
Copyright c© 2021 by Robert G. Littlejohn

Physics 221B

Academic Year 2021–22

Notes 43

Scattering of Radiation by Matter†

1. Introduction

In the previous set of notes we treated the emission and absorption of radiation by matter.

In these notes we turn to the scattering of radiation by matter. As before, the material system

in question can be almost anything (atom, molecule, nucleus, etc), but when it is necessary to be

specific we shall for simplicity assume that it is a single-electron atom. The formalism is easily

extended to other types of material systems.

We shall see that in a certain sense the emission and absorption of radiation are special cases

of the scattering of radiation, in which the frequency of the initial photon is close to a resonance

frequency of the material system (the Einstein frequency connecting two energy eigenstates). In

such cases it is partly a matter of preference how one should view the process, but in some respects

the scattering point of view is more fundamental and elegant.

2. Applications

The applications of the theory developed in these notes are very broad. Almost any situation in

which radiation passes through a gas affords an example of the physics we shall describe here. For

example, in infrared and Raman scattering experiments radiation is passed through a molecular gas

and the absorption spectrum or scattering cross section is measured, providing a primary source of

information about the structure of molecules.

Another example involves radiation passing through the Earth’s atmosphere. The atmosphere

is mostly transparent to sunlight, but there is some scattering, especially at the higher (blue) fre-

quencies. This is Rayleigh scattering, which is discussed in Sec. 12. The higher frequencies are more

strongly scattered because they are closer to certain resonances in the ultraviolet. As we shall see,

the cross section for scattering rises rapidly as a function of frequency as we approach a resonance.

This is the reason the sky is blue: When we look at a part of the sky away from the sun, the blue

light we see is sunlight scattered by the air along our line of sight.

The Earth in turn radiates thermal radiation in the infrared that must pass through the at-

mosphere to reach outer space where it escapes. This radiation has a frequency range that covers

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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the vibrational transitions of most simple molecules, so it is strongly scattered by several types of

molecules such as the greenhouse gases CO2, H2O and CH4. Thus an infrared photon leaving the

Earth’s surface must diffuse through the atmosphere in a random walk, a process that is much slower

than passing straight through. The greenhouse gases act like a blanket, keeping the Earth warm.

Notice that the atmosphere makes it easy for radiation to get in at optical frequencies, and difficult

to get back out at infrared frequencies.

There are many examples in astrophysics where the scattering or absorption of radiation by

matter is important. For example, sunlight passing through the cooler outer layers of the sun’s

atmosphere produces an absorption spectrum (the dark Fraunhoffer lines) that give information

about the chemical species occurring in the sun and the physical conditions in its atmosphere. Similar

information is available for other stars. For another example, transport of energy by radiation is

important in the interior of stars, in which photons undergo repeated scattering by free electrons in

the plasma and by bound electrons in atoms (if the atoms are not completely stripped, it depends

on circumstances) and slowly diffuse upward toward the surface. In many stars such as the sun this

radiative transport dominates the energy transport at certain radii, while at other radii convective

transport is dominant.

The interaction of photons with matter is also important in nuclear physics. In the Mössbauer

effect, for example, gamma ray photons emitted in the decay of a nucleus are used to excite other

nuclei, lifting them from their ground state into an excited state. See Sec. 19.12. The resonance is

very narrow, however, and the photon can be shifted out of resonance by a Doppler shift involving

only small velocities. The Mössbauer effect provided the first clear experimental demonstration of

the red shift that photons suffer on climbing out of a gravitational field. This effect implies that

clocks run at different rates in different regions of a gravitational field. It is one of the conceptual

corner stones of general relativity.

3. The Scattering Problem

We shall consider the reaction

A+ γ → B + γ′, (1)

in which an atom in state A interacts with an incident photon γ, which leaves the atom in state B

and produces the scattered photon γ′. We will write λ = (kµ), λ′ = (k′µ′) for the modes of the

incident and scattered photons, where µ is a polarization index, as described in Sec. 40.12. We will

assume that λ 6= λ′, since otherwise there is no scattering. If A = B, the scattering is elastic (the

initial and final atomic states are the same), and by conservation of energy we have ω = ω′, where ω

and ω′ are the frequencies of the photons with modes λ and λ′. If A 6= B, the scattering is inelastic,

and we have ω 6= ω′. In this case the final atomic state B may either be higher or lower in energy

than the initial state A, depending on circumstances. We will use box normalization in our analysis,

so the indices λ, λ′, etc are discrete. With a few changes, the states |A〉 and |B〉 can be interpreted

as belonging to a molecule, nucleus, or other material system, rather than an atom.
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We shall treat the scattering reaction (1) by means of time-dependent perturbation theory,

developed in Notes 34. As we shall see, we will have to make some extensions of that theory for

the application at hand. Our earlier presentation of time-dependent perturbation theory was stated

in a general notation, in which |i〉 is an initial state, |n〉 is a variable final state that we must sum

over to get useful transition probabilities, and |k〉 is an intermediate state. These initial, final and

intermediate states will be identified with particular states in our atom-field system, so we will switch

back and forth between the general notation and the one specific to our problem.

Specifically, we have one photon in both our initial and final states. We will write these states

in a variety of ways,

|i〉 = |A〉a†λ|0〉 = |A〉|λ〉 = |Aλ〉,

|n〉 = |B〉a†λ′ |0〉 = |B〉|λ′〉 = |Bλ′〉.
(2)

The energies of these states are

Ei = EA + h̄ω,

En = EB + h̄ω′,
(3)

where EA and EB are the energies of the two atomic states. The Einstein frequency connecting the

initial and final states is

ωni =
En − Ei

h̄
= ωBA + ω′ − ω, (4)

where ωBA = (EB − EA)/h̄.

The problem will be to compute the differential cross section dσ/dΩ′, where Ω′ refers to the

direction of the outgoing photon (in mode λ′). The differential cross section is a function of the

mode of the initial photon λ, the two atomic states A and B, and of the polarization and direction

of the final photon, whose mode is λ′. The energy of the final photon is determined by conservation

of energy.

4. The Transition Amplitude Vanishes at First Order in A

We will take the Hamiltonian for the interaction of the matter with the radiation to be K =

K0 +K1 +K2, where

K0 =
p2

2m
+ U(r) +

∑

λ

h̄ωλ a
†
λaλ, (5a)

K1 =
e

mc
[p ·A(x) + S ·B(x)], (5b)

K2 =
e2

2mc2
A(x)2. (5c)

We write our Hamiltonian as K so as not to confuse it with the Hamiltonian H = H0 +H1 that is

used in the general theory of time-dependent perturbation theory. We will have to identify H0 with
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K0 for our particular problem, and H1 with K1 + K2. Although we have written K0 as a single-

electron system, very little of the following analysis depends on this and our results, as mentioned,

will be valid also for molecules, nuclei, and other systems.

The Hamiltonian K is ordered in powers of the vector potential A, which represents physically

the amplitude of the light wave. That is, K0 is O(1), K1 is O(A), including the term S · B since

B = ∇×A, and K2 is O(A2).

The transition amplitude in first order time-dependent perturbation theory is given by

Eq. (34.36), which we reproduce here:

c(1)n (t) =
2

ih̄
eiωnit/2

(sinωnit/2

ωni

)

〈n|H1|i〉. (6)

For our application we must replace H1 by K1 +K2, but if we only wish to work to first order in A

we can ignore K2 compared to K1. Thus we make the replacement,

〈n|H1|i〉 → 〈n|K1|i〉 =
e

mc
〈Bλ′|[p ·A(x) + S ·B(x)]|Aλ〉, (7)

in Eq. (6). The fields A and B have Fourier series (41.22) and (41.24) in terms of the modes of

the field. If we write out these series, suppressing all factors except the creation and annihilation

operators, then they have the structure,

A,B =
∑

λ1

(

aλ1
. . . a†λ1

)

, (8)

where we are careful to use the index λ1 as a dummy variable of summation, so as not to confuse it

with the indices λ and λ′ of the incident and scattered photons.

Now focusing on the field part of the matrix element (7), we see that the annihilation operator

aλ1
does not contribute to the transition amplitude, because it acts on a state with a single photon,

|Aλ〉, and either produces a state with zero photons (if λ1 = λ) or annihilates it (if λ1 6= λ). In either

case, the resulting state is orthogonal to the state |Bλ′〉, and gives zero when the scalar product is

taken. Similarly, the creation operator a†λ1
in the Fourier series (8) acts on the single photon state

|Aλ〉 and produces a two-photon state, which is necessarily orthogonal to any one-photon state such

as |Bλ′〉. Again, the field part of the scalar product vanishes. Thus we find

〈n|K1|i〉 = 0, (9)

and there is no contribution to the scattering amplitude at first order in A.

More generally, in any vacuum expectation value of a product of creation and annihilation

operators, something like

〈0|(product of a’s and a†’s)|0〉, (10)

the answer vanishes unless the number of a’s and the number of a†’s are equal. In particular, the

answer vanishes if the total number of a’s and a†’s is odd.

We see that for our problenm, we must go to second order in A to find a nonvanishing contri-

bution; this will involve second order perturbation theory.
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5. Second-Order Time-Dependent Perturbation Theory

This is the first time we have had an application of second-order time-dependent perturbation

theory, so we shall return to the formalism of Notes 34 and develop the theory at second order,

using the notation of those notes. In particular, the Hamiltonian is H = H0+H1. The second-order

contribution to the transition amplitude cn(t) in the interaction picture is given by Eq. (34.34) in the

general case in which H1 in the Schrödinger picture is allowed to depend on time. For our scattering

application, H1 is time-independent, so we can do the time integrations appearing in Eqs. (34.31).

The integral in the first order term in Eq. (34.31a) was done already in Sec. 34.9, with the result

shown in Eq. (34.36) and reproduced above in Eq. (6). As for the integrals in the second order term

in Eq. (34.31b), we first do the t′′ integration, finding,

c(2)n (t) =
1

(ih̄)2

∫ t

0

dt′
∑

k

eiωnkt
′

(eiωkit
′ − 1

iωki

)

〈n|H1|k〉〈k|H1|i〉. (11)

Recall that the sum on k is a sum over “intermediate states” that came from the insertion of a

resolution of the identity between the two Hamiltonian factors in Eq. (34.31b). We combine the

phase factors in Eq. (11), using the identity,

ωnk + ωki = ωni, (12)

and then we do the t′ integration,

c(2)n (t) =
1

(ih̄)2

∫ t

0

dt′
∑

k

1

iωki
(eiωnit

′ − eiωnkt
′

)〈n|H1|k〉〈k|H1|i〉

=
1

(ih̄)2

∑

k

1

iωki

[(eiωnit − 1

iωni

)

−
(eiωnkt − 1

iωnk

)]

〈n|H1|k〉〈k|H1|i〉. (13)

Of the two major time-dependent factors in the square brackets in Eq. (13), the first one,

eiωnit − 1

iωni
= 2eiωnit/2

sinωnit/2

ωni
, (14)

is the same time-dependent factor that appears in the first order term c
(1)
n (t) shown in Eq. (6).

Notice that this factor is independent of k and can be taken out of the sum in Eq. (13). When

squared to produce a probability, this factor produces a quantity proportional to time multiplied

times a function of frequency that gets narrower as time gets longer,

sin2 ωt/2

ω2
=
π

2
t∆t(ω), (15)

where

lim
t→∞

∆t(ω) = δ(ω). (16)

See Eqs. (34.46) and (34.47). The fact that the result is proportional to time is essential for getting

a transition rate (a probability per unit time), and the emerging δ-function in the limit t → ∞ is
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necessary for energy conservation, as explained in Notes 34. In fact, as explained in Sec. 34.15, we

do not really have to take t to ∞, it need only be long enough for certain initial transients to die

away. These transients are related to the artificiality of the initial conditions, and are nonphysical.

The initial conditions for the scattering problem considered in these notes contain an artificial

element, as did the initial conditions in the potential scattering problem considered in Sec. 34.14.

That is, we are assuming that at t = 0 the atom is known to be in the state A and the field consists

of a single photon in mode λ. This mode is a plane wave that fills up all of space, including the

region occupied by the atom. It would be impossible to set up such initial conditions experimentally,

since there is no way for a light wave to get into the region occupied by the atom without interacting

with it. A more realistic set of initial conditions would be a wave packet made up out of single

photon states that initially is remote from the atom and not interacting with it. To treat such wave

packets, however, would require a more sophisticated formalism than we are using here, so we will

stick with the initial conditions we have chosen. The price we pay, however, is the appearance of

initial transients without physical significance.

The second major time-dependent term inside the square brackets in Eq. (13) is just such a

transient. This term, when squared, does not produce something proportional to time, but rather

just gives bounded oscillations that go to zero in the limit t → ∞ after we divide by time. Thus,

they do not contribute to the transition rate. This is because the frequency ωnk occurring in that

term is not independent of k. The same is true for the cross terms that arise when the sum of

the two major time-dependent terms in Eq. (13) is squared. Thus, if all we are interested in is the

transition rate and not the initial transients, we can drop the second major time-dependent term in

Eq. (13).

The result is an effective transition amplitude at second order that is proportional to the time-

dependent factor (14), the same factor that occurs at first order. Combining the first and second

order terms, we obtain an effective transition amplitude,

ceffn (t) =
2

ih̄
eiωnit/2

( sinωnit/2

ωni

)

[

〈n|H1|i〉+
∑

k

〈n|H1|k〉〈k|H1|i〉
Ei − Ek

]

, (17)

where we have taken the denominator ωki appearing in Eq. (13) and written it as −(Ei − Ek)/h̄.

The result is the “energy denominator” seen in the second order contribution in Eq. (17). Recall

that we had such energy denominators also in second-order bound state perturbation theory (see

Notes 23). We drop the zeroth order contribution δni to the transition amplitude since for our

scattering problem n 6= i (since λ 6= λ′).

6. The Photon Scattering Amplitude at Order A2

For our application H1 in Eq. (17) must be replaced by K1+K2. At first order of perturbation

theory, this gives the matrix element

〈n|K1 +K2|i〉. (18)
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As we have just seen, however, the contribution to this matrix element from K1 vanishes. But at

second order in A we must keep the term 〈n|K2|i〉. This is the second-order Hamiltonian K2 taken

in first-order perturbation theory. Likewise, in the second order term of the general expression (17),

we can simply replace H1 by K1, ignoring K2, if we wish to work to second order in A. That is, we

take the first-order Hamiltonian K1 at second order perturbation theory. Altogether, the effective

transition amplitude for our scattering problem, valid through order A2, is

ceffn (t) =
2

ih̄
eiωnit/2

(sinωnit/2

ωni

)[

〈n|K2|i〉+
∑

k

〈n|K1|k〉〈k|K1|i〉
Ei − Ek

]

, (19)

where K1 and K2 are given by Eqs. (5) and states |i〉 and |n〉 are given by Eqs. (2).

7. K2 in First-Order Perturbation Theory

We begin with the term

〈n|K2|i〉 =
e2

2mc2
〈Bλ′|A(x)2|Aλ〉. (20)

Squaring the Fourier series (41.22) for A, we obtain a product series with the structure,

A(x)2 ∼
∑

λ1λ2

(aλ1
. . . a†λ1

) · (aλ2
. . . a†λ2

), (21)

where we suppress all factors except the creation and annihilation operators. This allows us to

concentrate on the photon part of the matrix element (20). We see that there are four types of

products of creation and annihilation operators that occur inA2. The product of the two annihilation

operators aλ1
aλ2

does not contribute to the transition amplitude, since it acts on the single photon

state |Aλ〉 producing zero. Likewise, the product of the two creation operators a†λ1
a†λ2

does not

contribute, since it acts on |Aλ〉 creating a three-photon state that is orthogonal to the one-photon

state |Bλ′〉. The product of the annihilation operator times the creation operator, aλ1
a†λ2

, does

contribute, however, as long as λ1 = λ and λ2 = λ′. That is, the photon destroyed by aλ1
must

be the incident photon, and the one created by a†λ2
must be the scattered photon. Taking into

account the other factors in the Fourier series, this product of operators corresponds to the product

of polarization vectors ǫ̂λ · ǫ̂∗λ′ and the product of phase factors eik·x−ik′·x. Similarly, the product

of the creation operator times the annihilation operator a†λ1
aλ2

contributes as long at λ1 = λ′ and

λ2 = λ, and in this case the product of polarization vectors is ǫ̂
∗
λ′ · ǫ̂λ and the product of phase

factors is e−ik′·x+ik·x. The terms that contribute are those that have a total of two annihilation and

two creation operators between the vacuum bra and vacuum ket.

Thus out of the double infinite series (21) for A2, only two terms contribute to the transition

amplitude, and both have the same product of polarization vectors and the same phase factors.

The contributions of these two terms are equal. It is now easy to do the photon part of the matrix

element, leaving only an atomic matrix element. The result is

〈n|K2|i〉 = 2× e2

2mc2
2πh̄c2

V

1√
ωω′

(ǫ̂ · ǫ̂′∗) 〈B|ei(k−k
′)·x|A〉, (22)
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where the leading factor of 2 comes from the fact that we have two identical terms, and where we

have made the abbreviations, ǫ̂ = ǫ̂λ, ǫ̂
′ = ǫ̂λ′ .

In the following we shall use the dipole approximation, in which ei(k−k
′)·x = 1. As explained in

Notes 42, this approximation is equivalent to a/λ≪ 1, where a is the size of the atom and λ is the

wave length of the radiation. This is an excellent approximation for atoms at optical frequencies,

where the ratio a/λ is less than 10−3. This causes the atomic matrix element in Eq. (22) to become

simply 〈B|A〉 = δBA. We see that the K2-term only contributes to elastic scattering. Altogether,

the matrix element becomes

〈n|K2|i〉 =
( e2

mc2

)(2πh̄c2

V

) 1√
ωω′

(ǫ̂ · ǫ̂′∗) δBA. (23)

8. Feynman Diagrams

Before proceeding to the K2
1 term, we show how the terms of the perturbation series are asso-

ciated with Feynman diagrams. A Feynman diagram is basically a space-time diagram showing the

interactions of the particles. The diagrams correspond to terms in the transition amplitude; thus,

each diagram is a complex number.

The time sequence of particle interaction in a Feynman diagram comes from the Dyson series

in time-dependent perturbation theory. The Dyson series is given by Eq. (34.25), reproduced here:

|ψI(t)〉 = |i〉+ 1

ih̄

∫ t

0

dt′H1I(t
′)|i〉+ 1

(ih̄)2

∫ t

0

dt′
∫ t′

0

dt′′H1I(t
′)H1I(t

′′)|i〉+ . . . . (24)

This is a power series in H1, a solution of the time-dependent Schrödinger equation in the interaction

picture with initial condition |ψI(0)〉 = |i〉. The Hamiltonian H1I is in the interaction picture; it is

time-dependent even when H1 (in the Schrödinger picture) is not, hence H1I at different times do

not commute.

We will use the second order term of the Dyson series to illustrate the time ordering. In this

term the various times satisfy

t ≥ t′ ≥ t′′ ≥ 0, (25)

where the initial time is 0, t′ and t′′ are a pair of sequenced intermediate times, and t is the final

time. This leads to a language for describing the second order term of the Dyson series: we say that

the initial state |i〉 is unchanged until time t′′ when it is acted upon by H1I(t
′′), after which it is

unchanged until time t′ when it is acted upon by H1I(t
′), after which it is unchanged until the final

time t. The second order contribution to the transition amplitude is the sum (that is, the integral)

of all such contributions, for all possible (ordered) values of t′ and t′′.

Similarly, the first order term involves interacting with H1I at one intermediate time t′, and the

zeroth order term involves no interaction. The pattern is clear for terms of any order.
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A

B λ′

λ

t

t′

0

Fig. 1. The seagull diagram. The four-point vertex describes the action ofK2I at intermediate time t′, which annihilates
the incident photon in mode λ, creates the scattered photon in mode λ, and connects initial atomic state A with final
state B. Time runs from bottom to top in the diagram, with the time sequence 0 ≤ t′ ≤ t.

To return to our problem, the term 〈n|K2|i〉 involves the second order Hamiltonian, but comes

from the first order term in the Dyson series. Thus there is one interaction with K2 at one inter-

mediate time. This interaction destroys the incident photon λ and creates the final photon λ′, and

connects the initial atomic state A with the final atomic state B. The Feynman diagram is shown

in Fig. 1; it is called a “seagull” diagram. In the diagram time increases from bottom to top. The

atom lines are straight lines, and the photon lines are curvy. The single interaction with K2 is an

example of a 4-point vertex, that is, an intersection of four lines. Four-point vertices are created by

the term A2 in the Hamiltonian, because of the structure of the product of the two Fourier series

discussed above.

9. The term K2
1 in Second Order Perturbation Theory

Now we turn to the second order term in the transition amplitude, extracted from Eq. (19):

∑

k

〈n|K1|k〉〈k|K1|i〉
Ei − Ek

, (26)

where we use the general notation for the initial state |i〉, the final state |n〉, and the intermediate

state |k〉. In our problem k runs over a complete set of state of the matter plus field system, and in

particular, it must include states of any number of photons. But |i〉 = |Aλ〉 and |n〉 = |Bλ′〉 contain
only one photon, and K1 can create or destroy only one photon, so the only intermediate states that

give nonvanishing matrix elements are those with either zero or two photons. Thus there are two

cases.

In case I, the intermediate state contains zero photons. The first application of K1 (at the first

intermediate time, t′′ in our notation) annihilates the incident photon λ, and the second application

of K1 (at the second intermediate time, t′ in our notation) creates the final photon λ. In case II, the

intermediate state contains two photons, which must be in modes λ and λ′. The first application of

K1 creates the final photon λ′ and the second (later) application of K1 destroys the incident photon
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B λ′

I

A λ

t

t′

t′′

0

Fig. 2. In case I, the incident photon is destroyed before
the final photon is created. There are zero photons in the
intermediate state.

λ

B λ′

I

A

Fig. 3. In case II, the final photon is created before the
incident photon is destroyed. There are two photons in
the intermediate state.

λ. Thus we have

|k〉 =
{

|I〉|0〉 ≡ |I〉, Case I

|I〉a†λa
†
λ′ |0〉 ≡ |Iλλ′〉, Case II

(27)

where I refers to an intermediate atomic state. The Feynman diagrams for cases I and II are given

in Figs. 2 and 3.

We may now evaluate the contributions of cases I and II to the sum (26). The initial and final

energies Ei and En, in the general notation, are translated into the notation of this problem by

Eq. (3). In case I, the energy of the intermediate state, Ek in the general notation, becomes EI , the

energy of the intermediate atomic state, in the notation of this problem. Thus, in case I, the energy

denominator in the sum (26) becomes

Ei − Ek → EA + h̄ω − EI = h̄(ω − ωIA), (28)

where ωIA = (EI − EA)/h̄. Also, the second matrix element in (26) is interpreted as

〈k|K1|i〉 = 〈I|K1|Aλ〉 =
e

mc

√

2πh̄c2

V

1√
ω
〈I|p · ǫ̂|A〉, (29)

after using Eq. (5b) for K1 and evaluating the field part of the matrix elements. We have dropped

the term involving S ·B, since it is of order α compared to the term p ·A (this is equivalent to the

dipole approximation, in which we set eik·x = 1). What is left is a purely atomic matrix element.

Similarly, the first matrix element in Eq. (26) is interpreted as

〈n|K1|k〉 = 〈Bλ′|K1|I〉 =
e

mc

√

2πh̄c2

V

1√
ω′

〈B|p · ǫ̂′∗|I〉. (30)

Altogether, the contribution of case I, that is, the Feynman diagram in Fig. 2, to the sum (26) is

( e2

mc2

)(2πh̄c2

V

) 1√
ωω′

1

mh̄

∑

I

〈B|(p · ǫ̂′∗)|I〉〈I|(p · ǫ̂)|A〉
ω − ωIA

. (31)
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Similarly, we find the contribution of case II, that is, the Feynman diagram in Fig. 3. It works out

to be
( e2

mc2

)(2πh̄c2

V

) 1√
ωω′

1

mh̄

∑

I

〈B|(p · ǫ̂)|I〉〈I|(p · ǫ̂′∗)|A〉
−ω′ − ωIA

. (32)

Putting the pieces together, the total transition amplitude (19) becomes

ceffn (t) =
2

ih̄
eiωnit/2

(sinωnit/2

ωni

)( e2

mc2

)(2πh̄c2

V

) 1√
ωω′

M, (33)

where M is an abbreviation,

M = ǫ̂ · ǫ̂′∗ δBA +
1

mh̄

∑

I

[〈B|(p · ǫ̂′∗)|I〉〈I|(p · ǫ̂)|A〉
ω − ωIA

− 〈B|(p · ǫ̂)|I〉〈I|(p · ǫ̂′∗)|A〉
ω′ + ωIA

]

. (34)

Note that M is dimensionless. Note also that the sum over intermediate atomic states I must

include states of the continuum; for these, the notation
∑

I is an abbreviation for an integral over

the continuous quantum numbers, as well as a sum over the discrete ones.

10. The Kramers-Heisenberg Formula

Let us fix the mode λ of the incident photon, the initial and final atomic states A and B, and

the polarization µ′ of the outgoing photon. Then the final state is |n〉 = |Bλ′〉, in which only the

final wave vector k′ of the outgoing photon is variable. We must sum the transition probabilities

over a collection of final states to obtain the differential cross section, exactly as we did in the simpler

scattering problems considered in Notes 34.

Let n̂f be a chosen direction for the outgoing photon, and let us construct a small cone of solid

angle ∆Ω′ about this direction, as in Fig. 34.5. The prime on Ω′ means that it is a solid angle

referring to the outgoing photon. Let us also define k′f as the magnitude of k′ as determined by

conservation of energy, that is,

k′f =
ω′

c
=
ω − ωBA

c
, (35)

which follows from ωni = 0 [see Eq. (4)].

The differential cross section dσ/dΩ′, for fixed values of λ = (k, µ), A, B and µ′, is the transition

probability per unit time per unit solid angle Ω′ of the outgoing photon per unit incident flux of the

incoming photon for transitions in which k′ lies in the small cone just described, in the limit that

time is long enough for the initial transients to die away. We also take V → ∞ to get rid of the box

and to obtain physical results. That is, we can write

dσ

dΩ′
= lim

t→∞
lim

V →∞

1

Jinc

1

∆Ω′

1

t

∑

k′∈cone

|ceffBλ′(t)|2. (36)

As we have done in Notes 34, we sum over all wave vectors k′ in the small cone, and do not try to

enforce energy conservation by hand. Taking the factors in Eq. (36) one at a time, the incident flux
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of photons is Jinc = c/V , since there is one incident photon in the box travelling at the speed of

light. The sum over final photon states k′ becomes an integral in the limit V → ∞,

∑

k′∈cone

→ V

(2π)3

∫

cone

d3k′ =
V

(2π)3
∆Ω′

∫ ∞

0

k′2 dk′ =
V

(2π)3
∆Ω′

c3

∫ ∞

0

ω′2 dω′. (37)

Finally, the square of the transition amplitude (33) becomes

|ceffBλ′(t)|2 =
2πt

h̄2
∆t(ωBA + ω′ − ω)

(e2

m

)2(2πh̄

V

)2 1

ωω′
|M |2. (38)

where we have used Eq. (34.46). The matrix element M depends on k′ because it contains the

polarization vectors ǫ′ = ǫλ′ = ǫk′µ′ . The direction of k′ is determined by the cone, that is, the

choice of n̂f .

Putting the pieces together, we find

dσ

dΩ′
=

1

c4

∫ ∞

0

ω′2 dω′ 1

h̄2
δ(ωBA + ω′ − ω)

1

ωω′

e4h̄2

m2
|M |2, (39)

or, upon doing the integral,
dσ

dΩ′
= r2e

ω′

ω
|M |2, (40)

where

re =
e2

mc2
= 2.82× 10−13cm (41)

and where in the final expression it is understood that k′ = k′f n̂f , since the direction of k′ is fixed

by the small cone and the magnitude by the energy-conserving δ-function. Also, ω′ = ω − ωBA

is determined by energy conservation. Equation (40), with M given by Eq. (34), is the Kramers-

Heisenberg formula. It was first derived by methods of the old quantum theory, and is important

historically because the calculation led Heisenberg to realize that a fundamental difference between

classical mechanics and quantum mechanics is that in quantum mechanics classical observables are

replaced by noncommuting operators. (Heisenberg thought of these operators as matrices, hence

the name “matrix mechanics” for the first version of quantum mechanics).

The quantity re is called the classical radius of the electron. It is called “classical” because the

expression does not involve h̄ and because it has a classical interpretation: it is the radius outside of

which the integrated energy in the electric field of the electron,
∫

E2/8π, is equal to the rest-mass-

energy E = mc2 of the electron (apart from constants of order unity). At one point physicists were

playing with the idea that the observed mass of the electron might be purely energy in the field. This

idea was not very successful, however, and later developments in quantum electrodynamics showed

that it was rather naive. However, the general idea points to a paradox of classical electromagnetism,

namely, the total integrated energy of the electric field of a point particle, if it is carried all the way

to r = 0 and if Coulomb’s law is valid all the way to r = 0, is infinite. As we shall see when we

study the Lamb shift, the quantum theory also leads (nominally) to an infinite mass of the electron.
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In addition to the infinite zero-point energy, it is one of the infinities that appear in quantum field

theory.

In any case, the cross-section (40) is proportional to

r2e = α4a20, (42)

where a0 is the Bohr-radius. Since α4 ≈ 3× 10−9 this is a very small area by atomic standards. The

geometrical cross section of the atom is roughly πa20, and this is roughly the cross section for the

scattering of electrons of several eV of energy by an atom. But quantity r2e , which sets the scale for

photon scattering, is much smaller.

Can the dimensionless quantity |M |2 enhance the cross section for photon scattering? One can

see from the definition (34) that all quantities appearing there are of order unity in atomic units, if

the states |A〉 and |B〉 have reasonably small quantum numbers. If, however, one of the denominators

should be small, then the M can be large and lead to an enhancement. In fact, the denominator in

the first term in Eq. (34) is small if ω ≈ ωIA, that is, if the incident photon has the right energy to

raise the atom from its initial state |A〉 to an intermediate state |I〉. This intermediate state must

be higher in energy, since ω > 0. If this is the case, the incident photon is in resonance with one

of the excitation frequencies of the atom. Similar interpretations can be given to the second term,

although in that term the outgoing photon is emitted before the incident photon is absorbed, as

indicated by the Feynman diagram in Fig. 3.

If ω is chosen so that there are no resonances (none of the denominators in Eq. (34) is small)

then the cross-section for atom-photon scattering is comparable to r2e , and is very small by atomic

standards. This is why ordinary gases are transparent to radiation at optical frequencies, unless

very thick.

We will now examine the Kramers-Heisenberg formula in various special and limiting cases.

11. Elastic Scattering

First we examine elastic scattering, in which the final atomic state is the same as the initial,

that is, B = A. This means that ω′ = ω (the final photon energy is the same as the initial photon

energy), so the Kramers-Heisenberg formula simplifies a little,

dσ

dΩ′
= r2e |M |2, (43)

where now

M = ǫ̂ · ǫ̂′∗ +
1

mh̄

∑

I 6=A

[ 〈A|(p · ǫ̂′∗)|I〉〈I|(p · ǫ̂)|A〉
ω − ωIA

− 〈A|(p · ǫ̂)|I〉〈I|(p · ǫ̂′∗)|A〉
ω + ωIA

]

(elastic). (44)

We have excluded the term I = A from the sum because it vanishes anyway.

In this case it is possible to combine the first (seagull) term with the other two terms. This

involves some reverse engineering or unsimplifying to make the first term look like the others. In
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the first step we use the identity, δij = (1/ih̄)(xipj − pjxi) to write the first term of Eq. (44) as

ǫ̂ · ǫ̂′∗ =
∑

ij

〈A|ǫiǫ′∗j δij |A〉 =
1

ih̄

∑

ij

〈A|ǫiǫ′∗j (xipj − pjxi)|A〉

=
1

ih̄

[

〈A|(x · ǫ̂)(p · ǫ̂′∗)|A〉 − 〈A|(p · ǫ̂′∗)(x · ǫ̂)|A〉
]

=
1

ih̄

∑

I 6=A

[

〈A|x · ǫ̂|I〉〈I|p · ǫ̂′∗|A〉 − 〈A|p · ǫ̂′∗|I〉〈I|x · ǫ̂|A〉
]

,

(45)

where in the last step we have introduced a resolution of the identity and excluded the term I = A

since it vanishes anyway. Next we use the identity,

p =
m

ih̄
[x,K0], (46)

whereK0 is given by Eq. (5a) and only the atomic part is relevant. This is essentially the Heisenberg

equation of motion for x, using K0 as the Hamiltonian, and it allows us to convert matrix elements

in p to those in x or vice versa, as we did in Sec. 42.8. In the present problem it allows us to write

〈A|x · ǫ̂|I〉 = 〈A|(xK0 −K0x) · ǫ̂|I〉
EI − EA

=
i

m

〈A|p · ǫ̂|I〉
ωIA

, (47)

where we have used the fact that |A〉 and |I〉 are eigenstates of K0. Similarly we have

〈I|x · ǫ̂|A〉 = − i

m

〈I|p · ǫ|A〉
ωIA

, (48)

obtained by swapping the labels A and I.

Combining Eqs. (47) and (48) with Eq. (45), we obtain

ǫ̂ · ǫ̂′∗ =
1

mh̄

∑

I 6=A

[〈A|p · ǫ̂′∗|I〉〈I|p · ǫ̂|A〉
ωIA

+
〈A|p · ǫ̂|I〉〈I|p · ǫ̂′∗|A〉

ωIA

]

. (49)

This allows us to combine the terms in Eq. (44) to obtain

M =
ω

mh̄

∑

I 6=A

1

ωIA

[ 〈A|p · ǫ̂′∗|I〉〈I|p · ǫ̂|A〉
ω − ωIA

+
〈A|p · ǫ̂|I〉〈I|p · ǫ̂′∗|A〉

ω + ωIA

]

(elastic). (50)

Finally, let us use the commutator (46) convert matrix elements in p into matrix elements in x. The

conversions are

〈A|p · ǫ̂|I〉 = −imωIA〈A|x · ǫ̂|I〉, 〈A|p · ǫ̂′∗|I〉 = −imωIA〈A|x · ǫ̂′∗|I〉,

〈I|p · ǫ̂′∗|A〉 = imωIA〈I|x · ǫ̂′∗|A〉, 〈I|p · ǫ̂|A〉 = imωIA〈I|x · ǫ̂|A〉.
(51)

With these, Eq. (50) becomes

M =
mω

h̄

∑

I 6=A

ωIA

[ 〈A|x · ǫ̂′∗|I〉〈I|x · ǫ̂|A〉
ω − ωIA

+
〈A|x · ǫ̂|I〉〈I|x · ǫ̂′∗|A〉

ω + ωIA

]

(elastic). (52)
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12. Low Frequency Elastic Scattering

So far we have transformed the quantity M for elastic scattering without approximation. Now,

however, let us consider the case in which the frequency of the incident photon is small compared to

any resonance frequency ωIA. For example, if |A〉 is the ground state of the atom, this means that

h̄ω is small compared to the energy needed to raise the atom into the first excited state. Then we

can expand the the quantity M in Eq. (52) in powers of ω/ωIA. The ω-dependent terms in Eq. (52)

are
ωIA

ω ± ωIA
≈ ±1− ω

ωIA
. (53)

The contribution of the constant term in this expansion to the sum (52) is

∑

I 6=A

[

−〈A|x · ǫ̂|I〉〈I|x · ǫ̂′∗|A〉+ 〈A|x · ǫ̂′∗|I〉〈I|x · ǫ̂|A〉
]

. (54)

We can restore the term I = A into this sum since it vanishes anyway and obtain a resolution of the

identity
∑ |I〉〈I| over atomic states. Thus the sum (54) becomes

−〈A|(x · ǫ̂)(x · ǫ̂′∗)|A〉+ 〈A|(x · ǫ̂′∗)(x · ǫ̂)|A〉 = 0. (55)

The constant term in the expansion (53) vanishes when used in the sum. Going to next order in

ω/ωIA we have

M =
mω2

h̄

∑

I 6=A

1

ωIA

[

〈A|x · ǫ̂|I〉〈I|x · ǫ̂′∗|A〉+ 〈A|x · ǫ̂′∗|I〉〈I|x · ǫ̂|A〉
]

(elastic, ω ≪ ωIA). (56)

In this form we can see the induced dipole moment tensor of the atom in the presence of the

light wave. See Eq. (24.31) for the polarizability of hydrogen in the presence of a static (DC) electric

field (that is, in the Stark effect). The physics is that the incident light wave produces an induced

electric dipole moment in the atom, oscillating at the same frequency as the wave, which radiates

the scattered wave. In fact, much of the process can be understood classically.

For now the important fact is that the amplitude M is proportional to ω2, so the cross section

is proportional to ω4. This dependence of the cross section on frequency was first derived by Raleigh

in his study of light scattering by small particles, so the process is called Rayleigh scattering. When

sunlight passes through the atmosphere the higher frequency blue light is more strongly scattered

than the longer wavelengths, which explains why the sky is blue. It also explains why sunsets are

red, since the sunlight passing through thick layers of atmosphere has its higher frequencies depleted

by Raleigh scattering and mainly the red light gets through.

13. Thomson Scattering

Let us now consider the opposite limit, in which ω is much larger than any atomic transition

frequency. This may look absurd since we sum over all intermediate states I going out to arbitrarily
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high energies. However, the matrix elements in Eq. (34) are small when the intermediate state I has

large quantum numbers compared to those of the states A and B (which we assume are small). In

this limit both terms in the sum in Eq. (34) have large denominators and become negligible compared

to the first (seagull) term. Specializing to elastic scattering, in this limit the Kramers-Heisenberg

formula becomes simply
dσ

dΩ′
= r2e |ǫ̂ · ǫ̂′∗|2. (57)

The physics here is that if the energy of the incident photon is much higher than the binding energy

of the electron, then the electron behaves as if it were free and not attached to the atom at all.

In fact, the cross-section (57) applies to the scattering of photons by free electrons, which is called

Thomson scattering. The area r2e is the characteristic size of the Thomson cross-section.

However, our derivation is limited by the fact that we are using nonrelativistic quantum me-

chanics, so the validity of the Thomson cross-section is limited by h̄ω ≪ mc2, where m is the

electron mass. If the photon is relativistic in the sense h̄ω is comparable to or greater than mc2,

then the process is called Compton scattering and the cross-section, which is more complicated than

the Thomson formula (57), is called the Klein-Nishina cross-section.

Notice that the Thomson cross section does not depend on the spin of the electron. That

is because we used the electrostatic model in its derivation, as well as the dipole approximation

(ignoring spin-dependent terms etc). In the Klein-Nishina formula there is a dependence on the

electron spin.

An interesting feature of Thomson scattering is that even if the incident photon is unpolarized,

the scattered photon has a net polarization. In fact, for certain scattering angles, it is in a pure

polarization state.

14. Raman Scattering

Raman scattering is an example of inelastic scattering, which we describe in broad terms.

A typical example consists of passing optical radiation, for example, a laser beam, through a

molecular gas. A detector collects photons scattered by the beam at various angles. If the frequency

of the optical radiation is ω, then most of the scattered photons also have frequency ω, that is, the

scattering is elastic. But typically one also detects a smaller number of photons that have been

downshifted or upshifted in frequency by some amount ∆ω. If the scattered photon has a lower

frequency than the incident photons, it means the photon has given up some energy to the molecule,

typically raising it into a higher vibrational state; conversely, if scattered photon is upshifted in

frequency then it has gained energy from the molecule, which has made a transition to a lower

vibrational state. If the vibrational mode in question is approximated by a harmonic oscillator, then

∆ω is the vibrational frequency and h̄∆ω is the change in vibrational energy when the quantum

number n of the harmonic oscillator changes by 1. If the molecule is a diatomic then it has only

one vibrational mode, as explained in Sec. 16.11, but polyatomic molecules have more than one
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vibrational mode. Section 16.11 also explaines that vibrational frequencies are typically down by

a factor of roughly 100 in comparison to optical frequencies, so this is a measure of ∆ω/ω in such

experiments. In this way the frequency shifts of the scattered photons give direct experimental

information on the vibrational energy levels of the molecule.

The spectral lines that are shifted down from the incident frequency ω are called Stokes lines,

and those that are shifted up are called anti-Stokes lines. In practice Stokes lines tend to be stronger

than anti-Stokes lines because the Boltzmann factor suppresses the populations of higher vibrational

states. For example, if the gas is at a low enough temperature that almost all the vibrational modes

are in the ground state, then one will see only Stokes lines.

Problems

1. This is a variation on Sakurai, Advanced Quantum Mechanics, problem 2-6, p. 72.

Consider the 2s → 1s transition in hydrogen. The matrix elements for single photon emission

are very small, so ignore them, and consider the emission of two photons. This in fact is the

dominant mechanism for the 2s→ 1s decay. It is sufficient to use the electrostatic model (ignore the

spin of the electron, the fine structure, etc), so the atomic states are |nℓm〉. Use the Hamiltonian

K = K0 +K1 +K2, given by Eq. (5), with U(r) = −e2/r so that it applies to hydrogen, and drop

the spin-dependent term in K1. Also use the dipole approximation, so eik·x = 1. See Eq. (17) for

the effective transition amplitude in second order time-dependent perturbation theory. Remember

that H1 in must be identified with K1 +K2 in our application. Let B stand for the 2s state, A for

the 1s state, and I for an intermediate state. Obtain an expression for the differential transition

rate,
dw

dω dΩ dΩ′
, (58)

defined by saying that
dw

dω dΩ dΩ′
∆ω∆Ω∆Ω′ (59)

is the probability per unit time for two photons to be emitted with frequencies ω, ω′, with ω+ω′ =

ωBA = (EB − EA)/h̄, with 0 ≤ ω ≤ ωBA/2, with ω lying in a small interval ∆ω, and with wave

vectors k, k′ lying in two small cones of solid angles ∆Ω and ∆Ω′. You can write your answer in the

style we used for the Kramers-Heisenberg formula, Eq. (40), with the cross section proportional to

the square of a certain amplitude, which you should define. The answer is a function of ω and the

directions and polarizations of the two outgoing photons. Good advice is to use atomic units (it is

much easier).

Indicate which intermediate states contribute to the sum. Simplify the expression as far as you

can. This is a challenge to see how far you can go with the simplification. Hint: if you simplify

enough, then it is easy to sum over polarizations and integrate over the solid angles of both photons,
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leaving behind only an integral over ω to get the total transition rate. This problem is relatively

simple for a two-photon process, since the initial and final atomic states are rotationally invariant.

2. In Sec. 13 we derived the Thomson cross section for the scattering of photons by free electrons

as a limit of the Kramers-Heisenberg formula when h̄ω is much greater than atomic energy scales

(but much less than mc2). Unfortunately, that derivation disguises the fact that the Thomson cross

section is valid also for low energy photons. Make a direct derivation of the Thomson cross section,

working with free electrons. Work in the center of mass frame of the electron-photon system. Show

that one Feynman diagram is larger than the others, which are smaller by a factor of v/c≪ 1. Neglect

these. Because we are using nonrelativistic quantum mechanics for the electron, we must assume

that the photon energy satisfies h̄ω ≪ mc2. Be careful, you cannot make the dipole approximation

because there is no atom to refer the photon wavelength to. However, you may ignore the term

S ·B, which is higher order in α (the fine structure constant) than the term p ·A.

3. When we direct photons at an atom, we can choose the frequency of the incident photon ω to be

anything we want. Depending on the atomic states |A〉 and |B〉 and the frequency ω, we may have

a resonance in one or the other of the two terms in the sum in Eq. (34).

(a) Show that if the first term is resonant, then the intermediate state I must be higher in energy

than both states |A〉 and |B〉. Show that if ω is resonant with an atomic transition, then so is ω′. Is

there any necessary relation between EA and EB (must one be higher than the other, or vice versa)?

What states A and B would you choose and what frequency ω if you wanted to guarantee that the

first term could not be resonant for any I?

(b) Show that if the second term is resonant, then the intermediate state I must be lower in energy

than both states |A〉 and |B〉. Show that if the second term is resonant for some ω, A and B, then

both ω and ω′ are resonant with some atomic transition. Is there any necessary relation between

EA and EB (must one be higher than the other, or vice versa)? What states A and B would you

choose and what frequency ω if you wanted to guarantee that the second term in Eq. (34) could not

be resonant for any I?


