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1. Introduction

In these notes we develop the theory of wave functions in configuration space, building it up

from the ket formalism and the postulates of quantum mechanics. We consider a system with one

particle moving in space. In this set of notes we will not deal with the dynamics of the particle, so

we will not need to say what the Hamiltonian is (that is taken care of in Notes 5). We assume the

particle has no spin or other internal degrees of freedom, or that if such degrees of freedom exist they

can be ignored. This allows us to establish an isomorphism between the Hilbert space of kets and

the Hilbert space of wave functions on configuration space. We then introduce translation operators

and use them and the classical correspondence to motivate the definition of momentum in quantum

mechanics. We then explore the two representations, position and momentum, and the relationship

between them. Finally, we discuss minimum uncertainty wave packets.

2. The Position Representation; Wave Functions

For simplicity we begin with the one-dimensional case, in which the physical system is a par-

ticle moving in one dimension. According to the postulates of quantum mechanics, this system is

associated with a Hilbert space E . We assume the position x of a particle in one dimension can be

measured, and that the results of the measurement are continuous. Thus, we are dealing with the

case of the continuous spectrum. We denote the operator corresponding to measuring x by x̂, so the

eigenvalue-eigenket problem is

x̂|x〉 = x|x〉. (1)

Here x̂ is the operator, x is the eigenvalue, and |x〉 is the eigenket with eigenvalue x. Since x belongs

to the continuous spectrum, the eigenkets |x〉 are not normalizable and lie outside Hilbert space.

We also assume that x̂ by itself forms a complete set of commuting observables, which, as we

shall see, means that the wave function is a scalar (it has only one component). In practice, this

means that we are dealing with a spinless particle (a particle of spin 0, for example, the π-meson,

the nucleus of ordinary helium, or the hydrogen atom in its ground state). It may also mean that

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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we have a particle with spin, such as the electron, but the spin degrees of freedom are not important

for the physics we are interested in. This point was discussed in Sec. 2.5.

Since x̂ is a complete set of commuting observables, the eigenkets |x〉 are nondegenerate and

form a basis in the Hilbert space in the continuum sense. These eigenkets are only defined by Eq. (1)

to within a normalization and a phase. We fix the normalization by requiring

〈x1|x2〉 = δ(x1 − x2), (2)

the usual orthonormality condition in the continuum. The phase conventions for the eigenkets |x〉
are a question we shall return to later. Under these assumptions, the resolution of the identity takes

the form

1 =

∫ +∞

−∞

dx |x〉〈x|. (3)

Now let |ψ〉 represent a normalized (pure) state of the system, let I = [x0, x1] be an interval on

the x-axis, and let PI be the corresponding projection operator,

PI =

∫ x1

x0

dx |x〉〈x|. (4)

Then, according to the postulates of quantum mechanics (Sec. 2.2), we have

Prob(x0 ≤ x ≤ x1) = 〈ψ|PI |ψ〉 =
∫ x1

x0

dx 〈ψ|x〉〈x|ψ〉. (5)

We now introduce the definition,

ψ(x) = 〈x|ψ〉,
(6)

of the wave function ψ(x), whereupon the probability (5) can be written,

Prob(x0 ≤ x ≤ x1) =

∫ x1

x0

dx |ψ(x)|2. (7)

Since the interval [x0, x1] is arbitrary, we see that |ψ(x)|2 must be interpreted as the probability

density of finding the particle on the x-axis. We have derived wave functions from the ket formalism

plus the postulates of quantum mechanics, as promised in Notes 1.

Equation (6) is important because it shows how to go from kets to wave functions. It takes

the place of sloppy notation such as Eq. (1.7). That is, in addition to the Hilbert space E of kets,

we have another Hilbert space, this one consisting of normalizable wave functions on configuration

space, ψ(x). Equation (6) expresses the mapping between these spaces, which identifies kets with

wave functions. To go the other direction, we multiply |ψ〉 on the left by the resolution of the identity

(3),

|ψ〉 =
∫

dx |x〉〈x|ψ〉, (8)
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which, by using Eq. (6), becomes

|ψ〉 =
∫

dx |x〉ψ(x).
(9)

This is the inverse of Eq. (6), allowing one to go from a wave function ψ(x) to the corresponding ket

|ψ〉. We see that ψ(x) is the set of expansion coefficients of the ket |ψ〉 in the position eigenbasis.

Another consequence of this formalism follows easily. Suppose we have two kets |ψ〉 and |φ〉,
and we wish to compute the scalar product 〈ψ|φ〉 in wave function language. We simply insert the

resolution of the identity (3) between the bra and the ket to obtain,

〈ψ|φ〉 =
∫

dx 〈ψ|x〉〈x|φ〉 =
∫

dxψ∗(x)φ(x), (10)

a familiar formula that translates the scalar product on the Hilbert space of kets into the language

of wave functions.

This formalism is easily generalized to three dimensions. Let x be a position vector in three-

dimensional space, with components (x, y, z) or (x1, x2, x3). The measurement of the three com-

ponents of position corresponds to a vector of operators, which we denote by x̂ (with a hat), to

distinguish the operators from their eigenvalues (the results of the position measurement). In quan-

tum mechanics, when we speak of a “vector operator” we usually mean a vector of operators, in

this case three operators x̂ = (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3). We assume that the components of x̂ commute

with one another,

[x̂i, x̂j ] = 0, (11)

which as explained in Notes 2 can be tested experimentally. For example, if we filter a beam in x

and then y by means of small slits, or do it in the reverse order, we find that the statistical results

of arbitrary measurements on the filtered beam are the same in both cases.

As above we assume that we can ignore any internal degrees of freedom of the particle, so

that the three operators x̂ by themselves form a complete set of commuting observables. Then

the simultaneous eigenkets of x̂ are nondegenerate and form a basis by themselves. The eigenket-

eigenvalue problem is

x̂i|x〉 = xi|x〉, (12)

for i = 1, 2, 3, a set of three simultaneous equations satisfied by an single eigenket |x〉 = |x, y, z〉,
labeled by the three eigenvalues of the three commuting operators. In obvious generalizations of the

one-dimensional case, we normalize these kets according to

〈x1|x2〉 = δ3(x1 − x2) = δ(x1 − x2)δ(y1 − y2)δ(z1 − z2), (13)

we have a resolution of the identity,

1 =

∫

d3x |x〉〈x|, (14)
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and the transformation between wave functions and kets is given by

ψ(x) = 〈x|ψ〉, (15)

and

|ψ〉 =
∫

d3x |x〉ψ(x). (16)

Also, the probability that the particle will be found in a region R of three-dimensional space is

∫

R

d3x |ψ(x)|2, (17)

so |ψ(x)|2 must be interpreted as the probability density.

Equations (6) or (15) define the wave function ψ(x) or ψ(x), respectively, in quantum mechanics.

A question that arises sometimes when solving the Schrödinger equation is whether ψ is single-valued.

But by our definitions, ψ(x) or ψ(x) is automatically single-valued, since it is just the expansion

coefficient of the state |ψ〉 with respect to the basis |x〉 or |x〉.
Equations (6) and (9) (in one dimension) or (15) and (16) (in three dimensions) make explicit

the transformations back and forth between the Hilbert space of ket vectors |ψ〉 and the Hilbert

space of wave functions ψ(x) or ψ(x). As discussed in Sec. 1.3, we regard these two Hilbert spaces

as isomorphic but distinct, and we say that the space of wave functions ψ(x) or ψ(x) forms the

configuration representation of the space of kets |ψ〉. There are other representations, and while

the configuration representation is often used in practice one should note that in the postulates of

quantum mechanics there is no privileged role assigned to it. Any calculation that can be carried

out in the configuration representation can be carried out in any other representation with the same

results from a physical standpoint.

In effect, a representation is merely a choice of basis, allowing one to work with the expansion

coefficients of a state vector |ψ〉 with respect to the chosen basis instead of the abstract ket vectors

themselves. As noted below Eq. (9), the configuration space wave function ψ(x) or ψ(x) is the

expansion coefficients of the state ket |ψ〉 with respect to the basis of position eigenkets {|x〉}
or {|x〉}. In quantum mechanics we frequently choose as a basis the simultaneous eigenkets of a

complete set of commuting observables; thus, the basis is labeled by the observables in question,

and we speak, for example, of the position representation, momentum representation, etc. Nothing

prevents us from using other bases, however (which have no correspondence with any simple set of

commuting observables).

Just as the wave function ψ(x) represents the ket vector |ψ〉 in the configuration representation,

so also is there a representation of various operators that act on ket vectors. Consider, for example,

the operator x̂ (working in one dimension for simplicity). We know that the ket |ψ〉 corresponds

to the wave function ψ(x) = 〈x|ψ〉. What wave function does the ket x̂|ψ〉 correspond to? Let

|φ〉 = x̂|ψ〉, so that

φ(x) = 〈x|φ〉 = 〈x|x̂|ψ〉 = x〈x|ψ〉 = xψ(x), (18)
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where we have used 〈x|x̂ = x〈x|, the Hermitian conjugate of Eq. (1). We see that the effect of

multiplying a ket vector |ψ〉 by the operator x̂ is to multiply the corresponding configuration wave

function ψ(x) by x. That is, we can write

(x̂ψ)(x) = xψ(x). (19)

As we say, the operator x̂ is represented by multiplication by x in the configuration representation.

It is represented by other operations in other representations. Similarly, in three dimensions we have

(x̂iψ)(x) = xiψ(x). (20)

You may worry about the physical meaning of the unnormalizable eigenkets |x〉 or |x〉. In reality

we never measure the position of a particle exactly, instead the best we can do is to localize it in

some small region of space. The eigenkets |x〉 or |x〉 are an idealization of this process, in which the

size of the region is allowed to approach zero. This limit also leads to singular mathematics, since

the eigenkets |x〉 or |x〉 have infinite norm and do not belong to Hilbert space.

Measuring the position of a particle is really a nonrelativistic concept, because as we localize

a particle to smaller and smaller regions, by the uncertainty principle the momentum increases,

ultimately taking on relativistic values. Then processes such as the creation of particle-antiparticle

pairs come into play, and we are really dealing with a multi-particle situation, which is properly

handled by the methods of quantum field theory. We will find later in the course that the position

operator for a particle in relativistic quantum mechanics is one that is fraught with difficulties. The

position operator is really a nonrelativistic concept.

3. Translation Operators

The subject of position measurements leads naturally into the question of translational invari-

ance. The energy and other physical properties of an isolated system do not change if it is moved

somewhere else, a fact that is more precisely stated by saying that the Lagrangian or Hamiltonian of

such systems is invariant under spatial translations. This symmetry in turn leads to the conservation

of momentum, which first appeared in physics as Newton’s third law.

If a system is not isolated then its energy does depend on its position, for example, the potential

energy of an electron in an electric field changes if the electron is moved. But the electric field is

created by other charges somewhere else, and if those charges are included in the “system,” then

the energy does not change when the entire system is moved.

In summary, spatial translations are a fundamental symmetry of nature which is closely re-

lated to the law of conservation of momentum. We now develop translation operators in quantum

mechanics, working initially in one dimension for simplicity.

Let a be a displacement. We imagine a displacement operation as one that acts on a physical

system, moving all particles from their initial positions (say, x) to their new positions (x+ a), both

measured relative to an inertial frame. This is sometimes called the active point of view, because
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our operations take a given physical system and transform it into a new system, in this case in a

different location.

In quantum mechanics, we can define a translation operator which carries out this operation on

a physical system. The translation operator T (a) is a linear operator acting on the Hilbert space of

a physical system, parameterized by the displacement a. We define the translation operator in one

dimension by

T (a)|x〉 = |x+ a〉. (21)

This definition makes sense, because physically |x〉 is the state of the system after a measurement

has placed the particle in a small region around position x, and similarly for |x+ a〉. Equation (21)

is actually a definition of the operators T (a) because the kets |x〉 form a basis. If we specify the

action of a linear operator on a set of basis vectors, then by linear superposition its action on an

arbitrary vector becomes known.

Equation (21) gives the action of the translation operator on the position eigenkets. Let us also

work out its action on wave functions. Let |ψ〉 be a state with wave function ψ(x) = 〈ψ|x〉, and let

|φ〉 = T (a)|ψ〉 be the translated state with wave function φ(x) = 〈x|φ〉. What is the relationship

between the old wave function ψ(x) and the new one φ(x)? We answer this by writing

φ(x) = 〈x|φ〉 = 〈x|T (a)|ψ〉 =
∫

dx′ 〈x|T (a)|x′〉〈x′|ψ〉 =
∫

dx′ 〈x|x′ + a〉〈x′|ψ〉

=

∫

dx′ δ(x− x′ − a)ψ(x′) = ψ(x− a), (22)

where we have inserted a resolution of the identity, used Eqs. (21) and (2), and carried out the

integral. We write the result as
(

T (a)ψ
)

(x) = ψ(x − a), (23)

where we have replaced φ by T (a)ψ. This is a companion to Eq. (21), which gives the action of

translation operators on the basis kets; this gives their action on wave functions.

There are several remarks concerning Eq. (23). First, notice the minus sign in this equation,

compared to the plus sign in Eq. (21). The minus sign is necessary to get a wave function that has

been moved forward under the displacement operation, as illustrated in Fig. 1. To remember the

signs it helps to write Eq. (22) in the form,
(

T (a)ψ
)

(x+a) = ψ(x) and to say, “the value of the new

wave function at the new point equals the value of the old wave function at the old point.”

Another remark is that that Eq. (23) uses the translation operator T (a) in a different sense

from its original definition, because it is acting on a configuration space wave function ψ instead of

a ket |ψ〉. As we say, Eq. (23) gives the representation of the operator T (a) on configuration space

wave functions.

Finally, we remark that many books would write Eq. (23) without the parentheses, that is, as

T (a)ψ(x) = ψ(x − a). (24)
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x

x0 x0 + a

ψ(x) ψ(x− a)

T (a)

Fig. 1. The action of the translation operator T (a) on a wave function ψ(x).

The problem with this notation is that it is not clear what T (a) acts on. ψ is a function, and ψ(x)

is the value of that function at a point x, that is, it is a number. Does T (a) act on the function or

the value of the function? Obviously, it acts on the function, which is what the extra parentheses

in Eq. (23) make explicit.

The translation operator is easily generalized to three dimensions, where the displacement a is

a vector, and the translation operator is defined by

T (a)|x〉 = |x+ a〉. (25)

The other formulas and results of this section are easily generalized to the three-dimensional case.

4. Properties of the Translation Operators

The translation operators in one dimension satisfy the following properties:

T (0) = 1, (26a)

T (a)T (b) = T (a+ b) = T (b)T (a), (26b)

T (a)−1 = T (−a), (26c)

T (a)−1 = T (a)†. (26d)

Property (26a) follows immediately from the definition (21). Property (26b) is the composition law

that is also obvious from the definition (21); it can be proved explicitly by writing

T (a)T (b)|x〉 = T (a)|x+ b〉 = |x+ b+ a〉 = T (a+ b)|x〉. (27)

Note that the parameter x+b+a of the ket |x+b+a〉 is just a label of the ket, so these labels obey the

usual (commutative) rules for addition. This implies that the translation operators are commutative,

as indicated in Eq. (26b). The third property (26c) is proved by setting b = −a in Eq. (26b). The

translation operators are invertible. The last property (26d) states that the translation operators
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are unitary. We prove this by letting ψ(x) be an arbitrary wave function, and |φ〉 = T (a)|ψ〉, so that

φ(x) = ψ(x− a). Then
∫

dx |φ(x)|2 =

∫

dx |ψ(x − a)|2 =

∫

dx |ψ(x)|2, (28)

as we prove by substituting x′ = x − a in the middle integral. Thus, T (a) preserves the norm of

arbitrary states. But a linear operator that does this is necessarily unitary (see Prob. 1.6(c)).

Altogether, properties (26a)–(26d) qualify the set of translation operators as a group of unitary

operators. Unitary operators appear frequently in symmetry operations because these are the only

linear operators that preserve probabilities (hence, the results of physical measurements). In this

case, the group is Abelian, which means that the translation operators commute with one another

(property (26b)).

5. The Generator of Translations

A simple idea that arises in the case of continuous symmetries is that a given, finite symme-

try operation can be built up as a composition of smaller symmetry operations. For example, a

displacement of one meter is the composition of a thousand displacements of one millimeter. In

the limit we can imagine a finite symmetry operation as being built up out of an infinite number

of infinitesimal symmetry operations. For this reason, special attention is attached to infinitesimal

symmetry operations. It turns out that infinitesimal versions of unitary symmetry operators in

quantum mechanics are always expressible in terms of certain Hermitian operators, which are called

the generators of the symmetry. We will now see how this works out in the case of translations.

Thinking of a small displacement a, we expand the translation operator T (a) in a Taylor series

in powers of a. This series begins with

T (a) = T (0) + a
dT

da
(0) + . . . . (29)

The first (zeroth order) term is T (0) = 1, and as for the second (first order) term, we notice that

dT/da|a=0 does not depend on a so it is some operator with no parameters. We put this into a more

convenient form by defining

k̂ = i
dT

da
(0), (30)

where the hat emphasizes that k̂ is an operator (in contrast to a, which is a number).

In these notes we frequently use a hat to distinguish an operator from an ordinary number, or

from the classical counterpart of the operator. We normally omit the hat when there is no danger

of confusion (for example, T above is an operator, but we put no hat on it). But we also use the

hat for unit vectors, and certain other purposes. We will explain these as they arise, so the meaning

will be clear in any particular context.

Through first order, we can write the expansion of the translation operator as

T (a) = 1− iak̂ + . . . . (31)
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We have split off a factor of i in the definition (30) so that k̂ will be Hermitian. This follows when

we use Eq. (31) to write out the series for T (a)† and T (−a) = T (a)−1:

T (a)† = 1 + iak̂† + . . . ,

T (−a) = 1 + iak̂ + . . . ,
(32)

which by Eqs. (26c) and (26d) must be equal. But this implies

k̂ = k̂†. (33)

The Hermitian operator k̂ appears in the first correction term in Eq. (31), which, when a is

small, is an infinitesimal translation. For this reason k̂ is regarded as the generator of translations

in one dimension. That is, if we knew how to act on states with the operator k̂, we could bring

about an infinitesimal translation; and finite translations are compositions of a large number of

small translations. As yet we have no physical interpretation for k̂, but since it is Hermitian it must

correspond to the measurement of some physical quantity. We will see in a moment what that is.

6. Exponential Form for Translation Operators

We have only written out the first two terms in the Taylor series (31) for T (a), but the entire

series can be summed and put into a neat form. To do this we will obtain a differential equation

for T (a) and then solve it. See Prob. 1.2(a), which uses similar techniques. We first write out the

definition of the derivative of T (a) as a limit,

dT (a)

da
= lim

ǫ→0

T (a+ ǫ)− T (a)

ǫ
. (34)

By Eq. (26b), the first term in the numerator can be written as T (ǫ)T (a), which allows the operator

T (a) to be factored out of the entire numerator to the right:

dT (a)

da
=

(

lim
ǫ→0

T (ǫ)− 1

ǫ

)

T (a). (35)

But the remaining limit is just the derivative dT (a)/da evaluated at a = 0, which by Eq. (30) is

−ik̂. Altogether, we obtain
dT (a)

da
= −ik̂ T (a). (36)

This is a differential equation that we must solve subject to the initial conditions T (0) = 1. The

solution is immediate,

T (a) = exp(−iak̂). (37)

Now we can easily extend the power series (31) to higher order,

T (a) = 1− iak̂ − 1

2
a2k̂2 + . . . . (38)



10 Notes 4: Spatial Degrees of Freedom

We see that the generator of translations k̂, which first appeared in infinitesimal translation

operators, also appears in the exponential form for finite translation operators.

There is another way to obtain Eq. (37) that is closer to the idea of building up finite transfor-

mations from infinitesimal ones. Suppose a is a displacement that is not small. We break it up into

a large number N of small displacements, writing ǫ = a/N . Then property (26b) implies

T (a) = T (ǫ)N . (39)

But if ǫ is small, we can approximate T (ǫ) by the first two terms of the Taylor series, as in Eq. (31),

without assuming at this point that we know what the higher order terms are. Thus we have

T (a) ≈ (1− iǫk̂)N . (40)

This approximation should get better as ǫ gets smaller, that is, as N increases. This makes it

plausible that we should have the limit,

T (a) = lim
N→∞

(

1− iak̂

N

)N

. (41)

This is similar to the limit of elementary calculus,

lim
N→∞

(

1 +
x

N

)N

= ex. (42)

Applying this to Eq. (41) we obtain the exponential expression (37).

7. Action of k̂ on Kets and Wave Functions

It is easy to work out the action of k̂ on the basis kets |x〉. We simply write

k̂|x〉 = i
dT (a)

da
|x〉

∣

∣

∣

a=0
= i

d

da
|x+ a〉

∣

∣

∣

a=0
= i

d

dx
|x〉. (43)

The derivative of the ket |x〉 may look strange. In wave function language it is the derivative of a

δ-function. One can use expressions with derivatives of kets as in Eq. (43), formally integrating by

parts as if they were ordinary functions, and obtain correct answers.

We obtain an equivalent result that looks more familiar by working out the action of k̂ on a

wave function. The procedure is the same:

(k̂ψ)(x) = i
(dT (a)

da
ψ
)

(x)
∣

∣

∣

a=0
= i

d

da
ψ(x− a)

∣

∣

∣

a=0
= −idψ(x)

dx
. (44)

We start to see the appearance of the usual momentum operator on wave functions.
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8. Translations in Three Dimensions, and Commutation Relations

In a similar manner, for translation operators in three dimensions we define

k̂i = i
∂T (a)

∂ai

∣

∣

∣

a=0
, (45)

where i = 1, 2, 3. This gives us a Hermitian vector operator (that is, a vector of Hermitian operators)

k̂, with components k̂i, i = 1, 2, 3. Now the exponential form of the translation operator is

T (a) = exp(−ia · k̂) = 1− ia · k̂− 1

2
(a · k̂)2 + . . . . (46)

This series can be used to obtain the commutation relations of the operators k̂ = (k̂1, k̂2, k̂3).

We expand the product T (a)T (b) in power series, carrying everything to second order,

T (a)T (b) =
[

1− i(a · k̂)− 1

2
(a · k̂)2 + . . .

][

1− i(b · k̂)− 1

2
(b · k̂)2 + . . .

]

= 1− i(a+ b) · k̂− 1

2
(a · k̂)2 − (a · k̂)(b · k̂)− 1

2
(b · k̂)2 + . . . . (47)

But since T (a)T (b) = T (b)T (a), the answer must be the same if we swap a and b. Most of the

series is obviously symmetric in a and b, but the one term (a · k̂)(b · k̂) is not. When we subtract

the swapped series from the original series, we obtain a vanishing commutator,

[a · k̂,b · k̂] = 0. (48)

Since this is true for all choices of a and b, we can choose each of these vectors to be one of the unit

vectors along the coordinate axes (nine choices in all), and we find

[k̂i, k̂j ] = 0. (49)

We see that k̂ is a vector of commuting, Hermitian operators.

The relations (43) and (44) are also easily generalized to three dimensions. These give

k̂i|x〉 = i
∂

∂xi
|x〉, (50)

and
(

k̂iψ
)

(x) = −i∂ψ(x)
∂xi

, (51)

or, in vector notation,
(

k̂ψ
)

(x) = −i∇ψ(x). (52)

Equation (51) provides another way to derive the commutation relations (49), that is, the derivatives

∂/∂xi and ∂/∂xj commute with one another.

It is also easy to work out the commutation relations among the operators x̂i and k̂j . We just

apply them to a wave function in opposite orders, obtaining

x̂ik̂jψ = xi

(

−i ∂
∂xj

)

ψ = −ixi
∂ψ

∂xj
,

k̂j x̂iψ =
(

−i ∂
∂xj

)

xiψ = −i δij ψ − ixi
∂ψ

∂xj
.

(53)
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Subtracting these, we find

[x̂i, k̂j ] = i δij . (54)

Combined with Eqs. (11) and (49), this gives a complete set of commutation relations among the

components of the operators x̂ and k̂.

9. The Momentum in Classical Mechanics

We shall make a few remarks about the momentum in classical mechanics, in preparation for

our discussion of the momentum in quantum mechanics.

As explained in Sec. B.11, there is more than one definition of the momentum of particle in

classical mechanics. One is the kinetic momentum,

p = mẋ, (55)

and the other is the canonical momentum,

p =
∂L

∂ẋ
, (56)

where L is the Lagrangian. In the case of a particle of charge q moving in static electric and magnetic

fields E = −∇Φ and B = ∇×A, the Lagrangian is

L(x, ẋ) =
m

2
|ẋ|2 − qΦ(x) +

q

c
ẋ ·A(x), (57)

so the canonical momentum is given by Eq. (B.35), reproduced here,

p = mẋ+
q

c
A(x). (58)

In the presence of a magnetic field (more precisely, in the presence of a vector potential) the defini-

tions of the classical momentum (55) and (56) are not the same. We have not defined the momentum

operator in quantum mechanics yet, but before we do, we must ask which of these two classical mo-

menta will it correspond to, the kinetic or the canonical?

We have been developing the properties of the operator k̂ in quantum mechanics, which is the

generator of displacements. It turns out that there is a similar role played by the momentum in

classical mechanics, but it is the canonical momentum, not the kinetic, that does this. Let us write

f(x, p) be a function of the position and momentum for a particle moving in one dimension. We can

think of f as a classical observable. Then we can define a classical translation operator that acts on

classical observables according to

(

Tcl(a)f
)

(x, p) = f(x− a, p). (59)

This operator moves the function f(x, p) forward in x while leaving p alone. If now a is a small

displacement, then the result can be expanded to first order,

(

Tcl(a)f
)

(x, p) = f(x, p)− a
∂f

∂x
. (60)
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But the correction term can be written in terms of a Poisson bracket of f with the momentum,

−a∂f
∂x

= a{p, f}. (61)

Finite displacements can be built up by composing infinitesimal displacements, and the result

can be expressed in terms of an exponential series of iterated Poisson brackets. We introduce the

following notation for the Poisson bracket,

LXA = {X,A}, (62)

where X and A are arbitrary classical observables. Then a finite displacement can be expressed as

Tcl(a) = exp(aLp), (63)

that is,

f(x− a, p) =
(

Tcl(a)f
)

(x, p) =
(

exp(aLp)f
)

(x, p)

= f(x, p) + a{p, f}+ a2

2!
{p, {p, f}}+ . . .

= f(x, p)− a
∂f

∂x
(x, p) +

a2

2!

∂2f

∂x2
(x, p) + . . .

(64)

which may be compared to Eqs. (37) and (38). The result is the Taylor series expansion of f(x, p)

in the variable x. It may also be compared to the exponential series developed in Prob. 1.2(a).

These results are easily generalized to three dimensions. In three dimensions, the distinction

between the kinetic and canonical momentum becomes important. It is the canonical momentum, not

the kinetic, that generates translations in classical mechanics (in cases where it makes a difference).

That is, the Poisson brackets are computed with respect to the canonical momentum, not the kinetic.

See Eq. (B.100).

The role that momentum plays in classical mechanics as the generator of displacements is

closely connected with the conservation of momentum in systems with translational symmetry. This

conservation law is a special case of Noether’s theorem, which presents a general relationship between

continuous symmetries and conserved quantities.

10. The Momentum in Quantum Mechanics

Let us work in three dimensions. According to the postulates of quantum mechanics, mea-

surements of the momentum p of a particle must correspond to some operator (actually, a vector

of three operators), call it p̂, where the hat distinguishes the classical or c-number momentum p

from the operator. At this point we know what the Hilbert space is for particles moving in three

dimensions; it is a ket space E that isomorphic to the space of wave functions ψ(x). But what does

the momentum operator p̂ do to states in this space? That is, what is the momentum operator

explicitly?
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The operator k̂ is the generator of displacements in quantum mechanics, since by Eq. (31) it

provides the small correction necessary when an infinitesimal displacement is carried out. Also, as

noted, k̂ corresponds to the measurement of some physical quantity, and both k̂ and p (the latter

being the generator of translations in classical mechanics) are vectors. So the suspicion arises that

k̂ is related to the momentum operator p̂ in quantum mechanics. The vector operators k̂ and p̂

cannot be equal, however, because they have different units: k̂ has units of inverse length, and p̂

has units of momentum. To make the units come out right we guess that there is a proportionality

factor between p̂ and k̂ with units of action, a constant that we call h̄:

p̂ = h̄k̂. (65)

We take this as the definition of momentum in quantum mechanics.

The postulates of quantum mechanics do not tell us what quantum operator corresponds to a

given classical quantity, so we must not think that the definition of momentum p̂ is engraved in

stone. The best we can do is to find a vector of operators in quantum mechanics that has properties

similar to the classical momentum and that goes over to the classical momentum in the classical

limit. In fact, the similarity with the classical momentum (as the generator of translations) has

motivated the definition (65), and, as for the classical limit and the other expected properties of

momentum, they will be laid bare as we proceed.

11. The Constant h̄

Notice that h̄ did not appear in the postulates of quantum mechanics; it appears for the first

time in our development of the formalism in Eq. (65). The value of h̄ in ordinary units must be

determined experimentally. The discussion so far has been based on the analysis of a single particle

moving in three-dimensional space, so one might question whether different particles have different

values of h̄. We would not get the usual classical limit if this were so, so it seems theoretically

doubtful that there are different values of h̄, but it is a question that can be tested experimentally

(all the h̄’s turn out to be the same to within experimental accuracy). Given that there is only one

h̄, there is the option of choosing “natural units” in which h̄ = 1.

The relation (65) implies the usual de Broglie relation connecting momentum and wavelength,

λ =
2πh̄

p
, (66)

as we shall show momentarily, so the value of h̄ can be determined by measuring the de Broglie

wavelength of a particle of a known momentum. The most elegant experiments along these lines

have involved Bragg diffraction of a neutron beam from a single, large (about 10cm) silicon crystal

with no dislocations or grain boundaries. The manufacture of such crystals has become feasible

with modern semiconductor technology. The predictions of the relation (65) are fully confirmed.

Actually, if Eq. (65) were not correct, there are very few of the theoretical predictions of quantum

mechanics that would agree with experiment.
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The silicon neutron interferometer just mentioned was used in the 1970’s to measure the phase

shift of neutron wave functions as the neutrons fall in the earth’s gravitational field. This was

the first demonstration that gravitational potentials enter the Schrödinger equation in the same

manner as other potentials. The experiment and results are discussed in Sakurai, Modern Quantum

Mechanics and in Commins, Quantum Mechanics: An Experimentalist’s Approach. Commins has a

particulary nice explanation of the neutron interferometer.

The fact that h̄ is a universal constant was known to Planck and others in the 1890’s, even

before quantum mechanics existed. Planck knew that a constant with dimensions of action must

occur in the expression for the spectrum of black body radiation, even before the correct expression

was known. He also realized that h = 2πh̄, c and G (Newton’s constant of gravitation) could be

combined to create a natural system of units for distance, time and mass. The Planck unit of

distance is

LPlanck =

√

h̄G

c3
= 1.6× 10−33cm. (67)

It is the length scale at which the effects of both quantum mechanics and gravity are expected to be

important. Physics at such scales is currently a matter of much speculation, and is likely to remain

so for some time, in view of the near impossibility of direct experimental tests. Nevertheless the

importance of the length scale itself has been known for a long time.

12. The Momentum in Quantum Mechanics: The History

The pseudo-axiomatic approach we are taking here to the development of the momentum op-

erator in quantum mechanics is quite different from the historical one. In a series of papers between

1905 and 1916, Einstein developed the idea that light of frequency ω and wave vector k is associated

with particles of energy E = h̄ω and momentum p = h̄k. We now call these particles “photons,”

although that name was not coined until later. According to Maxwell’s equations the frequency and

wave number of a light wave are related by ω = ck, so Einstein’s formulas give the energy-momentum

relation for the photon as E = cp, exactly what the special theory of relativity predicts for a massless

particle traveling at the speed of light. Einstein’s arguments relied heavily on statistical mechanics.

Most physicists of the time regarded the idea of particles of light as completely crazy, since it had

been established a hundred years earlier that light was a wave. But in 1922 Compton showed exper-

imentally that collisions between x-rays and electrons obey the relativistic rules of conservation of

energy and momentum, assuming Einstein’s expressions for the energy and momentum of the pho-

ton. With this physicists began to take the wave-particle duality more seriously. In 1924, de Broglie

argued that if light could have both wave and particle aspects, then so might ordinary particles also

have wave aspects. This was in part an appeal to the unity of physics, and a suggestion offered by

the equivalence of energy and mass, as shown by special relativity. De Broglie suggested that the

formulas E = h̄ω and p = h̄k should apply also to massive particles, giving the frequency and wave

vector of a wave associated with the particles. Somewhat later Debye remarked that if there was a
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wave, there should be a wave equation, and Schrödinger, on hearing of this, set out to find it. He

first tried a relativistic wave equation without success, only later trying the nonrelativistic version

which gave an explanation of the hydrogen spectra and other physical facts. The latter equation is

the one usually associated with his name.

A good recent book that covers this history and much else is Einstein and the Quantum by A.

Douglas Stone.

13. Properties of the Momentum

We will provisionally accept the definition (65) of the momentum operator in quantum mechan-

ics, and proceed to examine the consequences. First, the translation operators can now be written

in the form,

T (a) = exp
[

− i

h̄
(a · p̂)

]

= 1− i

h̄
(a · p̂) + . . . . (68)

The various commutation relations we have evaluated may now be expressed in terms of p̂ instead

of k̂ and gathered together in one place,

[x̂i, x̂j ] = 0, (69a)

[x̂i, p̂j ] = ih̄ δij , (69b)

[p̂i, p̂j ] = 0. (69c)

These are the Heisenberg-Born commutation relations. They may be compared to the classical

canonical Poisson bracket relations, Eqs. (B.108).

Also, the properties (50) and (52) of the operators k̂ are easily translated into the properties of

the momentum. We have

p̂|x〉 = ih̄∇|x〉, (70)

and

(p̂ψ)(x) = −ih̄∇ψ(x). (71)

Equation (70) gives the action of the momentum operator in ket language, whereas Eq. (71) gives

it in the position representation. It has other forms in other representations. Another form of these

equations is

〈x|p̂|ψ〉 = −ih̄∇〈x|ψ〉. (72)

This is really a rephrasing of Eq. (71), and can be obtained by taking the Hermitian conjugate of

Eq. (70) and then multiplying by the ket |ψ〉.

14. The Momentum Representation

Because p̂ is a vector of commuting, Hermitian operators, these operators possess a simultaneous

eigenbasis. We write the eigenvalue-eigenket problem for momentum in the form,

p̂|p〉 = p|p〉. (73)
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We solve this in the configuration representation, that is, we multiply Eq. (73) on the left by the

bra 〈x|, define the wave function of the momentum eigenket |p〉 by

ψp(x) = 〈x|p〉, (74)

and use Eq. (71) to obtain

−ih̄∇ψp(x) = pψp(x). (75)

Thus, ψp(x) is the eigenfunction of the differential operator −ih̄∇ (really three commuting differ-

ential operators) with eigenvalue p. The solution exists for all values of p and is unique to within a

constant,

ψp(x) = Aeip·x/h̄, (76)

where A is a normalization and a phase. Thus, momentum has a continuous spectrum, so we

normalize the eigenstates according to

〈p1|p2〉 = δ3(p1 − p2). (77)

Using the integral
∫

d3x ei(p2−p1)·x/h̄ = (2πh̄)3δ(p1 − p2), (78)

the normalization constant A in Eq. (76) is determined to within a phase, which we fix by demanding

that A be real and positive. The result is

〈x|p〉 = 1

(2πh̄)3/2
eip·x/h̄.

(79)

The eigenfunctions of momentum are plane waves, whose wave length is given by the de Broglie

relation (66).

Since the momentum eigenstates are nondegenerate, the momentum operators p̂ form a complete

set of commuting observables, and we may speak of the momentum representation. The resolution

of the identity in this representation is

1 =

∫

d3p |p〉〈p|. (80)

We will denote the wave function of the state |ψ〉 in the momentum representation by

φ(p) = 〈p|ψ〉 (81)

(compare Eq. (15) for the configuration representation), so that by multiplying Eq. (80) onto the

ket |ψ〉 we obtain

|ψ〉 =
∫

d3p |p〉φ(p), (82)

similar to Eq. (16) in the configuration representation. The wave function φ(p) is the expansion

coefficients of the state |ψ〉 with respect to the momentum eigenbasis {|p〉}.
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By using Eq. (79) and resolutions of the identity it is easy to switch back and forth between

wave functions ψ(x) and φ(p), representing the same quantum state in two different representations.

For example, we have

ψ(x) = 〈x|ψ〉 =
∫

d3p 〈x|p〉〈p|ψ〉 =
∫

d3p

(2πh̄)3/2
eip·x/h̄ φ(p), (83)

and its inverse,

φ(p) =

∫

d3x

(2πh̄)3/2
e−ip·x/h̄ ψ(x). (84)

The wave functions ψ(x) and φ(p) are Fourier transforms of one another, modulo the insertion of

factors of h̄ to account for the physical units.

In the momentum representation, the operator p̂ is represented simply by multiplication by p,

the vector of c-numbers. That is, if φ(p) is given in terms of the state |ψ〉 by Eq. (81), then the

momentum space wave function of the state p̂|ψ〉 is

〈p|p̂|ψ〉 = p〈p|ψ〉 = pφ(p), (85)

where we have allowed p̂ to act to the left on the bra 〈p|, bringing out the eigenvalue p. We can

write this as

(p̂φ)(p) = pφ(p). (86)

Similarly, the operator x̂ in the momentum representation is given by

(x̂φ)(p) = ih̄
∂φ(p)

∂p
. (87)

Compare this to Eq. (71), and notice the difference in sign. This follows since if φ(p) is related to

|ψ〉 by Eq. (81), then what we mean by the left-hand side of Eq. (87) is

〈p|x̂|ψ〉 =
∫

d3x 〈p|x〉〈x|x̂|ψ〉 =
∫

d3x

(2πh̄)3/2
e−ip·x/h̄ xψ(x)

= ih̄
∂

∂p

∫

d3x

(2πh̄)3/2
e−ip·x/h̄ ψ(x) = ih̄

∂φ(p)

∂p
. (88)

Finally, we summarize the representations of the operators x̂i and p̂i in the configuration and

momentum representations in Table 1.

x̂i p̂i

Configuration mult by xi −ih̄ ∂

∂xi

Momentum ih̄
∂

∂pi
mult by pi

Table 1. Representations of the operators x̂i and p̂i when acting on configuration and momentum space wave functions.
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15. Multiparticle Wave Functions

In a system of N particles, the positions of the individual particles are independent observables

that commute with one another, so a complete set (ignoring spin for now) consists of the operators

(x̂1, . . . , x̂N ), with eigenvalues (x1, . . . ,xN ). In this case the wave function is defined by

ψ(x1, . . . ,xN ) = 〈x1, . . . ,xN |ψ〉. (89)

The wave function is defined over configuration space, that is, the space in which a single point

specifies the positions of all the particles. This is the same configuration space as in classical

mechanics, which is discussed in Sec. B.3. Configuration space coincides with physical space only

in the case of a single particle. Similarly, one can define a multiparticle, momentum space wave

function φ(p1, . . . ,pN ).

If one is careful about the application of the postulates of quantum mechanics, one will see

certain subtleties in the derivation of Eq. (89) in the case of identical particles. We will examine

this question more carefully in Notes 29.

16. The Sign of i

The following is a remark concerning the the definition of k̂ in Eq. (30), which led to the

definition of momentum in Eq. (65). We split off a factor of i in Eq. (30) to make k̂ Hermitian, but

the same would have been achieved if we had split off −i (thereby changing the definition of k̂ by

a sign). This would lead to the opposite sign in the definition of p̂, and changes in signs in many

of the subsequent formulas. Would this change lead to any physical consequences or contradictions

with experiment?

The answer is no, but it would change most of the familiar formulas in quantum mechanics, by

replacing i by −i. For example, a plane wave with wave vector k would become e−ik·x instead of

the usual eik·x. It is a matter of convention to choose the sign of i in quantum mechanics, and our

choice has been made in Eqs. (30) and (65). Once this choice has been made, however, then the sign

of the Pauli matrix σy is determined, so that spin angular momentum has the same commutation

relations as orbital angular momentum. This was a question addressed in Prob. 3.2(d).

17. The Position-Momentum Uncertainty Relation

The generalized uncertainty relations (2.49), applied to the case of position x and momentum

p of a particle in one-dimension, for which [x, p] = ih̄, give

∆x∆p ≥ h̄

2
. (90)

This can be used in a number of applications to obtain quick estimates of orders of magnitude of

physical quantities, including three-dimensional problems where for simplicity we ignore the vector

nature of x and p. We give several examples.
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Consider a beam of particles of well defined momentum p = p0 ẑ directed at a screen in the

plane z = 0. The screen has a hole of dimension L (the hole need not be circular, L is just an

order of magnitude estimate of the size of the hole). The hole confines the particles in the x- and

y-directions to a distance of order L, so by Eq. (90) the particles acquire a transverse momentum

(in the x- or y-directions) roughly of magnitude

p⊥ =
h̄

L
, (91)

where we drop constants of order unity since this is only an estimate. Thus downstream from the

hole the beam should spread at an angle given roughly by

θ =
p⊥
p0

=
h̄

Lp0
=

λ

2πL
, (92)

where λ is the wave length of the incident waves. This calculation assumes the angle θ is small,

which is equivalent to λ ≪ L, that is, the hole should be at least a few wavelengths in diameter.

This very simple estimate of the spreading angle of the beam is confirmed by more complicated

calculations of diffraction theory in the far-field (Fraunhofer) region.

If we eliminate all momenta p in favor of wave numbers k, by p = h̄k, then all the h̄’s disappear

and we have results that can be applied also to classical waves (light waves, sound waves, etc).

For another example, let a be an estimate of the size of a hydrogen atom. The electron is

confined to a distance of order a and so must have a momentum of order p = h̄/a. In a circular

orbit this implies a centrifugal force of

mv2

a
=

p2

ma
=

h̄2

ma3
. (93)

Equating this to the electrostatic force on the electron from the proton, e2/a2, and solving for a, we

obtain

a =
h̄2

me2
. (94)

This is the usual expression for the Bohr radius. Given an estimate for the size of an atom and the

known density of ordinary matter, one also obtains an estimate for the Avogadro number and many

other physical quantities.

18. Minimum Uncertainty Wave Packets

Let us loosely define a wave packet in one dimension as a wave function ψ(x) whose dispersions

∆x and ∆p, defined as in Sec. 2.8 by

(∆x)2 = 〈x̂2〉 − 〈x̂〉2,
(∆p)2 = 〈p̂2〉 − 〈p̂〉2,

(95)

are small, that is, close to the minimum values allowed by the inequality,

∆x∆p ≥ h̄

2
. (96)
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See Eq. (2.50). Similarly, let us define a minimum uncertainty wave packet as one for which the

product ∆x∆p takes on its minimum value of h̄/2.

Let ψ(x) be a normalized, minimum uncertainty wave packet with

〈ψ|x̂|ψ〉 = 〈x̂〉 = 0,

〈ψ|p̂|ψ〉 = 〈p̂〉 = 0,
(97)

and let ∆x = L, so that ∆p = h̄/2L. Now let

|ζ〉 =
(

x̂+
2iL2

h̄
p̂
)

|ψ〉. (98)

The operator appearing on the right seems to have been pulled out of the air, but it is a version of

an annihilation operator of the general form x̂ + ip̂, with coefficients adjusted to make the follow-

ing argument come out right. We will see such annihilation operators again when we discuss the

harmonic oscillator. Now squaring Eq. (98), we obtain

〈ζ|ζ〉 = 〈x̂2〉+ 2iL2

h̄
〈x̂p̂− p̂x̂〉+ 4L4

h̄2
〈p̂2〉 = L2 − 2L2 + L2 = 0. (99)

This implies |ζ〉 = 0 (see Eq. (1.27)), so Eq. (98) in wave function language becomes

2L2dψ

dx
+ xψ = 0, (100)

which has the normalized solution,

ψ(x) =
1

√

L
√
2π

e−x2/4L2

. (101)

The minimum uncertainty wave packet is a Gaussian. If we allow 〈x̂〉 = a and 〈p̂〉 = b to take

on arbitrary values a, b as shown, then we find

ψ(x) =
1

√

L
√
2π

exp
[

− (x− a)2

4L2
+ i

b(x− a)

h̄
+ iγ

]

, (102)

where γ is a phase. The wave packet is still a Gaussian, but it has been shifted in position and

momentum.

Problems

1. Let |ψ〉 be the state of a spinless particle in three dimensions, and let φ(p) = 〈p|ψ〉 be its

momentum space wave function. Find the momentum space wave function of the state T (a)|ψ〉,
that is, find the action of the translation operator T (a) in the momentum representation.

2. Consider a particle moving in one dimension. In classical mechanics, the state of the particle is

given by its position x and momentum p, and other observables such as energy are functions of these.
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The classical position and momentum are ordinary numbers, and obey the usual (commutative) rules

of algebra, for example, xp = px. In quantum mechanics, we have the operators x̂ and p̂ which are

analogous to the classical x and p, and other observables such as the Hamiltonian are functions of

x̂ and p̂. On the other hand, x̂ and p̂ do not obey a commutative algebra, in view of the relation

x̂p̂ = p̂x̂+ ih̄.

A question that has exercised various people is the relation between classical observables (that

is, functions of x and p) and quantum observables (that is, functions of x̂ and p̂). One problem is to

quantize a classical observable, that is, given a classical function A(x, p), what is the corresponding

quantum observable? Dirac suggested that x and p should be associated with x̂ and p̂, but this gives

rise to an ambiguity in cases like the classical function xp. Should it correspond to x̂p̂ or to p̂x̂, or

maybe to their average (which at least would be Hermitian)?

Another answer to this question was given by Weyl. We introduce the Weyl transform in this

problem because it is good exercise in the position and momentum representations.

We denote operators with a hat, as in x̂ or Â, and we denote eigenvalues or classical quantities

without a hat, as in x or A(x, p). We work in one dimension, and think of a wave function ψ(x) or

ψ(x, t).

If Â is an operator, we define the Weyl transform of Â, denoted A(x, p), by

A(x, p) =

∫ +∞

−∞

ds e−ips/h̄ 〈x+ s/2|Â|x− s/2〉. (103)

Here the notation |x − s/2〉, for example, means the eigenket of x̂ with eigenvalue x − s/2. It is

useful to think of A(x, p) as a function defined on the classical (x, p) phase space which is in some

sense the classical observable corresponding to the quantum operator Â.

(a) Show that if A(x, p) is the Weyl transform of operator Â, then A(x, p)∗ is the Weyl transform

of Â†. In particular, this shows that the Weyl transform of a Hermitian operator is a real function

on phase space.

(b) Show that if operators Â and B̂ have Weyl transforms A(x, p) and B(x, p), respectively, then

tr(Â†B̂) =

∫

dx dp

2πh̄
A(x, p)∗B(x, p). (104)

Notice how the right hand side looks like the “scalar product” of two classical observables on phase

space.

(c) Find the Weyl transforms of the following operators: 1 (the identity operator); x̂; p̂; x̂p̂; p̂x̂;

p̂2/2m+ V (x̂).

(d) The classical probability density ρ(x, p) in phase space (see Sec. B.24) describes a system whose

dynamical state can only be described statistically. Since ρ(x, p) is a probability density, it is

nonnegative, ρ(x, p) ≥ 0, and it is normalized,
∫

ρ(x, p) dx dp = 1. (105)
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The probability density in x alone (call it F (x)) or in p alone (call it G(p)) is obtained by

integrating ρ over the other variable (p or x),

∫

ρ(x, p) dp = F (x),

∫

ρ(x, p) dx = G(p), (106)

and each of these is normalized,

∫

F (x) dx = 1,

∫

G(p) dp = 1. (107)

The functions F (x) or G(p) are called marginal distributions in statistics.

It turns out that the Weyl transform W (x, p) of the density operator ρ̂ in quantum mechanics

is very similar in its properties to the classical probability density ρ(x, p). The function W (x, p) is

called the Wigner function. Because ρ̂ is Hermitian, the Wigner function is real.

For simplicity let us work with a pure state, so ρ̂ = |ψ〉〈ψ|. Express the marginal distribution

∫

W (x, p) dp (108)

in terms of the wave function ψ(x). Now let φ(p) be the momentum space wave function, and express

the marginal distribution
∫

W (x, p) dx (109)

in terms of φ(p). What is the normalization integral,

∫

W (x, p) dx dp? (110)

These results suggest that W (x, p) is a distribution function of particles in phase space whose

statistics reproduces the statistics inherent in quantum measurement, apart from the normalization.

Unlike a classical distribution function ρ(x, p), however,W (x, p) can take on negative values. These

“negative probabilities” have no meaning in any statistical sense, but they only arise, in a certain

sense, when we attempt to measure x and p simultaneously to a precision greater than that allowed

by the uncertainty principle. The Wigner function can be used to express quantum statistical

mechanics in a manner that is surprisingly similar to classical statistical mechanics, but one which

is still fully quantum mechanical.

3. Given that the range of the nuclear forces is approximately 10−13 cm, estimate the velocity of

the proton or neutron in a deuteron (a bound state of a proton and a neutron). Compare this v/c

to the v/c of the electron in the ground state of hydrogen. It is believed that nuclear forces are

independent of the charge state of the nucleon; thus, two protons should feel the same nuclear force

as two neutrons. Calculate the nuclear force between two protons at a distance of 10−13 cm and

compare to the electrostatic force.
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4. Let f(x) be an arbitrary function of x and g(p) and arbitrary function of p. Evaluate the

commutators, [pi, f(x)] and [xi, g(p)].

5. The Large Hadron Collider is designed to reach an energy of 7 TeV (7 × 1012 eV). What is the

smallest distance scale that can be probed at these energies? How does it compare to the Planck

length, at which the effects of quantum gravity are expected to be important?


