρ) and b(ρ) are polynomials in ρ of degree N . These

are dominated at large ρ by e−ρ/2, so that the wave functions are normalizable and acceptable as

bound states.
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Now since
1

γ
− γ =

√

m+ E

m− E
−
√

m− E

m+ E
=

2E√
m2 − E2

, (135)

Eq. (131) becomes

N + s =
ZαE√
m2 − E2

, (136)

which we solve for E to obtain,

E =
mc2

√

1 +
(Zα)2

(N + s)2

, (137)

where we have restored ordinary units. These are the energy eigenvalues of the bound states of the

Dirac hydrogen atom; they are functions of the two quantum numbers, j and N . The bound state

energies are all positive and lie in the interval 0 < E < mc2.

0

+mc2

−mc2

+mc2

Expand
×105

n = 1

n = 2

Fig. 4. The energy spectrum of the Dirac hydrogen atom, here illustrated for Z = 1. The usual hydrogen ground state
n = 1 lies 13.6 eV below the rest mass-energy, mc2, and the usual unbound states of the Schrödinger theory lie in a
continuum above E = mc2. However, there also exists another continuum of unbound (negative energy) states with

E ≤ −mc2.

To connect these quantum numbers with those of the nonrelativistic hydrogen atom, we expand

in powers of Zα. For this we only need s to lowest order,

s =
√

κ2 − (Zα)2 ≈ |κ| = j + 1/2, (138)

so that

E = mc2
[

1− (Zα)2

2(N + j + 1
2 )

2

]

= mc2 − Ze2

2an2
, (139)

where a = h̄2/mZe2 (see Table 17.2) is the effective Bohr radius and where we set

n = N + j + 1
2 (140)

which is identified with the usual principal quantum number of the nonrelativistic problem. To

second order in Zα, the Dirac energy levels are the rest-mass-energy mc2 of the electron, shifted

downward by the binding energies of the Schrödinger theory in the electrostatic model.
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Expressed in terms of n instead of N , Eq. (137) becomes the Dirac hydrogen energy levels as

cited in Eq. (25.51). As discussed in Notes 25, the energy levels (137), when expanded to fourth

order in Zα, yield all the fine structure corrections obtained by perturbation theory in those notes.

This means that the Dirac equation automatically incorporates the spin-orbit corrections, including

the factor of 1/2 due to Thomas precession, as well as the not-so-obvious Darwin term. All this

complexity in the Schrödinger-Pauli theory is contained in the simple equation (48.13). The entire

spectrum of the Dirac hydrogen atom is illustrated in Fig. 4, including the two continua of unbound

states with E ≥ mc2 and E ≤ −mc2.

18. Energy Eigenfunctions

It is now straightforward to work out the energy eigenfunctions. We combine Eqs. (113), (119),

(122) and (134) with ν = N to obtain

(

f(ρ)

g(r)

)

= e−ρ/2

(

a(ρ)

b(ρ)

)

= ρse−ρ/2
N
∑

k=0

ρkxk

=
Γ(2s+ 1)N !

Γ(N + 2s+ 1)
ρse−ρ/2

(

x0 + wρ
d

dρ

)

L2s
N (ρ),

(141)

where we use Abramowitz and Stegun, Handbook of Mathematical Functions, Eq. (22.3.9), for the

definition of the associated Laguerre polynomials. In the present context that definition can be

written,

L2s
N (ρ) =

N
∑

k=0

(−1)k Γ(N + 2s+ 1)

(N − k)! Γ(k + 2s+ 1)

ρk

k!
. (142)

Also, the 2-vectors x0 and w are given by Eqs. (125) and (128). In these formulas it is necessary

to use gamma functions instead of factorials, because the upper index of the Laguerre polynomials

(2s) is not an integer.

To explore the nonrelativistic limit it is convenient to use the identities,

ρ
d

dρ
L2s
N (ρ) = (N + 2s)L2s−1

N (ρ)− 2sL2s
N (ρ) = −ρL2s+1

N−1(ρ), (143)

of which the first is easily derived from the definition (142) and the second is Abramowitz and Stegun,

Eq. (22.8.6) (and which is also easily derived from the definition). Then we have two expressions for

the radial wave functions,
(

f(ρ)

g(ρ)

)

= ρse−ρ/2
[

(x0 − 2sw)L2s
N (ρ) + w(N + 2s)L2s−1

N (ρ)
]

(144a)

= ρse−ρ/2
[

x0L
2s
N (ρ)− ρwL2s+1

N−1(ρ)
]

, (144b)

where we drop the constant prefactors seen on the right in Eq. (141) since at this point we are

not interested in the normalization. The two forms of the solution (144) are useful for taking the
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nonrelativistic limit, in which we expand everything to lowest order in Zα. The form (144a) is

useful when ℓ = j − 1
2 , in which case the second term dominates and produces ρℓ+1e−ρ/2L2ℓ+1

n−ℓ−1(ρ)

to leading order in Zα, which is the nonrelativistic wave function (see Eq. (17.16)); and the form

(144b) is useful when ℓ = j + 1
2 in which case the second term again dominates and produces the

same nonrelativistic wave function.

The normalization of the Dirac wave functions may also be obtained in closed form; it may be

found in the references.

Problems

1. Show that u(p,±s) and v(p,±s) are eigenspinors of 6sγ5 with eigenvalue ±1. Thus we can define

spin projectors,

Σ± =
1± 6sγ5

2
, (145)

which project out the positive and negative spin components of an arbitrary 4-spinor of a free

particle. As far as the negative energy spinors v(p, s) are concerned, notice that these project out

the components whose labels are +s and −s, while the labels are the negatives of the spin eigenvalues.

2. The orthonormality and completeness relations (41), (42) and (46) will be important in future

applications.

(a) Prove Eqs. (41b), (41c) and (42).

(b) Prove Eqs. (46). It may help to note that the D matrix for a pure boost is Hermitian, and that

D(p)−1 = D(−p).

3. Show that

Π+ =
∑

±s

u(p, s)ū(p, s),

Π− = −
∑

±s

v(p, s)v̄(p, s),
(146)

that is, the positive and negative energy projectors are the first and second terms in Eq. (42),

respectively. As in that equation, the summation is taken over two spin vectors that point in

opposite directions in the rest frame.

4. In Sec. 46.9 we carried out a nonrelativistic approximation on the Dirac equation. The essence

of the approximation was Eq. (46.46), which expresses the lower two components χ of the Dirac

spinor in terms of the upper two components φ. Notice that this equation has a relative error of

order (v/c)2, when the solution of the Dirac equation has an energy which is +mc2 plus a small

(nonrelativistic) correction of order (v/c)2.
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Apply this approximation to the Dirac current Jµ = cψ̄γµψ to get the probability density and

probability current in the Pauli theory, to order (v/c)2. See if the answer includes a magnetization

current. See Sec. 18.6.

5. An arbitrary free particle solution of the Dirac equation is a linear combination of the positive

and negative energy solutions, which we can write as

ψ(x, t) =

∫

d3p
∑

±s

[

A(p, s)u(p, s)e−i(p·x)/h̄ +B(p, s)v(p, s)e+i(p·x)/h̄
]

, (147)

where A(p, s) and B(p, s) are expansion coefficients. We write these as if they depend on two 4-

vectors p and s, but the notation is like the dependence of u(p, s) and v(p, s), that is, the 4-vector p

is really a function of the 3-momentum p (the variable of integration) and s is taken over only two

opposite unit vectors in the rest frame. This wave function is in the Schrödinger picture, since the

explicit time-dependence is given.

Compute the expectation value of the velocity operator v = cα to get 〈v〉(t), and show that

it is independent of t and contains no Zitterbewegung if the wave packet consists purely of positive

energy solutions (that is, if B(p, s) = 0).

6. Consider a Dirac electron (q = −e) in a uniform magnetic field, B = B0ẑ. Choose the gauge,

A = B0xŷ, (148)

which is translationally invariant in the y-direction. This means that py will be a constant of the

motion (although you must distinguish between the kinetic and canonical momentum).

Here is some background on the nonrelativistic problem, which will save you some time. Ignore

the spin and the motion in the z-direction, for simplicity. Then the Schrödinger equation is

1

2m

[

p̂2x +
(

p̂y +mωx
)2]

ψ(x, y) = Eψ(x, y). (149)

Here we put hats on the momentum operators to distinguish them from the corresponding eigenvalues

(where relevant), which are c-numbers. For example, p̂y = −ih̄∂/∂y. Also, we define

ω =
eB0

mc
. (150)

Then the wave equation (149) is separable, and has the solution,

ψ(x, y) = eipyy/h̄ un(ξ), (151)

where py is the eigenvalue of p̂y, where

ξ = x+
py
mω

, (152)
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and where un is the usual, normalized Hermite function for the one-dimensional harmonic oscillator

with frequency ω,

un(ξ) =
(mω

πh̄

)1/4 1√
n!2n

Hn

(

√

mω

h̄
ξ
)

exp
(

−mωx
2

2h̄

)

. (153)

Here Hn is the usual Hermite polynomial, defined by Eq. (8.44). The energy eigenvalue for the

eigenfunction (151) is

E = (n+ 1
2 )h̄ω, (154)

where n = 0, 1, 2, . . . is the Landau level. The energy is independent of the quantum number py.

The wave function is like a ridge in the x-y plane, centered on x = −py/mω (i.e., on ξ = 0), and

running in the y-direction.

(a) Solve the Dirac equation for the relativistic electron in the same magnetic field. This time you

must include the z-motion and the spin. Express the energy in terms of the quantum numbers

(n, py, pz,ms). Write out explicitly a complete set of positive energy solutions as 4-component

spinors. You need not normalize these solutions, and you may ignore the negative energy solutions.

(b) Consider the motion of a Dirac electron in the field,

B = B1ẑ, E = E1x̂, (155)

where 0 < E1 < B1. The solution of the Dirac equation for this problem can be obtained from the

solution to part (a) by using the transformation law (48.26). Find matrices Λ and D(Λ) which will

cause ψ′(x) to be the solution in the field (155) if ψ(x) is the solution in the purely magnetic field of

part (a). You will also need to find a relation between (E1, B1) and B0. You need not write out the

solution ψ′(x) explicitly, but do find the energy eigenvalues in terms of the same quantum numbers

(n, py, pz,ms) as in part (a).


