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Natural Line Width, Long-Time Behavior and the Lamb Shift†

1. Introduction

Let us return to the Kramers-Heisenberg formula. For simplicity we consider the case of elastic

scattering, A+ γ → A+ γ′, in which the state A is the ground state. The cross section is

dσ

dΩ′
= r2e |M |2, (1)

where

M = ǫ̂ · ǫ̂′∗ +
1

mh̄

∑

I 6=A

[

〈A|(p · ǫ̂′∗)|I〉〈I|(p · ǫ̂)|A〉

ω − ωIA
−

〈A|(p · ǫ̂)|I〉〈I|(p · ǫ̂′∗)|A〉

ω + ωIA

]

, (2)

which are Eqs. (43.43) and (43.44). The first term under the sum, which corresponds to the Feynman

diagram in Fig. 1, is resonant when ω = ωIA for some intermediate state I, that is, the denominator

goes to zero at this frequency and the cross section nominally becomes infinite. Note that there

is a sum over intermediate states I 6= A, so states I must be excited states, and when ω = ωIA

it means that the incident photon has the right energy to lift the system into the excited state I.

Only one state I (or a collection of degenerate states) can be resonant for a given incident photon

frequency ω; when ω is near ωIA for some intermediate state I, then that one term in the sum in

the Kramers-Heisenberg formula dominates and we can approximate the amplitude by neglecting

the others.

A λ′

I

A λ

Fig. 1. Feynman diagram for the first term under the sum in Eq. (2), which is resonant when ω = ωIA for some
intermediate state I. At resonance, energy is conserved at the lower vertex (circled).

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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The resonant divergence of the scattering cross section is nonphysical, so a number of questions

are raised. First, what is wrong with our derivation of the Kramers-Heisenberg formula, that we

obtain non-physical divergences, and how do we correct them? Next, how close to ω = ωIA can

we come before the Kramers-Heisenberg formula (43.44) breaks down? And finally, since we know

the cross section cannot really be infinite at resonance ω = ωIA, how high does it go? Recall that

for non-resonant frequencies, that is, ω that are not close to ωIA for any intermediate state I, the

Kramers-Heisenberg cross section is of order r2e = α4a20. That is, it is of order α
4 ∼ 10−9 in atomic

units, which is very small by atomic standards. It is of interest to see by what factor this small cross

section is enhanced at resonance.

To see some of the qualitative features of the divergences in the Kramers-Heisenberg formula,

consider the Feynman diagram of Fig. 1. A question that arises is whether energy is conserved at

the vertices of the diagram, for example, at the lower vertex (circled), where the energy of the initial

state is EA+ h̄ω and that of the intermediate state is EI . The answer depends on the photon energy

h̄ω but for most values of this parameter energy is not conserved. There is no reason why it should

be, since the intermediate states originate in a resolution of the identity, which is a sum over all

states, regardless of their energy. Nevertheless, the Feynman diagram suggests that somehow the

initial state is transformed into the intermediate state at a certain time, which later transforms into

the final state. In quantum mechanics energy is only precisely defined in processes that take an

infinite amount of time, while for a process that takes time ∆t the energy is uncertain by an amount

∆E ∼ h̄/∆t. In fact, intermediate states in Feynman diagrams only survive for a limited amount

of time, or at least this is an interpretation that can be given to the machinery of the Dyson series

developed in Notes 34. Such a state is called virtual. For the lower vertex of the Feynman diagram

in question, note that ∆E = EI −EA− h̄ω, so that ∆E is proportional to the resonant denominator

we see in the Kramers-Heisenberg formula. The whole amplitude is proportional to 1/∆E, that is,

it is proportional to the amount of time that the intermediate state is allowed to survive.

If ω is not near any resonant frequency ωIA for any intermediate state I, then ∆E is of order

unity in atomic units, so any given intermediate state I survives only for a time of order unity before

disappearing again. This means that the contribution of the state I to the transition amplitude,

which is computed in the Dyson series as an integral over time, can only accumulate to a small value

before the virtual state disappears. The time integral in question is the one over t′′ in Eq. (34.34);

the integrand has the phase factor eiωkit
′′

, which in the context of the Kramers-Heisenberg formula

is

ei(EI−EA−h̄ω)t′′/h̄ = ei∆Et′′/h̄. (3)

If ω is not resonant, then the contribution to the transition amplitude just oscillates with a frequency

∆E/h̄ and remains small.

If however we let ω approach a resonant frequency ωIA for some intermediate state I, then ∆E

gets smaller, the virtual state lives for a longer time, and the transition amplitude accumulates.

This is reflected by the fact that the denominator gets smaller. As ∆E → 0, it would appear that
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the virtual state could live for an arbitrarily long time, which would mean that it is becoming a real

state.

But the intermediate state I in question must be an excited state, since we are assuming that

A is the ground state, so it cannot live forever, rather it will eventually undergo the spontaneous

emission of a photon and drop into a lower state. This will become a significant process when ∆E

is comparable to Γ = h̄/τ , where τ is the lifetime of the excited state I. Γ is the usual symbol

used for the decay rate of an excited state, measured in energy units. Thus we can expect that the

predictions of the Dyson series and the Kramers-Heisenberg formula, as derived in Notes 43, will

break down when

|∆E| = |EI − EA − h̄ω| <≈ Γ. (4)

As explained in Notes 42, for E1 transitions Γ is of order α3 ∼ 10−6 in atomic units, so the fraction

of the ω axis over which the breakdown occurs is very small. For M1 and higher order transitions Γ

is even smaller. In other applications (nuclear physics, particle physics) Γ may be relatively much

larger (that is, broad resonances exist).

Time-dependent perturbation theory, as we have presented it in Notes 34, is based on the

method of successive approximations, in which a lower order approximation is substituted back into

the Schrödinger equation in the interaction picture and integrated to get the next approximation. It

does not take into account the depletion of probability from the initial state due to the perturbation,

so its validity is limited to short times, that is, t ≪ h̄/Γ. To cure the divergences in the Kramers-

Heisenberg formula we need a theory capable of handling the long-time behavior of the system, that

is, one that is valid for times t >≈ h̄/Γ.

2. Decay of an Excited State; the Decay Rate Γ

To analyze the long-time behavior of quantum systems, we will take a model problem, that of

the decay of an atom in an excited state B. We outline the problem in this section, which contains

a slight rephrasing of some of the material given in Sec. 42.3. For the rest of this analysis we set

h̄ = 1 except that we restore h̄’s selectively when it makes final formulas look more familiar.

A

A′

A′′

B

Fig. 2. An atom in excited state B emits a photon and drops into a lower state, of which there may be more than one
(A, A′, etc).
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We assume the atom is initially in an excited state B with no photons in the field, and that it

subsequently makes a transition to a lower state A with the emission of a photon. There may be

more than one lower energy state to which a transition can be made, A′, A′′, etc., as illustrated in

Fig. 2. As in Notes 42 we let the initial state be |B0〉 = |B〉|0〉, where |0〉 is the vacuum state of the

field, and we let the final state be |Aλ〉 = |A〉a†λ|0〉, that is, the state in which the atom is in state

|A〉 and there is one photon in the field of mode λ = (k, µ). We take the Hamiltonian to be

K = K0 +K1 +K2 = K0 +K ′, (5)

where K0, K1 and K2 are given by Eqs. (43.5) and where we set K ′ = K1 +K2 as it is convenient

to have a symbol for the entire perturbation.

According to first-order time-dependent perturbation theory, the transition amplitude in the

interaction picture to find the system in state |Aλ〉 at time t is

cAλ(t) = −2i eiωnit/2
sin(ωnit/2)

ωni
〈Aλ|K ′|B0〉, (6)

where ωni is interpreted as

ωni =
EB − EA − h̄ω

h̄
= ωBA − ω. (7)

See Eqs. (34.36) and (42.10). We note that K1 can only change the number of photons by ±1 while

K2 can change them only by 0 or ±2, so K ′ in Eq. (6) can be replaced by K1.

Squaring the transition amplitude to get a probability we have

PAλ(t) = 2πt∆t(ωBA − ω) |〈Aλ|K1|B0〉|2, (8)

where ∆t is the usual symbol we have used for an approximate δ-function, as defined by Eq. (34.46).

Dividing this by t and summing over final states gives us the transition rate, according to first-order

time-dependent perturbation theory. If we want the total rate of decay, we must sum not only over

all photon states λ but all atomic states A. This gives

Γ = 2π
∑

Aλ

|〈Aλ|K1|B0〉|2 δ(ωBA − ω), (9)

where we have taken t long enough to replace the function ∆t by a genuine δ-function. There is

no harm in summing over all states A, including those higher in energy than B, since for those the

δ-function will give zero.

A δ-function is only meaningful under an integral, so when interpreting formulas such as (9)

it must be understood that the sum on photon modes λ includes a sum on wavevectors k of the

photon, which in the infinite volume limit can be written as an integral over the frequency ω of the

photon,
∑

k

→
V

(2π)3

∫

dΩk
1

c3

∫ ∞

0

ω2 dω. (10)

The volume factor V will cancel when we compute the matrix element.



Notes 44: Natural Line Width and the Lamb Shift 5

As noted in Notes 42, this calculation of the decay rate really gives the slope of the decay curve

at t = 0. See Fig. 42.1, in which the decay rate is denoted AE (the Einstein A-coefficient) rather

than Γ. (The notation AE is appropriate for the decay rate to a specific final state, while Γ is the

decay rate to all possible final states.) First-order time-dependent perturbation theory is giving the

probability of remaining in the initial state |B0〉 as

PB0(t) = 1− Γt, (11)

which is correct for t≪ 1/Γ but absurd for longer times. For longer times we might expect an expo-

nential decay law PB0(t) = e−Γt but that is not proven by first-order time-dependent perturbation

theory. We do have the first term in the Taylor expansion of the exponential,

e−Γt = 1− Γt+ . . . , (12)

but we haven’t proven that the higher order terms are the right ones.

To access the long-time behavior of the system it won’t help to go to higher order in time-

dependent perturbation theory. These higher order terms will generate powers of t, that is, a Taylor

series expansion of the probability in time about t = 0. This is a poor way to understand the

long-time behavior.

3. An Approach Based on Laplace Transforms and Green’s Functions

Let us return to the formalism of time-dependent perturbation theory in the general notation

used in Notes 34. We write the Hamiltonian as H = H0 +H1, and we let the initial state be

|ψ(0)〉 = |i〉, (13)

where |i〉 is an eigenstate of H0,

H0|i〉 = Ei|i〉. (14)

The state of the system at a later time is

|ψ(t)〉 = U(t)|i〉 =
∑

n

an(t)|n〉, (15)

where we have expanded |ψ(t)〉 as a linear combination of eigenstates of H0, H0|n〉 = En|n〉, for

simplicity assumed to be discrete. The expansion coefficients an(t) are the transition amplitudes in

the Schrödinger picture,

an(t) = 〈n|U(t)|i〉. (16)

In this analysis we will work in the Schrödinger picture, but for reference the transition ampli-

tudes in the interaction picture, which we denote by cn(t) as in Notes 34, are related to those of the

Schrödinger picture by

cn(t) = eiEnt an(t). (17)



6 Notes 44: Natural Line Width and the Lamb Shift

See Eq. (34.28). The two amplitudes differ by a phase factor, so the transition probability, which is

the square of the amplitudes, is the same in both pictures. Differentiating Eq. (16) with respect to

time we obtain an evolution equation for the transition amplitudes in the Schrödinger picture,

iȧn = 〈n|i
∂U

∂t
|i〉 = 〈n|(H0 +H1)U(t)|i〉, (18)

or,

iȧn = Enan +
∑

k

〈n|H1|k〉ak. (19)

This is really just a version of the Schrödinger equation and it is exact.

We will solve Eq. (19) by means of Laplace transforms. A Laplace transform is essentially a

one-sided Fourier transform, that is, the range of integration only goes from 0 to ∞ instead of −∞ to

+∞. (In comparison to the usual definition of the Laplace transform there is also the question of a

deformation of the contour of integration in the complex plane, which we gloss over, the main point

being that we will be using a one-sided Fourier transform.) The one-sided transform is necessary

in our applications since we are interested in decay processes that go to zero as t → ∞ but which

diverge as t → −∞ (and in any case we are only interested in t ≥ 0). The variable conjugate to t is

an energy-like variable, so we want to consider transforms like

∫ ∞

0

dt eiEt an(t) =

∫ ∞

0

dt eiEt 〈n|U(t)|i〉. (20)

The essence of this integral is
∫ ∞

0

dt eiEt U(t). (21)

However, as discussed in Sec. 37.12, this integral does not converge at the upper limit. To fix this we

push E into the upper half complex energy plane, making the replacement E → z = E+ iǫ, where z

is a complex energy. Then the integral (21) gives the Green’s operator, to within constant factors.

To get these right, we define the “Laplace transform” for our purposes as the integral operator

−i

∫ ∞

0

dt eizt, (22)

for Im z > 0. Then we have

−i

∫ ∞

0

dt eizt an(t) = −i

∫ ∞

0

dt eizt 〈n|U(t)|i〉 = 〈n|G(z)|i〉 = ãn(z), (23)

where G(z) is the Green’s operator as defined by Eq. (37.58) (with h̄ = 1), and where we denote the

Laplace transform of an(t) by ãn(z).

The advantage of Laplace transforms is that they convert differential equations into algebraic

equations, which are easier to solve, and they also deal nicely with initial conditions and transients.

This is like the method of complex impedances when analyzing an electrical circuit, which is much

easier than solving coupled differential equations for the currents and charges in the circuit elements.
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Applying the Laplace transform to the left-hand side of the Schrödinger equation (19) and

integrating by parts we obtain

−i

∫ ∞

0

dt eizt iȧn(t) = eizt an(t)
∣

∣

∞

0
− iz

∫ ∞

0

dt eizt an(t) = −an(0) + zãn(z). (24)

Note that an(0) = δni. Applying the Laplace transform also to the right-hand side of Eq. (19) we

obtain

(z − En)ãn(z) = δni +
∑

k

〈n|H1|k〉ãk(z). (25)

This is an algebraic equation for the Laplace transforms of the transition amplitudes that is equiv-

alent to the Schrödinger equation and is still exact.

We can obtain the same result by noting that

G(z) =
1

z −H
=

1

z −H0 −H1
, (26)

so that

(z −H0 −H1)G(z) = 1. (27)

Now sandwiching this by 〈n| on the left and |i〉 on the right, we obtain

〈n|(z −H0 −H1)G(z)|i〉 = (z − En)ãn(z)−
∑

k

〈n|H1|k〉ãk(z) = δni, (28)

which is the same as Eq. (25).

4. Solving for the Transition Amplitudes

We now apply these results to the decay problem described in Sec. 2, making the identifications

|i〉 → |B0〉, Ei = EB, H0 = K0, and H1 = K ′ = K1 + K2. Also, we make the approximation of

working on the subspace of the ket space spanned by |B0〉 and |Aλ〉, ignoring all states with two or

more photons. This means that we interpret the resolution of the identity as
∑

k

|k〉〈k| → |B0〉〈B0|+
∑

Aλ

|Aλ〉〈Aλ|. (29)

We can enlarge this space to get a better approximation, at the expense of solving a more complicated

system of equations.

We specialize Eq. (25) to the case n = i, which for our decay problem means that the final

state is the same as the initial state |B0〉. The corresponding amplitude is aB0(t), the amplitude to

remain in the initial state. Making the replacement (29) for this case we obtain

(z − EB)ãB0(z) = 1 + 〈B0|K ′|B0〉 ãB0(z) +
∑

Aλ

〈B0|K ′|Aλ〉 ãAλ(z). (30)

Taking into account the numbers of photons that K1 and K2 can create or destroy, we can write

this as

(z − EB)ãB0(z) = 1 + 〈B0|K2|B0〉 ãB0(z) +
∑

Aλ

〈B0|K1|Aλ〉 ãAλ(z). (31)
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Similarly, taking the case n 6= i and identifying |n〉 with |Aλ〉, so that En = EA + ω, we can write

Eq. (25) as

(z − EA − ω)ãAλ(z) = 〈Aλ|K1|B0〉 ãB0(z) +
∑

A′λ′

〈Aλ|K2|A
′λ′〉 ãA′λ′(z), (32)

where we have restricted the resolution of the identity as in Eq. (29).

Equations (31) and (32) are algebraic equations for the Laplace transforms of the transition

amplitudes, ãB0(z) and ãAλ(z). The various terms can be assigned an order in the perturbation

K1 + K2, where we count K2 as of order K2
1 . The amplitude ãB0(z) is of order unity in the

perturbation, since it is non-zero even when K1 = K2 = 0, as shown by Eq. (31). Then since the

matrix element 〈Aλ|K1|B0〉 is of order K1, we see from Eq. (32) that the amplitude ãAλ(z) is also

of order K1. This also follows from the fact that transitions to the states Aλ are induced by K1.

From this it follows that the final term in Eq. (32) is of order K3
1 . As for Eq. (31), its terms are of

at most second order in K1.

We will work to second order in the perturbation, neglecting the final, third order term in

Eq. (32) (the final sum). This allows us to solve for the amplitude ãAλ(z) in terms of ãB0(z),

ãAλ(z) =
〈Aλ|K1|B0〉

z − EA − ω
ãB0(z). (33)

We substitute this back into Eq. (31), which allows us to solve for the amplitude ãB0(z),

ãB0(z) =
1

D(z)
, (34)

where we define

D(z) = z − EB − 〈B0|K2|B0〉 −
∑

Aλ

|〈Aλ|K1|B0〉|2

z − EA − ω
. (35)

The symbol D stands for “denominator.” Finally, we can substitute this back into Eq. (33) to obtain

ãAλ(z) =
〈Aλ|K1|B0〉

(z − EA − ω)D(z)
. (36)

Equations (34) and (36) are explicit solutions for the Laplace transforms of the transition

amplitudes aB0(t) and aAλ(t). We must now carry out the inverse Laplace transform to get the

amplitudes themselves.

5. Inverting the Laplace Transform

Let us revert to a general notation, denoting transition amplitudes by an(t) and their Laplace

transforms by ãn(z). To carry out the inverse Laplace transform we consider the integral

−1

2πi

∫

C+

dz e−izt ãn(z) =
−1

2πi

∫

C+

dz e−izt 〈n|G(z)|i〉, (37)



Notes 44: Natural Line Width and the Lamb Shift 9

where C+ is a contour that runs just above the real axis in the complex energy plane, as illustrated

in Fig. 3. The essence of this integral is

−1

2πi

∫

C+

dz e−iztG(z). (38)

If t < 0 then the integrand is exponentially damped in the upper half plane, and the contour

can be closed by a semicircle at infinity which does not contribute to the integral, as illustrated in

Fig. 4. This contour encloses no singularities since G(z) is analytic in the upper half plane, so the

value of the integral is zero.

ReE

ImE

C+

Fig. 3. The contour C+, used in the inverse Laplace
transfrom, runs just above the real energy axis.

ReE

ImE

Fig. 4. For negative times t < 0 the contour C+ can be
closed in the upper half-plane.

For positive times t > 0 the integrand diverges exponentially in the upper half-plane so we

cannot close the contour there. Nor can we close it in the lower half-plane, since that would involve

crossing the real energy axis where G(z) has singularities (poles and branch cuts). To evaluate the

integral (38) for positive times we consider a different integral,

−1

2πi

∫

C−

dz e−iztG(z), (39)

where C− runs just below the real energy axis, as illustrated in Fig. 5. For positive times t > 0 the

integrand damps exponentially in the lower half-plane, so the contour can be closed as in Fig. 6.

But since G(z) is also analytic in the lower half-plane, the integral (39) vanishes for t > 0.

ReE

ImE

C−

Fig. 5. The contour C− runs just below the real energy
axis.

ReE

ImE

Fig. 6. For positive times t > 0 the contour C− can be
closed in the lower half-plane.
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To return to the integral (38) for positive times, we can subtract the integral (39) without

changing the value since the latter is zero. That is, for t > 0 we have

−1

2πi

∫

C+

dz e−iztG(z) =
−1

2πi

∫

C+−C−

dz e−iztG(z)

=
−1

2πi

∫ +∞

−∞

dE e−iEt lim
ǫ→0

[G(E + iǫ)−G(E − iǫ)],

(40)

where as the contours C+ and C− are pushed toward the real axis we get an integral running over

the real axis itself, in which the integrand contains the difference in G(z) just above and just below

the real axis. But this is the discontinuity in the Green’s operator across the real axis, which is

−2πi δ(E −H). See Eqs. (37.72) and (37.76). Thus the integral (40) becomes
∫ +∞

−∞

dE e−iEt δ(E −H) = e−iHt = U(t). (41)

Altogether, we have
−1

2πi

∫

C+

dz e−iztG(z) =

{

0 t < 0,

U(t) t > 0,
(42)

and the inverse Laplace transform of the transition amplitude is

an(t) =
−1

2πi

∫

C+

dz e−izt ãn(z), (t > 0). (43)

6. Transition Amplitude aB0(t) in the Unperturbed System

Now we apply the inverse Laplace transform to the amplitudes ãB0(z) and ãAλ(z), given by

Eqs. (34) and (36). We start with the amplitude to remain in the initial state |B0〉,

aB0(t) =
−1

2πi

∫

C+

dz
e−izt

D(z)
. (44)

Before doing this in full detail, let us neglect the terms of D(z) seen in Eq. (35) that involve the

perturbing Hamiltonians K1 and K2, in order to see the evolution due to the unperturbed system.

We do this to gain some experience and confidence with the formalism.

ReE

ImE

C+

EB

Fig. 7. Complex plane for the inverse Laplace transform
for the unperturbed approximation to aB0(t). The inte-
grand has a simple pole on the real axis at z = EB .

ReE

ImE

EB

Fig. 8. The contour of Fig. 7 can be closed in the lower
half-plane and contracted around the pole.
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In that case D(z) becomes simply z − EB, and we have

aB0(t) =
−1

2πi

∫

C+

dz
e−izt

z − EB
. (45)

The integrand has a pole on the real axis at z = EB and no other singularities. For t > 0 the contour

C+ can be closed with a semicircle in the lower half-plane and can then be contracted into a small

circle running in the clockwise (negative) direction around the pole. See Figs. 7 and 8. Then by the

residue theorem we have

aB0(t) = e−iEBt, (46)

which is exactly the time evolution we expect for the amplitude to remain in the initial state when

there is no perturbation. We see that the time dependence of the amplitude depends on the location

of the poles of the integrand of the inverse Laplace transform.

7. Denominator D(z) on the Real Axis

To handle the full expression (35) for D(z) let us first set z = E + iǫ for a point on the contour

C+,

D(E + iǫ) = E + iǫ− 〈B0|K2|B0〉+
∑

Aλ

|〈Aλ|K1|B0〉|2

EA + ω − E − iǫ
, (47)

where we have changed the sign of the denominator of the last term and compensated with the

overall sign of that term. We remember that
∑

λ actually implies the integral (10) over ω.

We want to let ǫ→ 0 in this expression to get D(z) on the real axis, but the final term is tricky.

It looks like we could just set ǫ = 0 in this term and we would obtain a quantity that was purely

real, but this is incorrect. In fact, if we just set ǫ = 0 we get an integral that has the mathematical

form
∫ b

a

dx
f(x)

x− x0
, (48)

where f(x) is a smooth function and where the interval [a, b] straddles the singularity at x0. (The

variable x in the integral (48) is like ω in the integral (47).) The problem is that the integral (48)

is not defined. The part of the integral from x = a to x = x0 diverges with one sign and the part

from x = x0 to x = b diverges with the opposite sign. Thus the integral has the form ∞−∞, and

is not defined.

We cannot just set ǫ = 0 in an expression like (47), instead we must take the limit ǫ→ 0. That

is, we have something of the form

lim
ǫ→0

∫ b

a

dx
f(x)

x− x0 − iǫ
. (49)

Assuming f is real, the real and imaginary parts of this integrand are obtained from

1

x− x0 − iǫ
=

x− x0
(x− x0)2 + ǫ2

+
iǫ

(x− x0)2 + ǫ2
. (50)
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As for the imaginary part, as ǫ→ 0 we get a representation of the δ-function,

lim
ǫ→0

ǫ

(x − x0)2 + ǫ2
= π δ(x− x0), (51)

so the imaginary part of the final sum in Eq. (47) is nonzero as ǫ→ 0 and is given by

π
∑

Aλ

|〈Aλ|K1|B0〉|2 δ(EA + ω − E). (52)

A bare formula like (51) is not meaningful if interpreted as the limit of a function, since the

so-called “δ-function” is not a real function. It does not make sense to say that the δ-function is zero

everywhere except at one point where it is infinite, and that its integral is unity. Instead a formula

like (49) must be understood as being used under an integral sign, in which the left-hand side is

integrated against a smooth function f(x) and the limit is taken. The “δ-function” is an example

of what is called a distribution, something that can be regarded as the limit of a family of functions

used under an integral.

There are other distributions besides the δ-function, in fact, the real part of Eq. (50) is another

example which is denoted

P
( 1

x− x0

)

= lim
ǫ→0

x− x0
(x− x0)2 + ǫ2

. (53)

This is called the “principal value” of 1/(x − x0). This equation is a “bare” formula like (51). Its

real meaning is

P

∫

dx
f(x)

x− x0
= lim

ǫ→0

∫

dx
x− x0

(x− x0)2 + ǫ2
f(x). (54)

Without the P the left-hand side of this equation would not be defined, as explained above.

Now we can take the limit ǫ→ 0 to push D(z) down onto the real axis. We write

D(E) = lim
ǫ→0

D(E + iǫ) = E − EB − 〈B0|K2|B0〉+ f1(E) + if2(E), (55)

where

f1(E) = P
∑

Aλ

|〈Aλ|K1|B0〉|2

EA + ω − E
, f2(E) = π

∑

Aλ

|〈Aλ|K1|B0〉|2 δ(EA + ω − E). (56)

8. The Zero of D(z) and the Complex Energy of State B

The zero of D(z) is the pole of the integrand of the inverse Laplace transform (44) and is

important for evaluating that integral. It also turns out to be a kind of complex energy of the state

B, once the perturbation is turned on. In the unperturbed system D(z) has a zero on the real axis

at z = EB but when the perturbation is turned on D(E) is nonzero everywhere on the real axis

because the imaginary part is positive there. Thus the zero must have moved to some complex

location nearby. We denote the zero by zB, so that D(zB) = 0. We write zB = EB + δz so that δz

is the shift in the zero of D(z) due to the perturbation. To find δz we write

D(zB) = D(EB + δz) = δz − 〈B0|K2|B0〉+ f1(EB + δz) + if2(EB + δz) = 0. (57)
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Assuming δz is small we neglect it in the last two terms which are already small, finding

δz = 〈B0|K2|B0〉 − f1(EB)− if2(EB) = 0, (58)

or,

zB = EB + 〈B0|K2|B0〉+ P
∑

Aλ

|〈Aλ|K1|B0〉|2

EB − EA − ω
− iπ

∑

Aλ

|〈Aλ|K1|B0〉|2 δ(EA + ω − EB), (59)

where we have rearranged signs in the third term. We see that the zero of D(z) has moved off the

real axis into the lower half plane. As for its imaginary part, a comparison with Eq. (9) shows that

it is −ΓB/2, where ΓB/h̄ is the decay rate of state B.

The real part of δz bears a close relationship to the energy shifts of bound state perturbation

theory, as explained in Notes 23. The state |B0〉 is a bound (normalizable) eigenstate of K0 with

energy EB. It is an eigenstate of the unperturbed system, that is, the atom with the interactions with

the electromagnetic field switched off. Of course, in reality we cannot switch off those interactions;

do they lead to shifts in atomic energy levels?

To answer this question we consider using bound state perturbation theory to compute the shift

in level EB due to the perturbation K ′ = K1 +K2. According to Eq. (23.22), there is a first order

shift

∆E
(1)
B = 〈B0|K ′|B0〉 = 〈B0|K2|B0〉, (60)

where K1 does not contribute. Also, according to Eq. (23.23) the nominal second order shift is

∆E
(2)
B =

∑

k 6=B0

|〈k|K ′|B0〉|2

EB − Ek
. (61)

If we replace K ′ by K1 to get the lowest order contribution, then the only states k that we need

sum over are the single photon states |Aλ〉, and we obtain

∆E
(2)
B =

∑

Aλ

|〈Aλ|K1|B0〉|2

EB − EA − ω
. (62)

This is almost the third term on the right in Eq. (59), missing only the principal value sign.

Actually, without the principal value ∆E
(2)
B in Eq. (62) is not defined, nor is it justified to use

bound state perturbation theory to find the energy shift in the state |B0〉 due to the interaction with

the electromagnetic field. Bound state perturbation theory applies when we have discrete energy

levels that are separated from one another, and in this system the state |B0〉 is a discrete state

imbedded in the continuum. Nevertheless, our search for the zero of D(z) has led to expressions

that are obviously related to the energy shifts of bound state perturbation theory, except that the

answers are well defined and the energy shift includes an imaginary part. Let us therefore simply

define ∆E
(2)
B to be the third term on the right in Eq. (59) (that is, by Eq. (62) but with a principal

value sign), so that

zB = EB +∆E
(1)
B +∆E

(2)
B − iΓB/2 = ẼB − iΓB/2, (63)
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where

ẼB = EB +∆E
(1)
B +∆E

(2)
B . (64)

Then ẼB is the real part of the energy of atomic state B, corrected for interactions with the field,

while the imaginary part is −ΓB/2.

9. The Transition Amplitude aB0(t) and the Exponential Decay Law

We return to the integral (44) for the transition amplitude aB0(t). The integrand has a pole at

z = zB, located near and below the energy EB of the unperturbed state |B0〉, as illustrated in Fig. 9.

The contour can be closed with a semicircle in the lower half plane and can then be contracted into

a small circle around the pole at zB in the lower half plane.

zB

ReE

ImE

C+

EB

Fig. 9. Complex plane for the inverse Laplace transform
for aB0(t), Eq. (44). The integrand has a simple pole at
z = zB , near and below the unperturbed energy EB .

ReE

ImE

EB

zB

Fig. 10. The contour of Fig. 9 can be closed in the lower
half-plane and contracted around the pole at z = zB .

Near z = zB we can expand D(z),

D(z) = D(zB) + (z − zB)D
′(zB) + . . . . (65)

But the first term vanishes and by Eq. (35) we have D′(z) = 1 +O(K2
1 ). Therefore to lowest order,

D(z) = z − zB (66)

when z is near zB. The contour in Fig. 10 can be contracted arbitrarily close to the pole at zB so

the integral (44) can be written

aB0(t) =
−1

2πi

∮

dz
e−izt

z − zB
= e−izBt, (67)

where the circle is traversed in a clockwise (negative) direction. We can also write this as

aB0(t) = e−i(ẼB−iΓB/2)t = e−iẼBt e−ΓBt/2. (68)

This shows that the amplitude to remain in the initial state evolves with a real phase factor indicating

an energy ẼB , that is, one corrected for the interactions with the field, but with an exponential decay

factor. The probability to remain in the initial state is the square of the amplitude,

PB0(t) = e−ΓBt, (69)
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which shows the exponential decay law.

We see that the exponential decay law is not a rigorous consequence of the Schrödinger equation,

but rather it follows from a series of nontrivial approximations. In fact, it is known that there are

deviations from the exponential decay law for long times.

The unperturbed system has a genuine bound state at E = EB but when the perturbation is

turned on there is only a continuous spectrum in the neighborhood of E = EB. The discrete state

has “dissolved into the continuum,” and become a resonance. A similar mechanism explains the

resonances associated with the doubly excited states in helium, as discussed in Sec. 30.9.

This derivation has been based on a model of an atom, but it applies in its essence to the

decay of any excited state of a system, including radioactive decays of nuclei and decays of unstable

particles. The derivation looks complicted, but that is because the exponential law is not exact.

The usual “simple” derivations of the exponential decay law rely on a type of statistical assumption

of the Markov type, which means that the transition probability for a system depends only on the

present state and not the previous history. This is what we usually assume about radioactive decay.

For example, if a nucleus has not decayed after ten times its average lifetime, the probability that

it will decay in the next second is the same as it always was. The nucleus does not try to “hurry up

and decay” because it has failed to do so for so long. At least this is what we usually assume. But

studying the decay by solving the Schrödinger equation, we find that the exponential decay law is

only approximate. Various aspects of this situation are discussed in an appendix to the first edition

of Sakurai’s book, Modern Quantum Mechanics.

10. The Transition Amplitude aAλ(t)

We can also get the amplitude to make a transition from the initial state |B0〉 to some specific

final state |Aλ〉. According to Eq. (36) this is

aAλ(t) =
−1

2πi

∫

C+

dz
e−izt

(z − EA − ω)D(z)
〈Aλ|K1|B0〉. (70)

The matrix element is independent of z and can be taken out of the integral. As for the rest of the

integrand, it has poles at z = EA + ω and at z = zB, as illustrated in Fig. 11. The figure is drawn

for the case EA < EB, as required if there is to be a transition |B0〉 → |Aλ〉.

Evaluation of the integral by the residue theorem gives two terms, one for each pole,

aAλ(t) = 〈Aλ|K1|B0〉
[ e−i(EA+ω)t

D(EA + ω)
+

e−izBt

zB − EA − ω

]

. (71)

This is valid for any final state |Aλ〉 but the amplitude will be small unless energy is approximately

conserved, which means that EA+ω is near to EB, and therefore near to zB. If this is the case then

Eq. (66) gives

D(EA + ω) = EA + ω − zB = EA + ω − ẼB + iΓB/2 = ω − ω̃BA + iΓB/2, (72)
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ReE

ImE

C+

EB

zB
EA

EA + ω

Fig. 11. Complex plane for the inverse Laplace transform
for aAλ(t), Eq. (70). The integrand has poles at z = EA+ω
and at z = zB .

ReE

ImE

EB

zB
EA

EA + ω

Fig. 12. The contour of Fig. 11 can be closed in the lower
half-plane and contracted to two small circles around the
poles at z = EA + ω and z = zB .

where we define

ω̃BA = ẼB − EA. (73)

Then the two denominators in Eq. (71) are the same to within a sign and the result can be written

aAλ(t) = 〈Aλ|K1|B0〉 e−i(EA+ω)t
[1− ei(ω−ω̃BA)t e−ΓBt/2

ω − ω̃BA + iΓB/2

]

. (74)

11. Amplitude and Probability as t→ ∞

The long-time behavior of the system is of interest but as t→ ∞ the amplitude aAλ(t) oscillates

and does not approach a limit due to the phase factor e−i(EA+ω)t. This factor is due to the evolution

under the unperturbed Hamiltonian H0, which is all that matters at long times because the photon

will have left the atom behind and is no longer interacting with it. A similar situation holds in

scattering theory, in which a wave packet directed at a target evolves according to the free particle

Hamiltonian at large negative and large positive times. See the discussion in Sec. 34.5.

If we switch to the interaction picture this time evolution is stripped off, and the amplitude is

cAλ(t) = 〈Aλ|K1|B0〉
[1− ei(ω−ω̃BA)t e−ΓBt/2

ω − ω̃BA + iΓB/2

]

. (75)

This is the same result we got with time-dependent perturbation theory, see Eqs. (6) and (7), except

that ω − ωBA is replaced by ω − ω̃BA + iΓB/2. The transition amplitude in the interaction picture

does have a long-time limit,

lim
t→∞

cAλ(t) =
〈Aλ|K1|B0〉

ω − ω̃BA + iΓB/2
, (76)

whose square gives the long-time probability,

lim
t→∞

PAλ(t) =
|〈Aλ|K1|B0〉|2

(ω − ω̃BA)2 + Γ2
B/4

. (77)
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ΓB/h̄

Prob

ω
ω̃BA

Fig. 13. The transition probability has a Lorentzian dependence on the frequency. The peak is centered at the resonance
frequency ω = ω̃BA and its full width at half maximum is ΓB/h̄. Figure is not to scale.

The correction term Γ2
B/4 in the denominator does not matter much if |ω − ω̃BA| ≫ ΓB, but

when |ω − ω̃BA| ∼ ΓB the transition probability varies rapidly in ω. The matrix element may also

depend on ω but is nearly constant over the small range of order ΓB about resonance. Overall

the dependence of the transition probability has the Lorentzian shape, with a full width at half

maximum (FWHM) of ΓB. See Fig. 13.

The Lorentzian replaces the energy-conserving δ-function that we had with time-dependent

perturbation theory. The photons emitted in the transition B → A do not all have the same energy,

but rather there is a spread of order ΓB. Note the scales in the figure. In a typical atomic problem

ω̃BA is of order unity in atomic units, while for E1 transitions ΓB is of order α3 ∼ 10−6.

The width ΓB/h̄ is what is called the natural line width of the spectral line B → A. Other

effects also contribute to the broadening of the spectral line, for example, Doppler shifts if the source

is a gas. Doppler shifts broaden the spectral line with a Gaussian profile, because of the Maxwellian

distribution of particle velocities. If the density of the gas is above a certain amount there will

also be pressure broadening, caused by the fact that before the atom has a chance to decay it has

a collision with another atom. This effectively resets the clock in the evolution of the state of the

atom. With pressure broadening the width of the spectral line can still be written ∆ω ∼ 1/τ , except

that now τ is the collision time instead of the lifetime for spontaneous emission. The natural line

width is the minimum line width obtained when all other sources of broadening are eliminated.

You may wonder why in the formula (73) for ω̃BA we correct the energy EB for interactions

with the field but not EA. Actually we should correct both energies but our formalism has not done

this since we have restricted the ket space to states with at most one photon. Notice that if A is

the ground state its lifetime is infinite so ΓA = 0, but A could be an excited state lying between B

and the ground state, as illustrated in Fig. 2. We would need a more sophisticated model to take

into account the decay of both states B and such a excited state A. This is required, for example,

in problems of optical pumping or photon cascades. If A is also an excited state then the line shape

of the transition B → A is a Lorentzian with FWHM given by ΓA + ΓB.
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As t → ∞ the atom drops into the state A with 100% probability, so the sum of all the

probabilities (77) should add to 1. We can see that it does if we make the replacement,

1

(ω − ω̃BA)2 + Γ2
B/4

→
2π

ΓB
δ(ω − ω̃BA), (78)

which follows from the representation (51) of the δ-function and the fact that the matrix element is

slowly varying over the energy range ΓB. This gives

∑

Aλ

PAλ(∞) =
2π

ΓB

∑

Aλ

|〈Aλ|K1|B0〉|2 δ(ω − ω̃BA) = 1, (79)

as follows from Eq. (9).

12. Fixing the Kramers-Heisenberg Formula

Now we can see how to fix the singularities in the Kramers-Heisenberg formula. As noted in

Sec. 1, the vanishing denominators arise from the time integrals in the Dyson series. For the resonant

terms in question, the phase factor that is integrated is given by Eq. (3), which we write here as

(e−iEIt)∗ e−i(EA+ω)t, (80)

dropping the primes on t and setting h̄ = 1. The two time-dependent exponential factors shown

came from a matrix element which in the case of the Kramers-Heisenberg formula can be written

〈I|U0(t)
†K1U0(t)|Aλ〉, (81)

where the factors of U0 represent the switch from the interaction picture to the Schrödiner picture.

From another point of view they also represent the time evolution of the states of the system

at a lower order approximation that is being substituted back into the Schrödinger equation and

integrated over time to get the next order approximation.

Based on what we have done with the long-time behavior of quantum systems, however, it

would be more accurate to use the time evolution of states I and A corrected for the interactions

with the field, that is, to replace the factor (80) by

[e−i(ẼI−iΓI/2)t]∗ e−i(ẼA+ω)t, (82)

where

ẼI = EI +∆E
(1)
I +∆E

(2)
I ,

ẼA = EA +∆E
(1)
A +∆E

(2)
A ,

(83)

as in Eq. (64). We do not include a term ΓA because in our outline of the problem in Sec. 1 we

assumed that A was the ground state of the atom.

If we do this, then the denominator ωIA −ω of the Kramers-Heisenberg formula (1) is replaced

by

ω̃IA − ω − iΓI/2. (84)
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where

ω̃IA = ẼI − ẼA (85)

(like Eq. (73) but with both energies corrected). It is logical that the resonance frequency ωIA

should be corrected in this manner, because the real resonance occurs at ω̃IA, not ωIA. Also, the

denominator now has an imaginary part and does not vanish at ω = ω̃IA. We see, as suspected in

Sec. 1, that the nominal Kramers-Heisenberg formula breaks down when |ω − ω̃IA| <≈ ΓI/h̄. Near

such frequencies the amplitude sum (2) is dominated by a single term, and

M ≈
1

mh̄

〈A|(p · ǫ̂′ ∗)|I〉〈I|(p · ǫ̂)|A〉

ω̃IA − iΓI/2
. (86)

The cross section is given by

dσ

dΩ′
= r2e

1

m2h̄2
|〈A|(p · ǫ̂′ ∗)|I〉|2|〈I|(p · ǫ̂)|A〉|2

(ω − ω̃IA)2 + Γ2
I/4

. (87)

If the transition I → A is allowed as an E1 transition, then ΓI is of order α3 in atomic units, so

that at resonance the cross section saturates at a value that is of order α−6 ∼ 1013 times larger than

it is out in the “desert” where ω is not close to any ω̃IA. In terms of powers of the fine structure

constant, the cross section is of order α−2a20 ∼ 104 a20 at resonance, which is quite large by atomic

standards. This is of the order of the square of the wavelength, which is characteristic of resonant

cross sections in general.

Thus the cross section as a function of frequency has the Lorentzian shape in the neighborhood

of a resonance, much like the sketch in Fig. 13. The width of the resonance is of order ΓI/h̄ and

the height is of order 1/Γ2
I , so if a gas is subjected to broad band radiation then by far the majority

of the scattering is resonant, at least until the beam is depleted of resonant photons. This is the

reason for the dark Fraunhoffer lines in the solar spectrum; as light from the sun passes through the

cooler, outer layers of the atmosphere of the sun, the resonant photons are scattered into random

directions and removed from the direct sunlight. In this process, the Doppler shift from the motion

of the atoms causes the dark lines to be broadened considerably in comparison to the natural line

width.

It was realized by the mid-nineteenth century that the dark Fraunhoffer lines in the spectrum of

the sun or other stars occur at the same frequencies as the emission spectra of various elements, and

so can be used to determine the chemical composition of stellar atmospheres. The element helium

was first discovered in this way in the sun’s atmosphere, before it was known on earth (hence the

name, from Greek “helios” meaning “sun”).


