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Notes 41

The Quantized Electromagnetic Field†

1. Introduction

In these notes we will quantize the electromagnetic field, starting with the classical Hamiltonian

description worked out in Notes 40. We will work primarily with the free field, and leave the

interaction with matter for later sets (Notes 42 and 43). These notes continue with the notation

established in Notes 40.

2. Dirac or Canonical Quantization

To quantize a classical system means that we pass from a classical description of the system to

the quantum description. The classical description involves a classical Lagrangian or Hamiltonian,

and a set of classical coordinates describing the dynamical state, that is, a set of q’s and q̇’s or q’s and

p’s. Classical observables are functions of these coordinates. In the quantum description, the q’s and

p’s become reinterpreted as operators that act on a state space or Hilbert space of some kind. Since

quantum mechanics has more physics in it than classical mechanics, the process of quantization can

never be completely deductive. Instead, the classical mechanics offers at best a guide to guessing

the structure of the quantum system. Ultimately the correctness of the quantum system we have

obtained must be checked experimentally.

Nevertheless, the procedure that is known to work for mechanical systems is to replace the q’s

and p’s of the classical system by operators that satisfy the canonical commutation relations,

[qi, qj ] = 0, [pi, pj] = 0, [qi, pj ] = ih̄ δij . (1)

See Eqs. (4.69). These are the obvious analogs of the classical canonical Poisson bracket relations,

see Eq. (B.108). Then the state space of the quantum system is taken to be the Hilbert space of

wave functions ψ(q1, . . . , qN ), and the quantum q’s and p’s have an action on this space given by

qi = multiplication by qi, pi = −ih̄ ∂

∂qi
, (2)

which cause the commutation relations (1) to be satisfied. As we say, we have found a representation

of the commutation relations (1) by means of specific operators acting on a specific Hilbert space.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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This procedure is called canonical or Dirac quantization. In mechanical systems it only works

if the q’s and p’s are the Cartesian coordinates of the particles of the system. Even then if there are

classical observables that contain q-p products, then it is ambiguous what the corresponding quantum

operator should be, since classically qp = pq, but in quantum mechanics qp = pq+ ih̄. That is, there

is an ordering ambiguity when observables contain products of noncommuting operators.

The reason that Dirac quantization only works in Cartesian coordinates is related to the ordering

ambiguity. In classical mechanics, a coordinate transformation of the form Qi = Qi(q, p), Pi =

Pi(q, p) is said to be a canonical transformation if the new (capitalized) Q’s and P ’s satisfy the

same Poisson bracket relations as the old (lower case) q’s and p’s. This also preserves the form

of Hamilton’s equations of motion. See Sec. B.27. For example, the transformation that takes us

from the Cartesian position x and momentum p of a particle to the spherical coordinates (r, θ, φ)

and corresponding momenta (pr, pθ, pφ) is a canonical transformation. But if we apply the Dirac

quantization prescription in spherical coordinates, then we do not get the right answer for operators

such as the Hamiltonian. The correct way to get the quantum Hamiltonian in spherical coordinates

is first to quantize in Cartesian coordinates, and then to transform to spherical coordinates using the

chain rule for the momentum operators. In other words, Dirac quantization does not commute with

classical canonical transformations. An exception is the case of linear canonical transformations,

where, with the right understandings, quantization does commute with the classical transformation.

In quantum field theory other methods of quantization have been developed that are easier to

apply or better in some respects than canonical quantization. One of the problems with canonical

quantization is that it is not manifestly covariant. In modern field theory one prefers to work with

Lagrangians rather than Hamiltonians, which maintain manifest Lorentz covariance. Quantization

takes place by using the Lagrangian in the path integral, which is an expression for the quantum

propagator. Another issue is that field theories usually involve gauge fields, which transform in

certain ways under gauge transformations. Canonical quantization, however, in its simplest versions,

requires one to fix the gauge. That is, the quantization is not manifestly gauge-invariant. In

fact, the electromagnetic field is a gauge field, and we have already chosen to work in Coulomb

gauge. This destroys not only the manifest Lorentz covariance of the theory, but the manifest gauge

invariance. Nevertheless, canonical quantization is not only the simplest procedure for quantizing

the electromagnetic field, but also the one that historically was pursued first, and we will use it here.

3. Quantizing the Free Electromagnetic Field

In these notes we will work with the free electromagnetic field only. Thus, the Hamiltonian is

just the Hamiltonian for the free field,

H =
1

2

∑

λ

ωk

(

P 2
λ +Q2

λ

)

(3)

[see Eq. (40.75)], where we adopt box normalization as in Notes 40. To quantize, we reinterpret the
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variables Qλ, Pλ as operators satisfying the commutation relations,

[Qλ, Pλ′ ] = ih̄ δλλ′ , [Qλ, Qλ′ ] = [Pλ, Pλ′ ] = 0, (4)

whereupon the Hamiltonian H also becomes an operator.

We see that the free field Hamiltonian is a sum of independent harmonic oscillators, one for

each mode of the field, so we introduce the usual Dirac algebraic formalism for harmonic oscillators.

See Notes 8, and note that Dirac’s formalism is based on the q-p commutation relations, which are

satisfied by the Qλ and Pλ in the present application. First we define the annihilation and creation

operators,

aλ =
Qλ + iPλ√

2h̄
,

a†λ =
Qλ − iPλ√

2h̄
,

(5)

which are just like the classical formulas (40.101) except for the replacement of ∗ by †. These

operators satisfy the commutation relations,

[aλ, a
†
λ′ ] = δλλ′ , [aλ, aλ′ ] = [a†λ, a

†
λ′ ] = 0, (6)

as follows from Eqs. (4). Next we write the free field Hamiltonian (3) in terms of the creation and

annihilation operators,

H =
∑

λ

h̄ωk

(

a†λaλ +
1

2

)

, (7)

where the 1/2 represents the usual zero point energy of a harmonic oscillator. Here we are following

exactly the same procedure we used with mechanical oscillators (see Notes 8), but in a moment we

will have to reconsider this step. We also define the usual number operator,

Nλ = a†λaλ. (8)

What are the ket spaces upon which these operators act? It is possible to introduce a Hilbert

space of wave functions ψ(Qλ) for each mode of the field, but in practice this is never done because

the algebraic relations among the operators and energy eigenkets are all that is ever needed and they

are much more convenient to work with than wave functions. We will denote the energy eigenkets

of a single oscillator λ by |nλ〉, where nλ = 0, 1, . . . is the usual quantum number of a harmonic

oscillator. These kets span a space Eλ associated with the single mode, which is the space upon which

the operators Qλ, Pλ (for the given value of λ) act. The ket space for the entire electromagnetic

field is the tensor product over the modes,

Eem =
∏

λ

⊗Eλ. (9)

An arbitrary (pure) quantum state of the electromagnetic field is a ket in the space Eem.
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The energy eigenstates of H are specified by a list of quantum numbers (. . . nλ . . .), one for each

mode of the field; the eigenstates themselves can be written in various ways,

| . . . nλ . . .〉 =
∏

λ

⊗|nλ〉. (10)

The creation/annihilation operators act on these eigenstates in the usual way,

aλ| . . . nλ . . .〉 =
√
nλ | . . . nλ − 1 . . .〉,

a†λ| . . . nλ . . .〉 =
√
nλ + 1 | . . . nλ + 1 . . .〉,

(11)

where it is understood that a†λ only raises the quantum number for mode λ, and leaves all the others

alone; and similarly aλ only lowers the quantum number for mode λ. See Eq. (8.37). We will call

the basis | . . . nλ . . .〉 the occupation number basis.

The ground state of the free field is the state with all nλ = 0, which we denote simply by |0〉,

|0〉 = | . . . 0 . . .〉. (12)

We call |0〉 the vacuum state. It is not to be confused with the zero ket; the vacuum is a state of

unit norm, 〈0|0〉 = 1. The vacuum ket is annihilated by any annihilation operator and the vacuum

bra is annihilated by any creation operator,

aλ|0〉 = 0, 〈0|a†λ = 0. (13)

On the other hand, by applying creation operators to the vacuum, we can build up any of the energy

eigenstates. That is, we have

| . . . nλ . . .〉 =
∏

λ

(a†λ)
nλ

√

nλ!
|0〉, (14)

which is a generalization of Eq. (8.38) for a one-dimensional, mechanical oscillator.

4. The Energy of the Vacuum

The vacuum is the state of minimum energy of the electromagnetic field. Unfortunately, ac-

cording to Eq. (7), this energy is infinite:

〈0|H |0〉 =
∑

λ

h̄ωk

2
= ∞. (15)

The vacuum energy is the infinite sum of the zero point energies of all the oscillators that make up

the field. In the case of mechanical harmonic oscillators with a finite number of degrees of freedom,

the zero point energy is real and physically meaningful, but here in the case of the electromagnetic

field it is an embarrassment that causes difficulties of physical interpretation.

The zero point energy is just one of several classes of infinities that arise in quantum field

theory, and it is one of the easier ones to rationalize away. In one approach, we simply argue that
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for most physical processes the definition of the origin of energy is a matter of convention, since it

is only differences in energy that matter. Adding a constant to the Hamiltonian does not affect the

equations of motion (either the classical Hamilton equations or the Heisenberg equations in quantum

mechanics), so we ought to be able to throw the zero point energy away since it is just a constant,

albeit an infinite one.

In another approach, we can argue that the zero point energy is connected with the ambiguities

inherent in the quantization of classical Hamiltonians containing nontrivial orderings of q’s and p’s.

It is true that the Hamiltonian (3) does not have any q-p products, but that is true only in the

(Qλ, Pλ) system of canonical coordinates. In another coordinate system there would be nontrivial

products. For example, classically there is no difference between a∗λaλ and aλa
∗
λ, but in quantum

mechanics a†λaλ = aλa
†
λ−1. Therefore if we decided to quantize by replacing a’s and a∗’s by a’s and

a†’s, the quantum Hamiltonian would depend on the ordering of the classical a’s and a∗’s. By using

different orderings, we could get the Hamiltonian (7), or one having twice the zero point energy,

or one with no zero point energy at all. Without further rationalization, we will choose the latter

possibility, so that the Hamiltonian becomes

H =
∑

λ

h̄ωk a
†
λaλ, (16)

and so that the energy of the state | . . . nλ . . .〉 is given by

H | . . . nλ . . .〉 =
(

∑

λ

nλ h̄ωk

)

| . . . nλ . . .〉, (17)

or,

〈. . . nλ . . .|H |. . . nλ . . .〉 =
∑

λ

nλh̄ωk. (18)

In particular, the energy of the vacuum is zero.

5. Is the Zero-Point Energy Real?

As mentioned, the correctness of a quantum theory can only be verified by comparison with

experiment. Are there any observable consequences of the zero point energy that we have just

thrown away? In a mechanical oscillator, one can in principle change the spring constant, that is,

the frequency of the oscillator. If we take a harmonic oscillator, initially in its ground state, and

slowly change the frequency from its initial value to zero, then work is done as the ground state wave

packet slowly expands. It is like the work done by a gas as the volume of its container is increased.

In this way the ground state energy h̄ω/2 can be accessed. There are many other ways of showing

that the zero point energy of a mechanical oscillator is real.

In the case of the electromagnetic field we cannot change the frequencies of the modes, but

we can change the structure of the modes with conductors that change the boundary conditions

satisfied by the electromagnetic field. For example, let us consider a parallel-plate capacitor. For
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simplicity we idealize the conductors as having infinite conductivity at all frequencies. Then the

modes of the field are modified from what they would be in empty space, because of the presence of

the conductors. In particular, the light waves between the plates have a mode structure similar to

the energy eigenfunctions of a particle in a box.

If one quantizes the electromagnetic field in the presence of the plates, one gets one harmonic

oscillator for each mode, just as in the absence of the plates, and the total zero-point energy is still

infinite. But it turns out that it is possible to make sense of the difference between the infinite

zero-point energy in the presence of the plates, and that in the absence of the plates, and that the

result is finite (or rather, the energy per unit area of the capacitor plates is finite). That is, one can

make sense of the difference between two infinities. This difference can be interpreted as the change

in ground state energy of the field when the plates are introduced. If L is the distance between the

plates, then it turns out that this energy per unit area of the plates is given by

E

A
= − π2 h̄c

720L3
, (19)

which depends on L.

Thus we obtain the prediction that as the distance between the plates is varied, work must be

done to make up for the change in the zero point energy. That is, there must be a force between the

plates, or rather a pressure, which is a force per unit area:

F

A
= − d

dL

(E

A

)

= − π2 h̄c

240L4
. (20)

This is called the Casimir effect (see Proceedings of the Koninklijke Nederlandse Akademie van

Wetenschappen 51, 793(1948)). Of course there will be an electrostatic force between the plates

if they carry a charge, but this is a prediction of a force between the plates when they are both

electrically neutral, with a particular dependence on the distance. Because of the minus sign in

Eq. (20), the force is attractive.

The Casimir effect has been tested experimentally, and the results agree with the theory. Ex-

perimentally it is difficult to keep a pair of plates exactly parallel, so some of the work has involved

conductors of different shapes. See Steve K. Lamoreaux, Phys. Rev. Lett. 78, 5(1997). Neverthe-

less, the basic idea is as described here. There has been renewed interest in the Casimir effect in

recent years, because of applications in nanophysics.

The zero point energy is not just an infinite energy, it is an infinite energy density. That is

because we are using box normalization, so when we divide the (infinite) zero point energy by the

volume V of the box, we still have an infinite result. We stated above that for most physical processes

it is only energy differences that are important, but there is one place where the absolute amount

of energy matters, and that is in gravity. Since energy and mass are related by E = mc2, energy

corresponds to mass which produces gravitational fields. An infinite mass density obviously makes

no sense in gravitational theory, but we can argue that the sum over modes in sum (15) for the

zero point energy should be cut off when the wave length becomes comparable to the Planck length
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(see Eq. (4.67)). This gives a finite but very large energy density in space. The energy density is

one component of the stress energy tensor, which is the source of the gravitational field in general

relativity. The other components of the stress energy tensor associated with the zero point of the

field can also be computed, and they give rise to a source term in the Einstein equations for the

gravitational field that is of the form Λ gµν, that is, they have the same form as the cosmological

term, where Λ is the cosmological constant. Recent observations give a small, positive numerical

value for the cosmological constant. This contribution to the stress-energy tensor, the source of

the gravitational field, is sometimes called “dark energy” (not to be confused with “dark matter”).

Unfortunately, the value of Λ obtained from the zero point dynamics of quantum fields is enormously

much larger than the observed value (by a factor of something like 10120). No one knows the reason

for this large discrepancy, but the suspicion remains that the zero point dynamics of quantum fields

have something to do with the cosmological term in general relativity, and hence with the expansion

of the universe.

6. Photons

We saw classically that the normal variable aλ is proportional to the amplitude of a plane

electromagnetic wave of mode λ = (k, µ). Thus, the classical quantity |aλ|2 = a∗λaλ is proportional

to the energy in the mode. But in quantum mechanics, we are finding that the energy in mode λ,

which is proportional to the expectation value of a†λaλ, is quantized in units of h̄ωk. This of course

is exactly as in the original quantum hypothesis developed by Planck and Einstein, and we are led

to interpret a state with quantum number nλ as one containing nλ photons, each with energy h̄ωk.

Actually, Planck only suggested that energy transfers between matter and radiation should

take place in units of h̄ω. It was Einstein who insisted that the energy in the field itself should be

restricted to multiples of h̄ω (that is, the energy in a mode with frequency ω). He also suggested

that these energy quanta should be associated with particles, that is, particles of light. At the time

everyone thought Einstein was crazy, but in the end he proved to be right.

Thus we have the beginning of the particle interpretation of the quantum states that belong

to the ket space Eem. In the following discussion we will gradually flesh out this interpretation by

examining successively the momentum, spin and statistics, and angular momentum of these particles.

In the process, we will see that the formalism we have developed for the quantization of the field

incorporates a quantum mechanical description of a system in which particles can be created or

destroyed, so that the number of particles is variable. The particles in question are photons, which

can be created in arbitrary numbers at arbitrarily low energies, because they are massless. But the

formalism we will develop serves as a paradigm for higher energy (relativistic) processes in which

massive particles can be created or destroyed.
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7. The Momentum of the Field, and of Photons

Einstein also suggested that a photon of energy h̄ω should have a momentum of h̄k, where ω

and k are related by the classical dispersion relation for light waves, ω = c|k|. We turn now to the

momentum of the electromagnetic field, and to the momentum of photons.

To investigate the momentum in the quantum theory, we must transcribe the classical momen-

tum given by Eq. (40.99) into a quantum operator. For the present we are working with the free field

only, for which the matter terms can be dropped and for which E = E⊥. Therefore the momentum

is purely that of the field, given by the second term in Eq. (40.99),

P =
1

4πc

∫

d3xE×B (21)

Classically, the fields are functions of the a’s and a∗’s; our strategy will be to transcribe these to a’s

and a†’s to get a quantum operator.

We begin with the fields A, E = E⊥ and B, which are expressed classically in terms of a’s and

a∗’s by Eqs. (40.103), (40.105) and (40.106). When we transcribe these over to quantum mechanics,

replacing a’s and a∗’s by a’s and a†’s, we obtain the operators,

A(x) =

√

2πh̄c2

V

∑

λ

1√
ωk

(

ǫλaλe
ik·x + ǫ

∗
λa

†
λe

−ik·x
)

, (22)

E⊥(x) =
1

c

√

2πh̄c2

V

∑

λ

√
ωk

(

iǫλaλe
ik·x − iǫ∗λa†λe−ik·x

)

, (23)

B(x) =

√

2πh̄c2

V

∑

λ

1√
ωk

[

i(k×ǫλ)aλe
ik·x − i(k×ǫ

∗
λ)a

†
λe

−ik·x
]

. (24)

Just as in classical field theory, the field point x is regarded merely as a parameter of the fields, but

now the fields themselves are operators, since the right hand sides are linear combinations of the

operators aλ and a†λ. Thus, A(x), E⊥(x), andB(x) are now seen as fields of operators that act on the

ket space of the quantized system; they are our first examples of quantum fields. We note that just

as the classical fields are real, these quantum fields are Hermitian. As usual in quantum mechanics,

Hermitian operators correspond to measurements that can be made on a physical system, and such

measurements are subject to statistical fluctuations and the constraints of the uncertainty principle.

We will see that such features are present in the measurement of the quantized electromagnetic

fields.

To return to the momentum, the expression (21) for P is classical. The classical fields E and B

that appear in the integrand can be expanded as linear combinations of a’s and a∗’s, according to

Eqs. (40.105) and (40.106). But when we replace the a’s and a∗’s by a’s and a†’s in order to obtain

the quantum expression for P, there arises the question of the proper ordering of the classical a’s

and a∗’s. We could simply follow the ordering given by E⊥×B, but this as it turns out leads to an

infinite zero point momentum, much like the zero point energy in Eq. (7). We would like to have
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〈0|P|0〉 = 0, so the momentum of the vacuum would vanish. We can accomplish this if we order the

a’s and a∗’s in the classical formula by placing all a∗’s to the left of all a’s, and then replacing the

a’s and a∗’s by a’s and a†’s. Then when we compute the vacuum expectation value of P, there will

always be an annihilation operator next to the vacuum ket |0〉, or a creation operator next to the

vacuum bra 〈0|, and the result will vanish.

The following notation is convenient for this purpose. If we have any polynomial in a’s and

a†’s, we will define the normal ordered polynomial as the rearrangement obtained by moving all a†’s

to the left and all a’s to the right. In this process, we discard any commutators of a’s and a†’s

(effectively, we work with the classical expression, then replace a’s and a∗’s by a’s and a†’s.) If Q is

such a polynomial, we denote its normal ordered rearrangement by :Q:. For example, we can write

the quantum Hamiltonian of the free electromagnetic field as

H =
1

8π

∫

d3x :E2
⊥ +B2:, (25)

and the momentum of the free field is

P =
1

4πc

∫

d3x :E⊥×B:. (26)

Let us now express the free field momentum P in terms of a’s and a†’s. We substitute Eqs. (23)

and (24) into Eq. (26), and obtain

P =
1

4πc

∫

d3x
1

c

2πh̄c2

V

∑

λλ′

√

ω

ω′
:
[

iǫλaλe
ik·x − iǫ∗λa†λe−ik·x

]

×
[

i(k′×ǫλ′)aλ′eik
′·x − i(k′×ǫ

∗
λ′)a

†
λ′e

−ik′·x
]

:, (27)

where λ = (kµ), λ′ = (k′µ′), and ω = ωk, ω
′ = ωk′ . There are four major terms in this expression.

Let us first consider the term involving the product aλaλ′ :

aλaλ′ -term = − h̄

2V

∫

d3x
∑

kk′

∑

µµ′

√

ω

ω′

[

ǫkµ×(k′×ǫk′µ′)
]

akµak′µ′ ei(k+k
′)·x

= +
h̄

2

∑

kµµ′

[ǫkµ×(k×ǫ−k,µ′)] akµa−k,µ′ , (28)

where we have used
1

V

∫

d3x ei(k+k
′)·x = δk,−k′. (29)

Note that after setting k′ = −k, we have ω′ = ω. Next we expand out the double cross product and

use Eq. (40.52), so that Eq. (28) becomes

aλaλ′ -term =
h̄

2

∑

kµµ′

k(ǫkµ · ǫ−k,µ′) akµa−k,µ′ = − h̄
2

∑

kµµ′

k(ǫ−k,µ′ · ǫkµ) a−k,µ′akµ, (30)

where in the second equality we have replaced the dummy index of summation k by −k, and swapped

the indices µ, µ′. However, since [akµ, a−k,µ] = 0, the whole expression is equal to the negative of
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itself, and therefore vanishes. In a similar manner we find that the term in Eq. (27) involving a†λa
†
λ′

also vanishes.

This leaves the terms involving aλa
†
λ′ and a

†
λaλ′ , of which the first becomes a†λ′aλ upon normal

ordering. By an analysis similar to that above, this term is

a†λ′aλ-term =
h̄

2V

∫

d3x
∑

kk′

∑

µµ′

√

ω

ω′

[

ǫkµ×(k′×ǫ
∗
k′µ′)

]

a†
k′µ′akµ e

i(k−k
′)·x

=
h̄

2

∑

kµµ′

ǫkµ×(k×ǫ
∗
kµ′) a

†
kµ′akµ

=
h̄

2

∑

kµ

k a†
kµakµ =

1

2

∑

λ

h̄k a†λaλ, (31)

where we have used Eq. (40.51) in expanding the double cross product. Similarly, the a†λaλ′ term

gives the same answer, and doubles it. Altogether, we find

P =
∑

λ

h̄k a†λaλ =
∑

λ

h̄kNλ, (32)

where Nλ is the number operator.

The momentum operator P commutes with the Hamiltonian H , and is diagonal in the occupa-

tion number basis | . . . nλ . . .〉 of energy eigenkets. The occupation number basis states are not only

eigenstates of energy, but also of momentum. Explicitly, we have

P| . . . nλ . . .〉 =
(

∑

λ

nλ h̄k
)

| . . . nλ . . .〉. (33)

We see that, just as the energy of a mode of the field is quantized in integer multiples of h̄ωk, the

momentum in the mode is quantized in integer multiples of h̄k. We interpret this by saying that

the photon is a particle of energy h̄ωk and momentum h̄k, which is completely in accordance with

the dispersion relation ω = ck for a light wave, as well as the relativistic energy-momentum relation

E = cp for a massless particle. This is exactly as predicted by Einstein.

8. History of the Planck Radiation Law, and the Birth of Quantum Mechanics

Quantum mechanics was born in 1900 with Planck’s announcement of his expression for the

energy density per unit frequency in black body radiation. Planck and others had been working

on the black body spectrum for a number of years, and by the 1890’s the high frequency part of

the spectrum was known, due to some work by Wien. This part of the spectrum already contained

Planck’s constant, whose significance as a fundamental constant of nature was appreciated by Planck.

In the fall of 1900 Planck was able to make a sophisticated guess as to the correct distribution at

all frequencies after seeing some experimental data by Rubens and others on the energy density at

intermediate and lower frequencies. He then spent three months of intense work trying to justify
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the result, finding that he could do so if he hypothesized that energy could be transferred between

matter and radiation only in integer multiples of h̄ω. Neither Planck nor anyone else at the time

understood the need for this hypothesis.

This is a fascinating period in the history of physics. In retrospect it is possible to see that

Planck was hindered in his researches by a lack of understanding of the fundamental principles of

equilibrium statistical mechanics, in which the entropy is the logarithm of the number of accessible

states and the statistical distribution of states in thermal equilibrium is determined by the Boltzmann

factor. Planck might have been assisted by the papers of J. Willard Gibbs, but apparently he had

not read them, perhaps because they were written in English. Instead, Planck followed the usual

procedure in those days for finding thermal equilibrium, which was to solve a kinetic equation

and to find equilibrium as the long-time limit. This was through the medium of what Boltzmann

called an “H-theorem.” For this reason Planck spent some considerable effort on detailed models

of matter interacting with radiation, looking for an H-theorem that would give him the ultimate

equilibrium. We now know that finding the equilbrium distribution is much easier than finding out

how equilibrium is approached from a non-equilibrium situation.

Planck was further hindered in this effort by a reluctance to introduce statistical arguments into

his kinetic theories. Boltzmann had already emphasized the need for statistics, but Planck did not

accept his arguments, being overly fixated on the fact that the microscopic equations of motion are

time-reversible. Planck and Boltzmann even had some rather sharp and public exchanges over the

matter. Nevertheless, reading between the lines, one can see that as Planck’s work progressed, he

gradually became aware that Boltzmann was right about the need for statistics. After Boltzmann

committed suicide in 1906, Planck wrote a memorial essay in which, again reading between the lines,

one can see an expression of guilt over his intellectual debt to Boltzmann and his awareness of how

much Boltzmann’s ideas actually contributed to Planck’s greatest accomplishment, his radiation

law.

Planck’s result attracted almost no attention for several years after its publication, but someone

who noticed was Einstein, unknown at this stage of his career. Neither Einstein nor Planck had

read Gibb’s papers, but Einstein, in his earliest significant publications, rederived much of Gibbs’s

work on equilibrium statistical mechanics in his own way. Gibbs summarized much of his work in

his book, Elementary Principles in Statistical Mechanics, which was published in 1902, about the

same time as Einstein’s papers on the same subject. Naturally, since Einstein had derived much of

the same material for himself, he had a slightly different perspective than Gibbs, and, in particular,

Einstein was fascinated by the subject of fluctuations about equilibrium. Einstein later used his

expertise in statistical mechanics as a principal tool in developing his photon hypothesis.

9. Statistical Mechanics of the Electromagnetic Field

Introductory courses on statistical mechanics usually derive the Planck spectrum by making

arguments about the statistics of putting identical particles into boxes. This leaves the impression
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that special arguments are needed to derive this important result, in addition to the basic principles

of statistical mechanics, which are founded on the Boltzmann hypothesis that the probability of

finding a state of energy E in a system in thermal equilibrium with a heat bath at temperature T

is proportional to e−E/kT .

Statistical mechanics normally requires one to work with a system of finite size, so that the

energy spectrum is discrete and the total energy finite. This is one place where the box normalization

we have been using is not just a mathematical crutch, but is essential for the work at hand.

We consider a box of volume V containing electromagnetic radiation, which is in thermal equi-

librium with a heat bath at temperature T . We use the usual parameter β = 1/kT , so that the

density operator can be written

ρ =
1

Z
e−βH , (34)

where H , the Hamiltonian for the free field, is given by Eq. (16). As usual, the normalization Z is

the partition function,

Z(β) = tr e−βH . (35)

The trace is easily evaluated in the occupation number basis,

Z(β) =
∑

(...nλ...)

〈. . . nλ . . .|exp
(

−β
∑

λ

h̄ωk a
†
λaλ

)

|. . . nλ . . .〉

=
∑

(...nλ...)

exp
(

−β
∑

λ

nλ h̄ωk

)

=
∑

(...nλ...)

∏

λ

e−nλβ h̄ωk , (36)

where the sum is taken over all possible integer sequences (. . . nλ . . .). But the sum of products is

the product of sums, so

Z(β) =
∏

λ

∞
∑

nλ=0

e−βnλh̄ωk =
∏

λ

1

1− e−βh̄ωk

, (37)

where in the final expression we have summed the geometrical series. [If these steps are not clear,

try to imagine that the field only has two modes, λ1 and λ2, and carry out the algbra leading to

Eq. (37).]

From the partition function various statistical averages can be computed. For example, the

average energy is given by

E = −∂ logZ(β)
∂β

=
∑

λ

h̄ωk

eβh̄ωk − 1
. (38)

Here the symbol E stands for the statistical average of the energy of the blackbody radiation, taken

over the ensemble. Equation (38) shows that the average number of photons in mode λ is

〈nλ〉 =
1

eβh̄ωk − 1
, (39)

which is one of the ways of expressing Planck’s result. This result can also be obtained directly by

averaging nλ over the ensemble.
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If the box is big enough that the average wavelength of the photons is much smaller than the

dimensions of the box, then we can replace the k-sum by an integral, as in Eq. (40.35). That is, we

can make the replacements,

∑

λ

=
∑

k

∑

µ

=
2V

(2π)3

∫

d3k =
8πV

(2π)3

∫ ∞

0

k2 dk =
V

π2c3

∫ ∞

0

ω2 dω, (40)

where we replace
∑

µ by 2 since the summand does not depend on polarization, and where we can

do the angular integration in k-space to get 4π since the integrand does not depend on the direction

of k. In the final step we switch from k to ω = ck as the variable of integration. Altogether, this

gives
E

V
= u =

h̄

π2c3

∫ ∞

0

ω2 dω
ω

eβh̄ω − 1
=

1

π2c3h̄3β4

∫ ∞

0

x3

ex − 1
dx, (41)

where u is the energy per unit volume in the black body radiation and we have set x = βh̄ω in the

integral. If we write

u =

∫ ∞

0

dω
du

dω
, (42)

then, by the first integral in Eq. (41), we have

du

dω
=

h̄

π2c3
ω3

eβh̄ω − 1
, (43)

which is the usual way of writing the Planck distribution law.

The final integral in Eq. (41) can be done by expanding the denominator in a geometric series,

so that
1

ex − 1
=

e−x

1− e−x
= e−x

∞
∑

n=0

e−nx =

∞
∑

n=1

e−nx. (44)

This gives
∫ ∞

0

x3

ex − 1
dx =

∞
∑

n=1

∫ ∞

0

x3e−nx dx = 3!
∞
∑

n=1

1

n4
= 6 ζ(4) =

π4

15
. (45)

See Abramowitz and Stegun, Handbook of Mathematical Functions, Eqs. (6.1.1) and (6.1.6) for the

properties of the Γ-function, and Eqs. (23.2.18) and (23.2.25) for the properties of the Riemann

ζ-function. Altogether, we obtain

u =
π2

15

(kT )4

(h̄c)3
. (46)

This expression for the energy density of the black body radiation is closely related to the

Stefan-Boltzmann law, which gives the power radiated per unit area by a black body. Boltzmann

first gave a theoretical derivation of this result in the 1870’s, using classical thermodynamics in a

gedankenexperiment in which black body radiation was used as the working fluid in a Carnot cycle.

This result for u contains effectively the energy summed over all modes; it does not by itself tell how

that energy is distributed among the modes. Planck’s formula (43) does that; it was much more

difficult to derive.
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10. The Schrödinger and Heisenberg Pictures

So far we have identified the state space for the free electromagnetic field and some observables

acting on this space that correspond to definite physical measurements, including the energy H ,

momentum P and the various fields A, E and B. Measurements of the fields involve some issues

that we will explore in Sec. 12.

In this discussion up to this point it has been assumed that we are working in the Schrödinger

picture. Thus, operators such as H and E(x) are fixed, time-independent operators that act on

the state space, while state vectors in that space evolve in time, leading to a time-dependence of

the expectation values of these opertors, as well as of other statistics of measurements (dispersions,

correlation functions, etc).

The Heisenberg picture, however, reveals a closer correspondence with classical mechanics, both

in field theory and in mechanics. See the discussion in Sec. 5.5. In the Heisenberg picture the state

vectors do not evolve in time, whereas the operators do. In particular, the creation and annihilation

operators have a time evolution. For the free field the Heisenberg equations of motion for these

operators are

ih̄ ȧλ = [aλ, H ], ih̄ ȧ†λ = [a†λ, H ], (47)

where H is the sum (16). Working out the commutators using Eqs. (6) we find

ȧλ = −iωk aλ, ȧ†λ = iωk a
†
λ, (48)

which have the solution,

aλ(t) = aλ(0) e
−iωkt, a†λ(t) = a†λ(0)e

iωkt. (49)

These are Hermitian conjugates of each other, as they should be.

The time-dependence of aλ and a†λ engenders a time dependence of the fields A, E and B. Thus

Eqs. (22)–(24), which apply in the Schrödinger picture, are replaced in the Heisenberg picture by

A(x, t) =

√

2πh̄c2

V

∑

λ

1√
ω

[

ǫλaλ(0) e
i(k·x−ωt) + ǫ

∗
λa

†
λ(0) e

−i(k·x−ωt)
]

, (50)

E⊥(x, t) =
1

c

√

2πh̄c2

V

∑

λ

√
ω
[

iǫλaλ(0) e
i(k·x−ωt) − iǫ∗λa†λ(0) e−i(k·x−ωt)

]

, (51)

B(x, t) =

√

2πh̄c2

V

∑

λ

1√
ω

[

i(k×ǫλ)aλ(0) e
i(k·x−ωt) − i(k×ǫ

∗
λ)a

†
λ(0) e

−i(k·x−ωt)
]

, (52)

where ω = ωk. These in turn imply the operator equations,

E = −1

c
Ȧ, ∇×E = −1

c
Ḃ, ∇×B =

1

c
Ė, (53)

which are equivalent to Maxwell’s equations for the free field. The non-dynamical equations∇·E = 0

and ∇ ·B = 0 are also implied by Eqs. (50)–(52).
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We see that Maxwell’s equations are valid as they stand in quantum electrodynamics, as long

as the fields are interpreted as quantum fields in the Heisenberg picture. We mention that the

Heisenberg picture is especially suitable for a covariant description of quantum fields.

11. The Limit V → ∞

The box normalization we have been using up to this point is mostly a matter of mathematical

convenience, which allows us to describe the modes of the field by a discrete index λ = (kµ), where k

is discrete. But apart from applications like those in Sec. 9 it is nonphysical, and moreover it makes

certain topics, such as the angular momentum of the field, impossible to discuss. This is because the

angular momentum is the generator of rotations, and the boxes are not invariant under rotations.

Therefore, in preparation for subsequent developments, we consider now the changes that take place

in our formalism when we take the limit V → ∞.

The rules for taking the limit V → ∞, thereby converting Fourier series into Fourier integrals,

were given by Eqs. (40.35)–(40.37). We now apply these rules to the Fourier expansions (22)–(24)

for the fields A, E⊥, and B. First we change notation for the polarization vectors,

ǫkµ → ǫµ(k), (54)

which is merely a way of reminding ourselves that k is now a continuous variable. Next we note

that the annihilation operator akµ is like a Fourier coefficient in k-space of the field A(x), so we use

the rule (40.36) for it, and make the replacement

akµ → (2π)3/2√
V

aµ(k). (55)

With these changes, the quantum fields become

A(x) =
√
2πh̄c2

∫

d3k

(2π)3/2
1√
ωk

∑

µ

[

ǫµ(k)aµ(k)e
ik·x + ǫ

∗
µ(k)a

†
µ(k)e

−ik·x
]

, (56)

E⊥(x) =
1

c

√
2πh̄c2

∫

d3k

(2π)3/2
√
ωk

×
∑

µ

[

iǫµ(k)aµ(k)e
ik·x − iǫ∗µ(k)a†µ(k)e−ik·x

]

, (57)

B(x) =
√
2πh̄c2

∫

d3k

(2π)3/2
1√
ωk

×
∑

µ

{

i[k×ǫµ(k)]aµ(k)e
ik·x − i[k×ǫ

∗
µ(k)]a

†
µ(k)e

−ik·x
}

. (58)

The commutation relations (6) also change; now we have

[aµ(k), a
†
µ′ (k

′)] = δµµ′ δ(k− k′), [aµ(k), aµ′(k′)] = [a†µ(k), a
†
µ′ (k

′)] = 0. (59)
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When we go over to the continuum limit (V → ∞), the operators aµ(k) and a†µ(k) become

singular, and have physical meaning only when used in expressions that are integrated over k-space.

It is easy to see why. When we were working in a box, a single mode was represented by a given plane

light wave that was periodic in the box. When we quantize this mode and place, say, one photon

in it, we have energy h̄ω in volume V , so the amplitude of the wave (speaking in classical terms)

is finite, and the energy density is nonzero. When we go over to the continuum limit, however, the

volume becomes infinite so the energy density corresponding to any finite number of photons in a

single mode is zero. The energy of a single photon is still h̄ω, but if it is placed into a single mode,

the energy is spread over all of space. Therefore if we want to obtain a localized distribution of

energy, we must form linear combinations of different photon states with different k values, that is,

we must construct a wave packet. This will in practice always turn into some kind of integral over

k-space. It is in this sense that the Dirac delta function occurring in the commutator (59) should

be interpreted; we recall that delta functions only have meaning when used under integral signs.

12. Statistics of Measurements of E and B

In general, measurements in quantum mechanics are subject to fluctuations, as we make them

across an ensemble of identically prepared systems. The same must be true for the quantum fields

A(x), E(x), B(x), etc. This is in contrast to classical electromagnetism, in which one imagines that

field strengths can be measured with arbitrary precision and produce a definite answer. We now

examine the question of the measurement of electromagnetic fields, working with the free field for

simplicity.

Let us start with the electric fields, given as a Fourier integral over modes by Eq. (57). Notice

that x is the location at which the field is measured, and is not an operator. The operator is E(x),

corresponding to what is measured. If we measure E at the specific point x when the quantum state

of the field is the vacuum |0〉, then the average value obtained is

〈0|E(x)|0〉 = 0 (60).

This follows because E(x) is a linear combination of creation and annihilation operators, and

aµ(k)|0〉 = 0, and 〈0|a†µ(k) = 0. (61)

This makes sense: the average value of E(x) in the vacuum should be zero.

But this doesn’t mean that the individual measurements will give zero, only the average. To

see what happens to individual measurements, let us compute the dispersion, which is

〈0|E(x)2|0〉 = 2πh̄

∫

d3k d3k′

(2π)3

∑

µµ′

√
ωω′

〈0|
[

iaµ(k)ǫµ(k) e
ik·x − ia†µ(k)ǫ

∗
µ(k) e

−ik·x
]

·
[

iaµ′(k′)ǫµ′ (k′) eik
′·x − ia†µ′(k

′)ǫ∗µ′(k′) e−ik′·x
]

|0〉.

(62)
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Of the four major terms, only the one involving aµ(k)a
†
µ′ (k′) is nonzero, because all the others

have an annihilation operator adjacent to the vacuum ket |0〉 or a creation operator adjacent to the

vacuum bra 〈0|. As for the one term that is nonzero, we have

〈0|aµ(k)a†µ′ (k
′)|0〉 = 〈0|a†µ′(k

′)aµ(k) + δµµ′ δ(k − k′)|0〉 = δµµ′ δ(k− k′), (63)

where we have used the commutator (59). The Kronecker and Dirac deltas allow us to do the µ′-sum

and k′-integral. The dot product simplifies,

ǫµ(k) · ǫ∗µ′(k′) → ǫµ(k) · ǫ∗µ(k) = 1, (64)

and the phase factor disappears,

eik·x−ik′·x → 1, (65)

so we get

〈0|E(x)2|0〉 = 2πh̄

∫

d3k

(2π)3

∑

µ

ω =
4πh̄c

(2π)3

∫

d3k k =
2h̄c

π

∫ ∞

0

k3 dk, (66)

where we have replaced the µ-sum by 2 and the angular integration by 4π. The final integral diverges,

but if we replace the upper limit by some cutoff k = K, then we get

〈0|E(x)2|0〉 = h̄c

2π
K4 → ∞ as K → ∞. (67)

We should not be surprised by this infinite result, since E2/8π is one term in the energy density

of the field, and the vacuum zero-point energy density is infinite, as noted in Sec. 5. Although

we threw away the zero-point energy in the Hamiltonian, it reappears in the computation of the

dispersion in the measured value of the electric field strength.

How do we reconcile this result with the fact that real measurements of E always give a finite

value? One way to understand this is to note that real measuring devices occupy a finite volume,

and hence measure the average of E over some region.

Let R be a region of space with volume V (not to be confused with the volume V of the box—we

are not using box normalization here anyway), and let us define the average electric field,

Ē =
1

V

∫

R

d3xE(x). (68)

Then we can easily see that 〈0|Ē|0〉 = 0. As for the dispersion, it is

〈0|Ē2|0〉 = 1

V2

∫

R

d3x

∫

R

d3x′ (2πh̄)

∫

d3k d3k′

(2π)3

∑

µµ′

√
ωω′

〈0|
[

iaµ(k)ǫµ(k) e
ik·x − ia†µ(k)ǫ

∗
µ(k) e

−ik·x
]

·
[

iaµ′(k′)ǫµ′ (k′) eik
′·x′ − ia†µ′(k

′)ǫ∗µ′(k′) e−ik′·x′

]

|0〉.

(69)

As for the large matrix element in the integrand, it is the same as in Eq. (62) except that x in

the second factor has been replaced by x′. Thus once again only one term of four survives, and it
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simplifies according to Eq. (63). Once again the µ′-sum and k′ integrals can be done, and once again

we can use Eq. (64). Now, however, the phase factor becomes

eik·x−ik′·x′ → eik·(x−x
′), (70

so altogether we have

〈0|Ē2|0〉 = 1

V2

∫

R

d3x

∫

R

d3x′ (2πh̄)

∫

d3k

(2π)3
2ω eik·(x−x

′), (71)

where the polarization sum has been replaced by 2.

We will estimate this integral as an order of magnitude. Since both x,x′ ∈ R, the distance

|x − x′| is less than the linear dimension of R, call it L, so that V ∼ L3. Now if k ≪ 1/L, then

k · (x− x′) ≪ 1, and

eik·(x−x
′) ≈ 1. (72)

But if k ≫ 1/L, then eik·(x−x
′) is rapidly oscillating in k, and it chops up the rest of the integrand

to give effectively zero. This means that we can estimate the value of the integral by setting the

upper limit on k to K = 1/L, and dropping the phase factor. Then the k-integral can be done, and

it gives the same result obtained in Eq. (67), with the cutoff K. The result is independent of x and

x′, so
1

V

∫

d3x → 1 and
1

V

∫

d3x′ → 1. (73)

Thus we get, as an order of magnitude and dropping dimensionless constants of order unity,

〈0|Ē2|0〉 = h̄cK4 =
h̄cK

V =
h̄ω

V , (74)

where ω = cK is the cutoff frequency.

We see that quantum electrodynamics predicts that the measurement of electric field strength,

with an instrument occupying a volume V = L3, will produce fluctuations whose dispersion is given

by h̄ω/V , where ω = cK = c/L (all as an order of magnitude). This is in the vacuum, that is, in

the absence of any applied field.

Are these fluctuations real? Yes, charged particles respond to them, and they modify the

dynamics of the particle. For example, the Lamb shift is due to the interaction of the atomic electron

with the fluctuating electromagnetic field. The theoretical treatment of this effect must, however,

take account of infinities that arise in the calculation, and the final answer must be obtained as the

difference between two infinities, in a certain sense. Making sense out of the differences between

infinities is the business of renormalization theory, without which quantum electrodynamics is rather

limited in what it can do. In this course we will mainly study effects that can be understood

without renormalization theory, but there is an approximate derivation of the Lamb shift, based on

nonrelativistic quantum mechanics and due to Bethe, that is not too difficult to understand and

which gives quite good results from a numerical standpoint.
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Suppose we are interested in detecting an electromagnetic signal, for example, a radio trans-

mission. Using classical electromagnetic theory, we calculate an electric field Esignal at the location

of our detector. But the detector will also pick up quantum fluctuations, call them Equant. The

classical signal will only be detected cleanly if Esignal ≫ Equant.

Let the size of the antenna be λ, the wavelength of the signal. Measure the strength of the

signal not by the electric field amplitude Esignal but by the number of photons per unit volume, n.

(Don’t confuse this n, which has dimensions of number/volume, with the mode numbers nλ used

elsewhere in these notes, which are pure numbers.) Then

E2
signal ∼ nh̄ω ≫ E2

quant ∼
h̄ω

λ3
. (75)

This gives

nλ3 ≫ 1, (76)

the number of photons in a cubic wavelength must be much greater than 1. This is the usual criterion

for the validity of classical electromagnetism in the detection of signals.

13. Helicity Polarization Vectors

For the analysis of the angular momentum of the field, a particular choice of polarization vectors

is convenient. These are essentially circular polarization vectors, with a particular phase convention.

In general, polarization vectors are two orthonormal, possibly complex unit vectors that span the

plane perpendicular to k. These vectors are, of course, functions of k, or, more precisely, of the

direction k̂. A convenient way to construct such vectors is to start with two constant, orthonormal

unit vectors that span the x-y plane, so that taken with ẑ they form an orthonormal triad. Then

the vectors of this triad are rotated by a rotation matrix R that is required to map the ẑ direction

into the k̂ direction. We write R(k̂) for this matrix; it is a function of k̂, and by its definition we

have

R(k̂)ẑ = k̂. (77)

Such a matrix is easy to construct; if the spherical angles of k̂ are (θ, φ), then we will take

R(k̂) = Rz(φ)Ry(θ) = R(φ, θ, 0), (78)

where the final expression is in terms of Euler angles. When the two vectors of the triad that span

the x-y plane are rotated by R(k̂), they become two vectors that span the plane perpendicular to k̂,

since the orthonormality conditions are preserved by the rotation.

In particular, suppose we take the original triad to be the spherical basis of unit vectors,

introduced in Eq. (19.40), which we reproduce here:

ê1 = − x̂+ iŷ√
2

,

ê0 = ẑ,

ê−1 =
x̂− iŷ√

2
. (79)
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For light propagating in the z-direction, the vector ê1 corresponds to left circular polarization (the

electric field vector rotates counterclockwise in the x-y plane), and the vector ê−1 corresponds to

right circular polarization light (the electric vector rotates clockwise). These are the conventions

used by Jackson, Classical Electrodynamics and by Born and Wolf, Principles of Optics and by

most people in optics, but they are the opposite to what particle physicists would have preferred if

they could have established the convention. Apparently for this reason, Sakurai, Modern Quantum

Mechanics, has reversed the conventions. I think it is less confusing to stay with the standard

terminology of optics.

Given the spherical basis (79), we can define a rotated triad by

ǫkµ = R(k̂)êµ, (80)

so that ǫk0 = k̂, and ǫkµ for µ = ±1 span the plane perpendicular to k̂ and represent states of

circular polarization for waves propagating in the k̂ direction. We will henceforth take the index

µ to run over ±1 for these polarization vectors (not 1 and 2, as in Notes 40). In addition to the

orthonormality and completeness relations (40.51)–(40.53), one can show that these vectors also

satisfy the relation ǫkµ = ǫ
∗
−k,µ and the relations

ǫkµ = (−1)µǫ∗k,−µ, (81)

and

ǫ
∗
kµ×ǫkµ = iµk̂, (82)

which are valid for µ = 0,±1. These relations are easily proved because they are just rotated versions

of the analogous relations for the constant vectors êµ. We will call the basis of polarization vectors

(80) the helicity basis.

14. The Longitudinal Polarization

The longitudinal polarization vector µ = 0, that is, ǫk0 = k̂, is the direction of propagation.

Light waves only have the two transverse polarizations µ = ±1, but if the photon had a mass then it

turns out that the the longitudinal polarization would exist as well. The longitudinal polarization is

also present when electromagnetic waves propagate through matter; for example, plasma oscillations,

which are electrostatic in nature, have a longitudinal polarization.

15. The Angular Momentum of the Photon

We turn now to the angular momentum of the photon. This is a somewhat complicated subject,

and we can give only a partial analysis here. The classical angular momentum of the matter-field

system is given by Eq. (40.100). We specialize to the case of the free field, for which the angular

momentum consists of only the second term in Eq. (40.100),

J =
1

4πc

∫

d3x x×(E×B), (83)
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where E = E⊥. The classical angular momentum of the field J can be broken into “orbital”

and “spin” contributions (borrowing quantum terminology for the classical field). The angular

momentum is the generator of rotations, and when we apply an infinitesimal rotation to the classical

fields, there arises one term due to the rotation of the value of the field (the “spin”), and another

due to the rotation of the point at which the field is evaluated (the “orbital angular momentum”).

We write J = L+ S for these two terms, where

L =
1

4πc

∫

d3x x×(∇A ·E), (84)

and

S =
1

4πc

∫

d3x E×A. (85)

We will transcribe these expressions over into quantum operators, starting with S, which is the

simpler of the two. We write the spin as a normal ordered operator,

S = − 1

4πc

∫

d3x :A×E⊥:

= − h̄

2V

∫

d3x
∑

λλ′

√

ω′

ω
:
[

ǫλaλe
ik·x + ǫ

∗
λa

†
λe

−ik·x
]

×
[

iǫλ′aλ′eik
′·x − iǫ∗λ′a

†
λ′e

−ik′·x
]

:, (86)

and then we evaluate terms as we did previously for the momentum P. As before, we find that the

terms involving aλaλ′ and a†λa
†
λ′ vanish, while the remaining two cross terms give equal contributions.

The answer can be written in the form,

S = ih̄
∑

kµµ′

ǫkµ×ǫ
∗
kµ′ a

†
kµ′akµ, (87)

which is valid for any choice of polarization vectors. The µ sum only runs over the transverse

polarizations. If, however, we choose the helicity basis (80), then the cross product vanishes unless

µ = µ′, and we can use the identity (82) to write

S =
∑

kµ

h̄k̂µa†
kµakµ =

∑

k

h̄k̂(a†
k+ak+ − a†

k−ak−) =
∑

k

h̄k̂(Nk+ −Nk−), (88)

where Nk± are the number operators for µ = ±1.

Just like the energyH and momentum P, the spin S can be expressed purely in terms of number

operators, so it commutes with the free-field Hamiltonian and is diagonal in the occupation number

basis | . . . nλ . . .〉. We see that photons of µ = ±1 contribute to the angular momentum of the system

an amount that is h̄ times ±1 in the direction of the propagation. As we say, such photons have

helicity of ±1.
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16. The Orbital Angular Momentum of the Field

To discuss the orbital angular momentum of the field (84) it is convenient to introduce a change

of notation. We define vector fields of annihilation/creation operators,

a(k) =
∑

µ

ǫµ(k)aµ(k),

a†(k) =
∑

µ

ǫ
∗
µ(k)a

†
µ(k), (89)

which satisfy the commutation relations,

[ai(k), a
†
j(k

′)] = Tij(k) δ(k − k′),

[ai(k), aj(k
′)] = [a†i (k), a

†
j(k

′)] = 0, (90)

where i, j refer to the Cartesian components and where Tij(k) is the transverse projection tensor in

k-space,

Tij(k) = δij −
kikj
k2

. (91)

Fields a(k) and a†(k) are transverse quantum fields in k-space.

Now we can transcribe the classical orbital angular momentum of the field (85) into a normal

ordered, quantum operator. We begin with

L =
1

4πc

∫

d3x x×(:∇A ·E⊥:), (92)

and then we express the integrand in terms of creation and annihilation operators. After simplifi-

cation, we find an expression for the i-th component of the orbital angular momentum operator of

the free field,

Li =
ih̄

2
ǫijℓ

∫

d3k kℓ

[

a†(k) · ∂a(k)
∂kj

− ∂a†(k)

∂kj
· a(k)

]

. (93)

We see that the orbital angular momentum of the field is not expressed in terms of number

operators, nor is it diagonal in the occupation number | . . . nλ . . .〉 basis. This should not be surpris-

ing; the modes we have been dealing with are plane waves at the classical level, and we know that

planes waves in the quantum mechanics of a single particle are not angular momentum eigenstates.

Instead, the nonrelativistic free particle eigenfunctions that are also eigenfunctions of L2 and Lz are

spherical Bessel functions times Yℓm’s, times a spinor if the particle has spin. Something like this

(but more complicated) is going on here with photon states; it is possible to organize photon states

as eigenstates of the angular momentum operators, but our plane wave formalism developed so far

has not done this. The subject of the angular momentum of the photon is somewhat lengthy, so we

will not go into it further at this point, but some additional remarks will be made below.

For reference, we now write out the energy, momentum and spin of the field in the new (con-

tinuum) language:

H =

∫

d3k h̄ωk

∑

µ

a†µ(k)aµ(k) =

∫

d3k h̄ωk a
†(k) · a(k), (94)
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P =

∫

d3k h̄k
∑

µ

a†µ(k)aµ(k) =

∫

d3k h̄ka†(k) · a(k), (95)

S =

∫

d3k h̄k̂
∑

µ

µa†µ(k)aµ(k) = −ih̄
∫

d3ka†(k)×a(k). (96)

In the first expression for S, we must use the circular or helicity basis of polarization vectors (80),

but any polarization vectors can be used in the other expressions.

17. Particles in Quantum Field Theory

A striking aspect of the formalism of the quantized electromagnetic field that we are developing

is that it gives us a new way of describing the quantum mechanics of particles, in this case, photons.

We are accustomed to describing the state of a single particle of spin s by means of a wave function

ψ(x,m); this is in the (x, Sz)-representation, so m = −s, . . . ,+s. Similarly, we are accustomed

to describing the state of a two-particle system by a wave function ψ(x1,m1;x2,m2), which if the

particles are identical must obey the symmetry requirement,

ψ(x1,m1;x2,m2) = ±ψ(x2,m2;x1,m1) (97)

(+ for bosons, − for fermions). In the wave function formalism we have been using, the number of

particles is fixed, and is determined by the type of wave function we are using.

But in the quantized electromagnetic field, we describe photon states by the kets | . . . nλ . . .〉, in
which the number of photons in each mode is indicated by the integers nλ. These occupation numbers

can take on any value nλ = 0, 1, 2, . . ., so the ket space Eem, which is spanned by the occupation

number basis kets | . . . nλ . . .〉, includes states for any number of photons. It also includes states that

are linear combinations of states of different numbers of photons, but there is no way to form such

linear combinations with the wave functions for material particles that we have considered so far in

this course.

18. The Wave Function of the Photon

This raises the question, what is the relation between the occupation number basis states

| . . . nλ . . .〉 and the usual wave functions we are familiar with? Let us first consider the kets in

Eem that contain no photons. The only state with no photons is the vacuum |0〉, which spans a

1-dimensional subspace of Eem.
Next we consider states of a single photon. A particular single photon state can be created by

applying a creation operator to the vacuum, which gives a†µ(k)|0〉 for some µ and k. But this is

not the most general single photon state, which would be a linear combination of states of the form

a†µ(k)|0〉, with different values of µ and k. We write such a state in the form,

|Ψ1〉 =
∫

d3k
∑

µ

f(k, µ) a†µ(k)|0〉, (98)
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where the 1-subscript on Ψ simply means that we have a single-photon state, and where the function

f(k, µ) specifies the linear combination. The function f(k, µ) is an arbitrary complex function, apart

from the condition
∫

d3k
∑

µ=±1

|f(k, µ)|2 = 1, (99)

which is required to make 〈Ψ1|Ψ1〉 = 1. Conversely, given a single photon state |Ψ1〉, we can solve

for f by using

f(k, µ) = 〈0|aµ(k)|Ψ1〉, (100)

as follows from the commutation relations (59). We see that (normalized) single particle photon

states in Eem can be placed into one-to-one correspondence with (normalized) wave functions f(k, µ),

where µ = ±1. We will call f(k, µ) the “wave function of the photon.”

Similarly, we can create two-photon states by applying two creation operators to the vacuum,

say, a†µ(k)a
†
µ′ (k′)|0〉. An arbitrary two-photon state is a linear combination of such states,

|Ψ2〉 =
∫

d3k d3k′
∑

µµ′

f(k, µ;k′, µ′) a†µ(k)a
†
µ′ (k

′)|0〉. (101)

We will interpret f(k, µ;k′, µ′) as the wave function of the two-photon state. However, since the two

creation operators in Eq. (101) commute with one another, they could be applied in the opposite

order, with no change to the state |Ψ2〉. Therefore the function f might as well be symmetric in the

arguments (k, µ) and (k′, µ′),

f(k, µ;k′, µ′) = f(k′, µ′;k, µ), (102)

because any antisymmetric part would not contribute to |Ψ2〉. As a result, we reach the important

conclusion that photons are bosons.

When we work with wave functions for identical particles, it is possible to write down a wave

function that is not properly symmetrized (or antisymmetrized), even though such functions have no

physical meaning. But when we specify two-photon states by means of creation operators applied to

the vacuum, the states are always properly symmetrized, since the symmetrization is automatically

built into the commutation relations of the creation operators. The same holds for states of any

number of photons (n > 2).

There is a similar formalism that works for fermions, and which automatically gives properly

antisymmetrized states. This formalism also uses creation and annihilation operators, but the op-

erators are required to satisfy anticommutation relations, instead of commutation relations. See

Sec. 51.12.

Let us denote the subspace of Eem spanned by the vacuum state by E0, the subspace spanned

by all one-photon states by E1, the subspace spanned by all two-photon states by E2, etc. Then we

have

Eem = E0 ⊕ E1 ⊕ E2 ⊕ . . . . (103)
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Operators that act on Eem that have matrix elements connecting the different subspaces En are

capable of changing the number of photons; such operators include the creation and annihilation

operators aµ(k) and a†µ(k), as well as the field operators A(x), etc. The free field Hamiltonian

H does not change the number of photons, but the when the matter Hamiltonian is included, the

number of photons can change. Thus, in interactions with matter, the number of photons can

increase or decrease; this is otherwise just the process of emission and absorption of radiation by

matter, which we will consider in detail in subsequent notes.

Actually, the decomposition (103) is naive, because it does not include states with an infinite

number of photons. But many of the applications we will consider have only a finite number of

photons, and it is true that we can talk about the subspaces of the state space of the electromagnetic

field with a fixed number of photons.

The ket space Eem is an example of a Fock space. There is a mathematical distinction between a

Fock space and a Hilbert space that need not concern us;† we will simply use these terms for linguistic

relief, with a Fock space designating a ket space incorporating a variable number of particles, such as

Eem, and with a Hilbert space designating the ket space with a fixed number of particles. For example,

the wave functions f(k, µ) introduced in Eq. (98) belong to a Hilbert space of wave functions, while

the ket |Ψ1〉 in that equation belongs to the Fock space Eem.

19. Representations for the Wave Function of the Photon

As we have emphasized, a wave function is just the expansion coefficients of the state vector

in some basis. See Notes 4. Moreover, the bases that are normally used for this purpose are

the eigenbases of some complete set of commuting observables. For example, in the case of a

massive, nonrelativistic particle of spin s, the most popular form of the wave function is probably

ψ(x,m) = 〈x,m|ψ〉. This is in the (x, Sz)-representation, that is, the complete set of commuting

observables used for the basis is (x, Sz). Of course, we are free to use other representations if we

want to. Now we are calling f(k, µ) the wave function of the photon, but what is the representation?

It turns out that it is the (k,Ω)-representation, where

Ω = k̂ · S (104)

is the helicity operator, and µ is the eigenvalue of helicity. Also, it turns out that the wave function

f(k, µ) represents the state of a spin-1 particle.

In the following discussion it will be important to distinguish between the Fock space Eem, the
ket space for the electromagnetic field, and the Hilbert space of wave functions of a single particle.

Let us begin with the Hilbert space of a massive particle of spin s, which can be identified with

the space of wave functions ψ(x,m). The vector x is the usual position operator that acts on this

space, and the vector k = p/h̄ is proportional to the usual momentum operator. For example, in

† A Hilbert space has a countable basis; a Fock space does not.
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the (x, Sz)-representation, x is represented by multiplication by x, and k is represented by −i∇.

The operators x and k, which act on the Hilbert space of a single particle, are not to be confused

with the x and k which occur in the theory of the quantized field, which are merely labels of the

degrees of freedom of the field, and are not operators. In fact, there is no position operator for the

field, and although the field does have a momentum operator [see Eq. (95)], it is quite different from

the operator k that acts on the single-particle Hilbert space. Similarly, we have the usual orbital

angular momentum L = x×p and the usual spin S that act on the Hilbert space of a single particle,

but these are not to be confused with the orbital and spin angular momentum operators for the

field [see Eqs. (96) and (93)], which act on Eem. Finally, the helicity operator Ω = k̂ · S acts on the

Hilbert space of a single particle; it is not a Fock space operator.

The helicity operator is just the component of the spin in a certain direction (the direction

of propagation), so its eigenvalue µ is like a magnetic quantum number, and takes on the values

µ = −s, . . . ,+s. At least, this is the case for a particle of nonzero mass, the only case we have

considered so far in this course. But it was shown by Wigner in 1939 that massless particles only

have the stretched helicity states, µ = ±s. For example, the photon, with s = 1, only possesses the

µ = ±1 states, and the graviton, another massless particle with s = 2, only possesses the µ = ±2

states. As we have seen, the exclusion of the µ = 0 states for the photon is equivalent to the

transversality condition for the fields. But if photons had a nonzero mass, then they would also

possess longitudinal polarizations, and all three helicity states would be allowed. Wigner’s result

can be understood more fully in terms of Lorentz transformations; if a particle has a nonzero mass,

then it is always possible to go to the rest frame of the particle, whereupon ordinary spatial rotations

can rotate the spin into any direction. But a massless particle has no rest frame.

20. Physical and Nonphysical Operators for a Photon

In the case of a photon, the helicity states µ = 0 which would be allowed for a massive particle

are simply not present. This means that the physical Hilbert space of wave functions for a photon

is only a subspace of the space that would be allowed for a massive particle, and that any (Hilbert

space) operator that has nonvanishing matrix elements between the µ = ±1 subspaces and the µ = 0

subspace must be regarded as nonphysical for a photon, since it would map a physically meaningful

photon state into a physically meaningless state. As a result, we can classify the operators that act

on the state of a massive particle into those that are or are not meaningful when the mass is set to

zero. Certainly any operator that commutes with helicity will not mix the eigenspaces of helicity,

and so is meaningful when acting on photon states. This includes helicity Ω itself, as well as the

momentum k. However, the position operator x does not commute with helicity (because it does not

commute with k), and is not meaningful for a photon. Thus, the photon does not have a position

operator. An eigenfunction of position is a δ-function, but such a function is not transverse. If we

project out the transverse part, we get the transverse delta-function (40.24), which is not localized.

Nor does the photon have an orbital angular momentum operator, because the (Hilbert space)
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angular momentum L = x×p, which is defined for a massive particle, does not commute with helicity

k̂ ·S (L generates spatial rotations, which rotate the k̂ part of the dot product, but leave the S part

alone), and it mixes the µ = ±1 and µ = 0 eigenspaces of helicity. Similarly, the photon does not

have a spin operator, because [S,Ω] 6= 0 and because S mixes the µ = ±1 and µ = 0 subspaces. On

the other hand, the total angular momentum J = L+S is meaningful as an operator acting on single

photon states, since [J,Ω] = 0. Thus, it is possible to talk about the angular momentum states of a

photon, it is just not possible to break this up into orbital and spin contribution as we can with a

massive particle. (Indeed, as we will see when we study the Dirac equation, there is a more intimate

coupling between spin and spatial degrees of freedom in relativistic quantum mechanics than in the

nonrelativistic theory, even for massive particles such as the electron.)

Finally, there is one (Hilbert space) operator that does not commute with helicity but which

nevertheless is defined for the photon, because it does not mix the µ = ±1 and µ = 0 subspaces.

This is the parity π, defined in the usual way in nonrelativistic quantum mechanics, which satisfies

πΩπ† = −Ω (105)

(π flips the sign of k̂, but leaves S alone). Parity maps the µ = 1 helicity subspace into the µ = −1

subspace (there is no mixing with µ = 0 states), and so is allowed for a photon.

Altogether, the single-particle operators that are or are not meaningful for a photon are sum-

marized in Table 1. It may seem odd that helicity Ω is a meaningful operator when it is defined in

terms of S, which is not meaningful; however, we can just was well write the helicity as Ω = k̂ · J,
since k · L = 0.

Operators

Meaningful Ω, k, J, π

Not meaningful x, L, S

Table 1. Single particle operators that are defined for a massive particle are classified into those that are or are not
meaningful for a massless particle, such as the photon.

Of course, once we have a photon wave function f(k, µ) in the (k,Ω)-representation, there is

no harm in transforming it to another representation such as (x, Sz), as if it were the wave function

of a massive particle, so long as we realize that only a restricted class of wave functions of (x,m)

will be allowed for a photon (namely, those lying in the µ = ±1 eigenspaces). To be explicit about

this, let us first specify the transformation between the (k,Ω)- and (k, Sz)-representations; we will

denote the respective wave functions by f(k, µ) and f(k,m). Then it is easy to show that

f(k,m) =
∑

µ

D1
mµ(k̂)f(k, µ), (106)

where D1(k̂) is the rotation matrix corresponding to the rotation R(k̂) introduced in Eq. (77). Next,

to transform from the (k, Sz)-representation to the (x, Sz)-representation, where we denote the wave

function by f(x,m), we simply use the usual Fourier transform,

f(x,m) =

∫

d3k

(2π)3/2
eik·x f(k,m). (107)
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There is an alternative form for the wave functions f(k, µ), f(k,m) or f(x,m) of a spin-1

particle (massive or massless), in which the spin indices are replaced by Cartesian components of

an ordinary 3-vector. This (Cartesian) form of the wave function can be specified in two equivalent

forms,

f(k) =
∑

µ

ǫµ(k)f(k, µ) =
∑

m

êmf(k,m), (108)

which is an ordinary (Cartesian) vector field over k-space. The wave function f(k, µ) or f(k,m)

lies in the subspace spanned by the helicity states µ = ±1 if and only if f(k) is transverse, that is,

k · f(k) = 0. If we take the Fourier transform,

f(x) =

∫

d3k

(2π)3/2
eik·x f(k), (109)

we get a (Cartesian) vector field f(x) in ordinary space that is missing the µ = 0 helicity state if

and only if it is transverse, that is, if ∇ · f(x) = 0. Such transverse, Cartesian vector fields f(k) or

f(x) are often a convenient way of specifying the wave function of a photon.

21. Vector Multipole Fields

We can now explain the absence of the (Hilbert space) operators x, L and S for a photon from

another point of view. First, the orbital angular momentum L is the generator of spatial rotations,

which rotate the point of application of the wave function f(x) or f(k). But if we rotate only the point

of application k and not the direction f of the vector field itself, then the transversality condition

k · f(k) = 0 is not preserved. Similarly, the spin S is the generator of rotations of the direction of

the vector field f , but not its point of application. This also does not preserve the transversality

condition. Finally, x is the generator of displacements in k-space, and such displacements also do

not preserve the transversality condition.

We will now make some comments about the various complete sets of commuting observables

that are useful for free particle states, both for massive particles and for photons. In the case

of a massive, spinless particle, the most obvious free particle wave functions are the momentum

eigenfunctions ψ(x) = eik·x, for which the CSCO is just k (that is, the three commuting components

of k). Such plane waves are not eigenstates of angular momentum, of course; if we desire these, then

we can use the wave functions ψ(x) = jℓ(kr)Yℓm(θ, φ), for which the CSCO is (k, L2, Lz). If the

particle has spin, then we can multiply by an eigenspinor of Sz, and obtain the wave functions

ψ(x,m) = eik·xχms

m or jℓ(kr)Yℓm(θ, φ)χms

m , for which the CSCO’s are (k, Sz) and (k, L2, Lz, Sz),

respectively. (The spinor χms

m has components δm,ms
in the Sz basis, that is, it is an eigenspinor

of Sz with quantum number ms.) Finally, if we desire eigenstates of the total angular momentum,

we can combine L and S with the Clebsch-Gordan coefficients for ℓ ⊗ s, to obtain the CSCO

(k, L2, J2, Jz).

None of these three obvious choices for the CSCO for the states of a massive free particle,

(k, Sz), (k, L
2, Lz, Sz), or (k, L2, J2, Jz), will work for a photon, because they all include one or
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more operators that are meaningless when the mass is zero. If we wish plane wave states, then

we must replace Sz with something else. The helicity Ω is convenient, and this leads to the plane

wave, helicity eigenstates, for which the CSCO is (k,Ω). These are the photon states created by

our creation operators a†µ(k) [with the choice (80) for polarization vectors]. If we wish eigenstates of

angular momentum, then we can include J2 and Jz in the CSCO, but we must replace L2 which may

be used for a massive particle. It turns out there are two convenient substitutes for L2, one being

the helicity Ω, and the other being parity π. Thus, we obtain two possible CSCO’s for describing

photons of definite angular momentum, (k, J2, Jz ,Ω) and (k, J2, Jz, π). The latter choice is the

more popular, because we are often interested in the conservation (or violation) of parity, as well as

angular momentum. The single photon wave functions f(x) which are simultaneous eigenfunctions

of (k, J2, Jz, π) are called the vector multipole fields, and are discussed in Jackson’s book. They

are messier to work with than plane waves, but necessary when a proper understanding of the

conservation of angular momentum is desired.

Problems

1. Sakurai in his book Advanced Quantum Mechanics refers to the Chicago FM radio station WFMT,

which broadcasts at a frequency of 98.7MHz with a power of 135kW. Assuming the radiation from

the antenna is isotropic (it is not), find the distance from the antenna at which the number of

photons per cubic wavelength is 1. This is the distance at which the signal is so weak that it is

comparable to quantum fluctuations.

2. Some questions on black body radiation.

(a) Given any density operator ρ, the entropy is defined by Eq. (3.36) and (3.37). Show that if the

system is in thermal equilibrium with a heat bath, so that the density operator is given by Eq. (3.38),

then

F = E − TS = −kT logZ, (110)

where F is the Helmholtz free energy.

(b) Compute logZ and hence F for black body radiation in a box of volume V . Assume the linear

dimensions of the box are large compared to the average wavelength, so the k-sum can be replaced

by an integral. Then use

S = −
(∂F

∂T

)

V
, P = −

(∂F

∂V

)

T
, (111)

to compute the entropy and equation of state.

If an ordinary gas is subjected to an isothermal expansion (we increase V while holding T

fixed), then the pressure decreases. Explain in physical terms why this does not happen for a gas

of photons. (In both cases the temperature can be held constant by placing the container of gas in

contact with a heat bath.)
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3. Assuming the zero-point energy of the electromagnetic field is real, we obtain a finite value of the

energy density (or mass density, using E = mc2) if we cut off the k-sum in Eq. (15) at the Planck

length (see Eq. (4.67)). That is, take kmax = 1/LPlanck. Calculate this mass density in gm/cm3.

The observed value of the cosmological constant Λ is 1.1 × 10−52m−2. According to general

relativity, this corresponds to a mass density of

ρ =
c2Λ

8πG
, (112)

where G is Newton’s constant of gravitation. Compare this mass density to the one predicted by the

zero point motion of the electromagnetic field, using the cutoff suggested in the previous paragraph.

4. In the quantum electrodynamics, the electric and magnetic fields (at some position x) are repre-

sented by Hermitian operators, since they are observables. Actually, there are six Hermitian opera-

tors in E(x) and B(x), because the two vectors have three components each. Can these observables

be measured simultaneously to infinite precision? To answer this question, we must compute com-

mutators. Find the commutator [Ei(x), Ej(x
′)], where x and x′ are two spatial points. You may do

this for the free field, which is all we have considered in these notes. Also compute [Bi(x), Bj(x
′)]

and [Ei(x), Bj(x
′)]. You may use box normalization for this calculation.

Hints: Use the resolution of the identity, Eq. (40.53). The following identity is also useful:

[(A×B) ·C] [(D×E) · F] = det





A ·D A · E A · F
B ·D B · E B · F
C ·D C ·E C ·F



 (113)

Note that (A×B)i can be written (A×B) · êi, where êi is one of the unit vectors, x̂, ŷ, ẑ. Also note

that

δ(x− x′) =
1

V

∑

k

eik·(x−x
′). (114)

This is the Fourier series for the δ-function.

5. Compute the distance L between the plates of a capacitor at which the Casimir pressure (20) is

one atmosphere. One atmosphere is 1.01× 105N/m2 = 1.01× 106 dyne/cm2.


