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Introduction to Time-Independent Scattering Theory

and Scattering from Central Force Potentials†

1. Introduction

In Notes 34 we considered some scattering problems as an application of time-dependent per-

turbation theory, taking a time-dependent approach. In these notes we take a time-independent

approach to potential scattering in three dimensions, that is, we will be interested in energy eigen-

functions of the Schrödinger equation,

Hψ(x) = −
h̄2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x), (1)

for positive energies E > 0. These solutions must satisfy certain boundary conditions to be useful in

scattering theory. These energy eigenfunctions are part of the continuous spectrum so they extend

to infinity and are not normalizable. Thus, they do not represent the state of physical particles,

although they can be thought of as a limit of such states.

For the sake of generality we do not at first assume that the potential V (x) is rotationally

invariant, but as usual in scattering theory we assume that it approaches zero with distance,

lim
r→∞

V (x) = 0, (2)

where r = |x|. In fact, the simplest case is the one in which V → 0 faster than 1/r as r → ∞ (see

Sec. 10). This excludes the case of the Coulomb potential or potentials with a Coulomb tail, which

are important in practice but which require special techniques.

We will speak of the scattering of a particle by the potential V (x), as if it were a fixed potential

in space, but in reality the beam particle interacts with a target, which often is another particle.

Then a proper treatment requires us to take into account the dynamics of both particles. The

changes necessary to do this were discussed in some detail in Notes 34. For now we simply note

that if the target is very massive, then it can be thought of as producing a potential for the beam

particle that is fixed in space (that is, in an inertial frame), as we shall assume in these notes.

We begin by examining the boundary conditions that the desired solutions of the Schrödinger

equation should satisfy in a scattering problem, in order to develop an intuitive picture of what they

look like. This leads to a definition of the scattering amplitude and its relation to the differential

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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cross section. We then specialize to the case of central force potentials, for which the Schrödinger

equation is separable in spherical coordinates and for which many special results are available. We

devote some attention to hard sphere scattering, which is probably the most tractable central force

scattering problem, and which illustrates many features of scattering from more general potentials.

Finally we discuss the optical theorem in the context of potential scattering in three dimensions, an

exact result that has many generalizations.

2. Classical Scattering: The Steady State

We begin by considering a classical model of a scattering experiment. A beam of particles

is directed at a target, as illustrated in Fig. 1. We imagine that all the particles have the same

momentum p, and that the density of particles is uniform across the beam. In reality the beam

has to be turned on at some time, so we can imagine a time-dependent problem in which the beam

particles first approach the scatterer, then begin to interact with it, and then produce an outward

traveling front of scattered particles. If we stand at any given point and wait, then initially there

are no scattered particles, then the front arrives and we start to see them, and after the front has

passed we reach a steady state, in which the flux of scattered particles is constant in time. The

farther we are from the scatterer, the longer we have to wait for a steady state to be achieved, but

eventually it will happen.

p

x

y

z

V (x)

Fig. 1. Classical scattering. A beam of particles, all with the same momentum p, is directed against a target.

To obtain an idealized steady state we can imagine that the time at which the beam is switched

on recedes to −∞, while the source of the beam also recedes to infinity, so that we have a steady beam

coming in from infinite distance in the upstream direction. We can further idealize the situation by

letting the final time advance to +∞, so that a steady flux of scattered particles exists at all spatial

locations.

In this steady state, at any spatial point we have a definite flux of scattered particles, and, if

we are inside the beam, also a flux of incident particles. If we are at a distance from the scatterer

large enough that the potential can be neglected, then the kinetic energy of the scattered particles is

the same as that of the incident particles, because the scattering is elastic. That is, when a particle
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gains kinetic energy by falling into the potential well, it loses the same amount when climbing back

out again (or if the potential is positive it will lose kinetic energy on entering the potential, and then

gain it back when exiting).

There is also the question of how wide the beam is. Real beams have a finite width, which we

normally make much larger than the range of the potential (however that is defined). It is worth

noting that in classical scattering the total cross section is nominally infinite, unless the potential

rigorously vanishes outside some radius. That is because if V (x) goes to zero only gradually as

r = |x| → ∞, then there is some small angle of scattering, even at large impact parameters. Most

of the infinite cross section that results in such a case is due to small angle scattering, so dσ/dΩ

diverges as θ → 0. Most of this small angle scattering might well be of no practical interest, but to

see it one would need a beam that is infinitely wide (another idealization). In quantum mechanics,

as we will see, total cross sections are finite if the potential dies off rapidly enough with distance (it

need not rigorously vanish beyond a certain radius).

Notice that if we extend the width of the beam to infinity, then (with the other idealizations we

have made) the classical stationary state is uniquely determined by the momentum p of the incident

beam, that is, the momentum it has far upstream at a large distance from the scatterer.

3. The Stationary State in Quantum Scattering

In quantum mechanics a stationary state is usually defined as an energy eigenstate, which

with the time-dependence has a wave function of the form ψ(x) e−iEt/h̄. The wave function is not

stationary, but the probability density ρ and current J are. Thus it is plausible that the stationary

state we have just described in classical scattering should correspond to an energy eigenstate in

quantum scattering.

It is not hard to visualize such an eigenfunction but there are several idealizations that must

be understood. For example, as in the classical case, the steady state can be realized as the limit of

a time-dependent situation. We proceed intuitively. Probably the simplest way to realize this limit

is to let the initial state be a wave packet, for example, a Gaussian wave packet, whose expectation

value of momentum is p and whose spread in momentum is some ∆p ≪ |p|. We will be interested

in the limit ∆p → 0 so that the initial state has a well defined momentum p in the limit. But the

width of the wave packet in real space is ∆x ≥ h̄/(2∆p), which goes to ∞ as ∆p → 0. As it does

so, the value of the normalized wave function ψ(x) goes to zero, since the wave function is spread

over larger and larger regions of space. Therefore it is convenient to deal with unnormalized wave

functions, and to require that the magnitude of ψ(x) at the center of the wave packet remain finite

as ∆p → 0. This means that in the limit the wave function has an infinite norm. As this limit is

approached, the middle of the wave packet looks more and more like a plane wave with momentum

p.

We wish the wave packet at the initial time to lie far enough upstream that is has essentially

no interaction with the potential. The wave packet is aimed at the target, but it evolves according
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to the free particle Hamiltonian until the leading edge reaches the region where the potential is

effective. This guarantees that the initial wave packet does not have any components along the

bound states of the potential V (x), since any such bound state wave functions are localized in the

neighborhood of the potential. We do not want such components in the initial wave packet, since

the bound states are not scattering states; bound states evolve in time simply by oscillating in place,

without scattering. However, since the size of the wave packet ∆x goes to ∞ in the limit ∆p → 0,

we must pull the center of the initial wave packet farther and farther away from the scatterer to

guarantee that it has no overlap with the potential at the initial time. Then we must wait for a

longer and longer time for the wave packet to reach the scatterer.

Incident Wave

p = h̄k

y

z

x

V (x)

Scattered Wave

Fig. 2. Quantum scattering by a potential V (x). Incident and scattered waves are shown.

Thus there are several interlocking limits that must be taken at once, but when ∆p is small and

we wait until the center of the wave packet has reached the scatterer, then for some time around this

time and for some distance away from the scatterer we have a nearly steady state, in which a wave

that locally looks like a plane wave is incident on the scatterer, and a scattered wave is radiating

outward from the scatterer. In the limit we achieve a quantum steady state that is illustrated in

Fig. 2 and that resembles the classical steady state described in Sec. 2. The quantum steady state

that results in the limit depends only on the initial momentum p.

4. Boundary Conditions

If we are far from the scatterer then in the resulting steady state we see two waves, an incident

wave which is a plane wave of momentum p and a scattered wave, radiating away from the scatterer.

To rigorously define the decomposition of the total wave into an incident wave and scattered wave

which is valid everywhere (even where the potential is active), we write the exact solution to the

Schrödinger equation as

ψ(x) = ψinc(x) + ψscatt(x), (3)

where the indicent wave is a plane wave of momentum p = h̄k,

ψinc(x) = eik·x (4)
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and where ψscatt(x) is defined as the difference between the exact and incident wave, so that Eq. (3)

is true. Also, in the asymptotic region, at large r where the potential is negligible, we require that

the scattered wave consist of purely outgoing waves, moving in the radial direction away from the

scatterer.

If we conceive of the potential has having some well defined range then the angle subtended by

the scatterer is nonzero at any finite radius r, so the “outward” direction is not precisely defined.

This is especially clear in the case that the potential is not rotationally invariant, so that it has no

well defined center. But as r → ∞ the angle subtended goes to zero, and the radial direction does

become well defined. In this limit, we require that the scattered wave have the form

ψscatt(r, θ, φ) ∼
eikr

r
f(θ, φ), (5)

where the symbol ∼ means that we are giving the asymptotic form of the scattered wave, valid when

r → ∞. More precisely, this symbol means that the left hand side equals the right hand side, plus

corrections that go to zero more rapidly as r → ∞ than does the right hand side. For example,

there may be corrections of order 1/r2 that are not shown. The asymptotic form in Eq. (5) indicates

a wave that is traveling outward in the radial direction (as we see if we attach the time-dependent

factor e−iEt/h̄), and which has an angular dependence given by the function f(θ, φ).

In the asymptotic region both the incident wave and the scattered wave must satisfy the free

particle Schrödinger equation, assuming the potential in Eq. (1) is negligible as r → ∞. As for the

incident plane wave, this is obvious, and we see that the energy eigenvalue E of the Schrödinger

equation and the wave vector k of the incident wave are related by the free-particle relation,

E =
h̄2k2

2m
. (6)

Physically this means that where the particles are launched, in the asymptotic region far upstream,

their energy is purely kinetic.

As for the scattered wave, we only have an asymptotic form for it, so it must satisfy the free-

particle Schrödinger equation to leading asymptotic order. To show that it does we apply the kinetic

energy operator in spherical coordinates [see Eq. (D.23)],

−
h̄2

2m
∇2ψscatt(r, θ, φ) = −

h̄2

2m

[ 1

r2
∂

∂r
r2
∂

∂r
+ . . .

][eikr

r
f(θ, φ) + . . .

]

=
h̄2k2

2m

eikr

r
f(θ, φ) + . . . , (7)

where the ellipses indicate terms that die off faster as r → ∞ than the terms shown. Notice that the

angular derivatives in the Laplacian operator are of higher order in 1/r than the radial derivatives.

Thus we find that the asymptotic form of the scattered wave does satisfy the free-particle Schrödinger

equation to leading asymptotic order, with an energy given by the free-particle relation (6). That is,

the k parameter of the asymptotic form of the scattered wave equals |k|, where k is the wave vector

of the incident wave. This is the expression of conservation of energy in the scattering process in in

quantum mechanics.
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Many books write down the asymptotic form (5) of the scattered wave as if it were obvious. In

fact, it is not always true (see Sec. 10), and it takes some effort to understand why it is reasonable

and what its conditions of its validity are.

The intuitive arguments presented suggest that the Schrödinger equation (1) has a unique

solution satisfying the boundary conditions indicated by Eqs. (3)–(5). If the potential V falls off

more rapidly than 1/r then this is true, as can be proven with the theory of integral equations. An

introduction to the latter is given in Notes 38. Thus, the unique solution is parameterized by the

momentum p = h̄k of the incident wave. We will henceforth write the solution as ψk(x) when we

wish to emphasize this dependence.

We see that there are many linearly independent solutions of the Schrödinger equation (1) of

energy E > 0, since we are free to direct the incident beam at the target from any direction we

like. For a given E, this family is parameterized by the direction of k. Thus in three-dimensional

scattering, the family is continuous and is parameterized by points on a sphere. In one-dimensional

scattering, there are only two linearly independent solutions for a given E, corresponding to waves

incident from the right or left.

5. Densities and Currents

Energy eigenfunctions of Eq. (1) of energy E ≥ 0 are unbounded and not normalizable, so the

usual density ρ = |ψ|2 cannot be interpreted as a probability density. In scattering theory it is

easiest to interpret ρ as the density of particles in the beam, as we shall do here. Similarly, we

interpret the current,

J = Re
[

ψ∗
(

−
ih̄∇

m

)

ψ
]

, (8)

as a particle current, not a probability current. The overall normalization of the unbounded wave

function is arbitrary, and represents simply the intensity of the beam. Quantities of interest, such

as the differential cross section, are independent of this normalization.

6. The Scattering Amplitude and Cross Section

The function f(θ, φ) in the asymptotic form of the scattered wave (5) is called the scattering

amplitude. It is in general a complex function of the angles. A good deal of scattering theory is

devoted to its determination, since it bears a simple relation to the differential cross section.

Cross sections and differential cross sections were defined in Notes 34, where the relation between

cross sections and transition rates was discussed. In the present case let us imagine an experimental

situation such as illustrated in Fig. 3. A detector, located at some distance from the scatterer,

intercepts all scattered particles coming out in a small cone of solid angle ∆Ω, centered on some

direction n̂ = (θ, φ). The counting rate is the scattered current Jscatt integrated across the aperture

to the detector.
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Fig. 3. A particle detector intercepts a small solid angle ∆Ω which defines a cone as seen from the scatterer. Particles
scattered into this cone will enter the detector.

The particle density in the incident beam is

ninc = |ψinc(x)|
2 = 1. (9)

Similarly, the incident current is

Jinc = Re
[

e−ik·x
(

−
ih̄

m
∇
)

eik·x
]

=
h̄k

m
= v, (10)

where v is the velocity of the incident beam. In magnitude, Jinc = v.

By our calculation ninc is dimensionless, and if you are fastidious you might want it to have

dimensions of inverse volume (or particles per unit volume). If so you can multiply the wave function

by a constant of dimensions volume−3/2, but since the physical quantities we are interested in are

independent of the normalization of the wave function, this is not necessary.

As for the scattered current, in the asymptotic region it is

Jscatt ∼ Re
{[e−ikr

r
f(θ, φ)∗

](

−
ih̄

m

)[

∇
eikr

r
f(θ, φ)

]}

, (11)

which is only an asymptotic form since we are using the asymptotic form (5) of the scattered wave.

To evaluate this we take the gradient of the scattered wave spherical coordinates (see Eq. (D.20)),

∇
eikr

r
f(θ, φ) = r̂

[ ik eikr

r
f(θ, φ)

]

+O
( 1

r2

)

, (12)

where we only carry the result to leading order in 1/r. Substituting this into (8), we find

Jscatt ∼ v
|f(θ, φ)|2

r2
r̂. (13)

To leading order, the asymptotic form of the scattered current is purely in the outward radial

direction, as we expect. Terms in Jscatt that go to zero faster than 1/r2 as r → ∞ will not contribute

to the counting rate, since the area of the aperture of the detector, for fixed ∆Ω, is proportional to

r2.

Now we integrate the scattered current over the aperture to the detector, which we assume is

at large distance r from the scatterer, and which has area r2∆Ω. The counting rate is

dw

dΩ
∆Ω =

∫

aperture

Jscatt · da = v|f(θ, φ)|2 ∆Ω, (14)
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where da is the area element of the aperture and dw/dΩ is the counting rate per unit solid angle.

Now dividing this by Jinc = v, we obtain

dσ

dΩ
= |f(θ, φ)|2, (15)

a simple result. This equation explains the interest in finding f(θ, φ), since it leads immediately to

the differential cross section, which is measurable. Notice that the counting rate, which is physically

observable in a scattering experiment, depends only on the leading asymptotic form of the scattered

wave function. One does not need to know the exact form of the scattered wave (at smaller values

of r where correction terms to the asymptotic expansion of the scattered wave are important, or in

the scattering region where the potential is nonzero).

Now for some comments about this calculation. Notice that we computed the flux of the

scattered particles intercepted by the detector, but we ignored the incident particles. In realistic

scattering experiments the detector is usually located outside the beam, so incident particles do not

enter it. Our incident wave (4) fills all of space, but that is an artifact of our model. In reality the

beam will be cut off at some finite transverse size, and if the scattering angle is not too small, the

detector can be located outside the beam.

If the scattering angle is very small, however, then the detector will have to be inside the beam

and it will detect incident particles as well as scattered ones. The counting rate is still the particle

flux intercepted by the aperture of the detector, but the flux is neither the incident flux nor the

scattered flux nor the sum of the two, but rather the flux computed from the total wave function

ψ = ψinc + ψscatt. Since the current is quadratic in the wave function, there are cross terms or

interference terms between the incident wave and the scattered wave. Taking all these effects into

account leads to the optical theorem, which we take up in Sec. 17.

7. Central Force Scattering

We now specialize to the important case of a central force potential, V = V (r). The main

simplification in this case is that the Schrödinger equation (1) is separable in spherical coordinates

(see Notes 16), so the solutions can be written in the form

ψkℓm(x) = ψkℓm(r, θ, φ) = Rkℓ(r)Yℓm(θ, φ), (16)

where Rkℓ(r) is a solution of version one of the radial Schrödinger equation, Eq. (16.7), with potential

V (r). The radial eigenfunction Rkℓ(r) is parameterized by ℓ because the radial Schrödinger equation

contains ℓ in the centrifugal potential. It is also parameterized by the energy E, which we will

normally indicate by an equivalent wave number k, given by E = h̄2k2/2m. The three-dimensional

solution ψ depends on k, ℓ and m, as indicated in Eq. (16). Of these, k ≥ 0 is a continuous index

and ℓ and m are discrete.

The solutions (16) of the Schrödinger equation do not satisfy the boundary conditions (3)–(5)

that we require for a scattering solution, but they do form a complete set so the desired scattering
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solution can be expressed as a linear combination of them. Since the scattering solution is an

energy eigenfunction of energy E = h̄2k2/2m it can only be a linear combination of central force

eigenfunctions (16) with the same energy, that is, there must be coefficients Aℓm such that

ψk(x) =
∑

ℓm

AℓmRkℓ(r)Yℓm(θ, φ), (17)

where the k on the left and the k on the right are related by k = |k|. In a moment we will find

the expansion coefficients Aℓm in terms of some simple parameters that characterize the potential

(namely, the phase shifts δℓ).

8. Free Particle Solutions

Free particle solutions were discussed in Secs. 16.6 –16.8. Here we recall some of that material

and present some further facts that will be useful in scattering theory.

In the case of the free particle the radial Schrödinger equation (16.7) with energy E = h̄2k2/2m

has two linearly independent solutions, jℓ(kr) and yℓ(kr), where jℓ and yℓ are the spherical Bessel

functions. The small and large argument limiting forms of these Bessel functions are given by

Eqs. (16.27)–(16.30). If the potential V (r) is zero all the way down to r = 0, that is, if the particle

is free everywhere, then the y-type Bessel functions are not allowed because they diverge at r = 0.

Then a complete set of free particle energy eigenfunctions is

ψfree
kℓm(r, θ, φ) = jℓ(kr)Yℓm(θ, φ). (18)

But if we are seeking free particle solutions in some region away from r = 0, such as in the asymptotic

region of a scattering problem where the potential can be ignored, then the y-type solutions are also

allowed.

The incident plane wave eik·x is a free particle solution of the Schrödinger equation that is

obtained by separating the wave equation in rectangular coordinates, while the solutions (18) are

obtained by separating in spherical coordinates. Thus the incident plane wave can be expressed as

a linear combination of the solutions (18). The expansion gives eik·x as a linear combination of the

solutions (18) with the same energy. The expansion coefficients can be worked out with some use

of recursion relations satisfied by the spherical Bessel functions and the Legendre polynomials. We

omit details here, which may be found in textbooks such as Messiah, Sakurai or Commins. The

result, however, is useful. It is

eik·x =
∑

ℓm

4π iℓjℓ(kr)Y
∗
ℓm(k̂)Yℓm(r̂), (19)

where r̂ and k̂ refer to the directions of the vectors x and k on the left hand side, where Yℓm(r̂)

means the same as Yℓm(θ, φ) and where as usual k = |k|.

This expansion can be rewritten with the use of the addition theorem for spherical harmonics,

Eq. (15.71), which for present purposes we write in the form

Pℓ(r̂ · k̂) = Pℓ(cos γ) =
4π

2ℓ+ 1

∑

m

Y ∗
ℓm(k̂)Yℓm(r̂), (20)
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where γ is the angle between x and k. Then the expansion (19) becomes

eik·x =

∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr)Pℓ(cos γ). (21)

Notice that if we take k to lie in the z-direction, k = kẑ, then γ is the same as θ, the usual spherical

coordinate. In that case, the incident plane wave becomes

eik·x = eikr cos θ = eikz , (22)

that is, it is independent of the azimuthal angle φ, and the sum (21) is the expansion of the plane

wave in Legendre polynomials of cos θ.

The spherical Bessel functions jℓ and yℓ are real, but complex linear combinations of them are

often useful. These are the spherical Hankel functions, defined by

h
(1)
ℓ (ρ) = jℓ(ρ) + iyℓ(ρ),

h
(2)
ℓ (ρ) = jℓ(ρ)− iyℓ(ρ).

(23)

The two types of spherical Hankel functions are complex conjugates of each other,

h
(1)
ℓ (ρ) = h

(2)
ℓ (ρ)∗. (24)

These functions have particularly simple asymptotic forms when ρ≫ ℓ, namely,

h
(1)
ℓ (ρ) = i−(ℓ+1) e

iρ

ρ
,

h
(2)
ℓ (ρ) = iℓ+1 e

−iρ

ρ
,

(25)

which are equivalent to Eqs. (16.29)–(16.30). The phases i±(ℓ+1) that makes these expressions look

complicated are just conventions. Otherwise the asymptotic forms of the spherical Hankel functions

are just e±iρ/ρ, corresponding in scattering problems to incoming and outgoing spherical waves.

9. Partial Waves

The exact solution of the Schrödinger equation ψk(x) is decomposed into incident and scattered

waves according to

ψk(x) = eik·x + ψscatt(x), (26)

as in Eq. (3). The angular dependence of the total wave ψk(x) and that of the incident wave eik·x

are represented as linear combinations of Yℓm’s by Eqs. (17) and (19), respectively. Let us similarly

decompose the angular dependence of the scattered wave by writing

ψscatt(x) = ψscatt(r, θ, φ) =
∑

ℓm

Sℓm(r)Yℓm(θ, φ), (27)
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where the functions Sℓm(r) are effectively the radial wave functions of the scattered wave,

Sℓm(r) =

∫

dΩY ∗
ℓm(θ, φ)ψscatt(r, θ, φ). (28)

Then Eq. (26) can be written
∑

ℓm

AℓmRkℓ(r)Yℓm(r̂) =
∑

ℓm

4π iℓ jℓ(kr)Yℓm(r̂)Y ∗
ℓm(k̂) +

∑

ℓm

Sℓm(r)Yℓm(r̂). (29)

This equation is exact. But the Yℓm’s are linearly independent so Eq. (29) is equivalent to

AℓmRkℓ(r) = 4π iℓ jℓ(kr)Y
∗
ℓm(k̂) + Sℓm(r). (30)

Now we extract the leading asymptotic forms of the three terms in Eq. (30) as r → ∞. As

for the total wave function, we need the asymptotic form of Rkℓ(r). We argue that if V (r) falls off

rapidly enough then at large r it can be ignored and Rkℓ(r) must be a linear combination of the

free particle solutions jℓ(kr) and yℓ(kr). Precisely how fast V (r) must fall off for this to be true is

examined in Sec. 10. Actually, it is more convenient to use the spherical Hankel functions and to

write

Rkl(r) ∼ Bℓ h
(1)
ℓ (kr) +B∗

ℓ h
(2)
ℓ (kr), (31)

where Bℓ and B
∗
ℓ are the coefficients of the linear combination. Here we are assuming that the exact

radial wave function Rkl(r) has been chosen to be real, as we can do since the radial wave equation

is a real equation. This means that the coefficients of the linear combination of the spherical Hankel

functions must be complex conjugates of each other, as shown, because of Eq. (24). Thus the phase

of Rkℓ(r) is specified to within a ± sign, but its normalization has not been specified. The right-

hand side of Eq. (31) is a good approximation to the left-hand side when r is large enough that the

potential can be neglected.

We now break Bℓ into its magnitude and phase,

Bℓ = |Bℓ| e
iδℓ , (32)

and absorb the magnitude |Bℓ| into the normalization of Rkℓ(r). This fixes the normalization of the

radial wave functions; they are now determined to within a ± sign. Then we have

Rkℓ(r) ∼ eiδℓ h
(1)
ℓ (kr) + e−iδℓ h

(2)
ℓ (kr), (33)

or, if we replace the Hankel functions by their asymptotic forms (25), valid when kr ≫ ℓ,

Rkℓ(r) ∼
1

kr

[

i−(ℓ+1) ei(kr+δℓ) + iℓ+1 e−i(kr+δℓ)
]

. (34)

This is the asymptotic form of the radial wave functions; it is parameterized by the phase shifts δℓ,

which play a fundamental role in central force scattering.

As for the incident wave in Eq. (30), it is a plane wave whose radial wave functions are the

Bessel functions jℓ(kr). These have the asymptotic form

jℓ(kr) =
1

2

[

h
(1)
ℓ (kr) + h

(2)
ℓ (kr)

]

∼
1

2kr

[

i−(ℓ+1) eikr + iℓ+1 e−ikr
]

, (35)
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which follows from Eqs. (23) and (25).

Finally, for the scattered wave in Eq. (30) we use Eq. (5) in Eq. (28) to obtain

Sℓm(r) ∼
eikr

r
fℓm, (36)

where the fℓm are the expansion coefficients of the scattering amplitude when expanded as a linear

combination of Yℓm’s,

f(θ, φ) =
∑

ℓm

fℓm Yℓm(θ, φ). (37)

Altogether, when we take the leading asymptotic form of all three terms in Eq. (30) we obtain

Aℓm
1

kr

[

i−(ℓ+1) ei(kr+δℓ) + iℓ+1 e−i(kr+δℓ)
]

= 4π iℓ
1

2kr

[

i−(ℓ+1) eikr + iℓ+1 e−ikr
]

Y ∗
ℓm(k̂) +

eikr

r
fℓm.

(38)

All three terms go as 1/r at large r, so we have obtained the leading asymptotic term of the entire

equation (30), and this is exact. The result is a linear combination of incoming and outgoing spherical

waves, which are linearly independent; notice that that the scattered wave only has an outgoing part

(this is the boundary condition imposed by the physics).

Working first with the coefficients of the incoming wave e−ikr/r we see that we can solve for

the coefficients Aℓm in terms of the phase shifts. We find

Aℓm = 4π iℓ
1

2
Y ∗
ℓm(k̂) eiδℓ . (39)

Then using this in the outgoing part, we can solve for the expansion coefficients fℓm of the scattering

amplitude. In the algebra it helps to notice that

e2iδℓ − 1

2i
= eiδℓ sin δℓ. (40)

Thus we find

fℓm =
4π

k
eiδℓ sin δℓ Y

∗
ℓm(k̂), (41)

or,

f(θ, φ) =
4π

k

∑

ℓm

eiδℓ sin δℓ Yℓm(r̂)Y ∗
ℓm(k̂). (42)

This is the desired result, which expresses the scattering amplitude in terms of the phase shifts

δℓ. Another version is obtained with the help of the addition theorem (20),

f(θ) =
1

k

∞
∑

ℓ=0

(2ℓ+ 1)eiδℓ sin δℓ Pℓ(cos θ), (43)

where we have set k = kẑ so that r̂ · k̂ = cos θ, where θ is the usual spherical angle. When k = kẑ it

is obvious that the whole central force scattering problem is symmetric under rotations about the z-

axis so f must be a function of θ alone. Expressions (42) or (43) are the partial wave expansion of the

scattering amplitude. We shall discuss this result momentarily, but first we examine an important

point that we have glossed over so far.
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10. Asymptotic Form of the Radial Wave Functions

In the derivation of the partial wave expansion we assumed [see Eq. (31)] that if the potential

dies off rapidly enough with distance, then at large distances the radial eigenfunctions approach

linear combinations of free particle solutions. Let us now examine how rapidly V (r) must die off for

this to be true.

As explained in Notes 16, the radial eigenfunction Rkℓ(r) is related to an alternative version

of the radial eigenfunction ukℓ(r) = rRkℓ(r), which satisfies version two of the radial Schrödinger

equation, Eq. (16.11). (Function u was called f in Notes 16.) For our present purposes we rearrange

these two versions of the radial Schrödinger equation as

1

r2
d

dr

(

r2
dRkℓ

dr

)

+ k2Rkℓ(r) =W (r)Rkℓ(r) (44)

and

u′′kℓ(r) + k2ukℓ(r) =W (r)ukℓ(r), (45)

where

W (r) =
ℓ(ℓ+ 1)

r2
+

2m

h̄2
V (r). (46)

Since both the true potential and the centrifugal potential go to zero as r → ∞, the function

W (r) also goes to zero as r → ∞. So as a first stab at analyzing the asymptotic form of ukℓ(r),

let us neglect W (r) altogether on the right hand side of the radial Schrödinger equation (45). Then

the solution for ukℓ(r) is simply a linear combination of the exponentials e±ikr, and R(r) is a linear

combination of e±ikr/r, as we assumed in Eq. (34).

To take into account the effects of W (r), let us write the solution of Eq. (45) as

ukℓ(r) = eg(r)±ikr, (47)

where g(r) is a correction that will account for the effects of the function W (r). If we can show that

g(r) → 0 as r → ∞, then the correct asymptotic forms of ukℓ(r) will be a linear combination of the

solutions e±ikr. That is, the function W (r) on the right hand side will make no difference in the

asymptotic form of the solution. Substituting Eq. (47) into the radial Schrödinger equation (45), we

obtain an equation for g,

g′′ + g′ 2 ± 2ikg′ =W (r). (48)

This is rigorously equivalent to Eq. (45).

Now we consider the behavior of W (r) as r → ∞. If the true potential V (r) goes to zero faster

than 1/r2, then W (r) is dominated by the centrifugal potential and also goes to zero as 1/r2. We

assume ℓ 6= 0, so the centrifugal potential does not vanish. If the true potential goes to zero more

slowly than 1/r2, let us assume that it does so as a power law, 1/rp, where 1 < p ≤ 2. This excludes

the case of the Coulomb potential, for which p = 1, but it approaches the Coulomb potential as

p→ 1. Then W (r) has the asymptotic form,

W (r) ∼
a

rp
, (49)
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where 1 < p ≤ 2 and a is a constant. The case ℓ = 0 can be handled as a special case, but it does

not change any of the conclusions that we shall draw.

We are interested in solving Eq. (48) in the asymptotic region when W has the asymptotic

behavior (49). Let us assume that g is asymptotically given by a power law,

g(r) ∼
b

rs
, (50)

where b is another constant and s > 0. Then the three terms on the left hand side of Eq. (48) go as

1/rs+2, 1/r2s+2 and 1/rs+1, in that order. The third term dominates, so to leading order we have

s = p− 1, so that 0 < s ≤ 1, and the power law ansatz for g has a solution. That is, g(r) ∼ b/rp−1,

g(r) does go to zero as r → ∞, and thus the asymptotic form of ukℓ(r) is a linear combination of

e±ikr.

But in the case of the Coulomb potential, W (r) ∼ a/r, that is, with p = 1. Then taking the

dominant term in Eq. (48), we have

±2ikg′(r) =
a

r
, (51)

or,

g(r) = ∓
ia

2k
ln(kr). (52)

The logarithm does not go to zero as r → ∞, in fact, it increases without bound (although very

slowly). Thus, in the case of the Coulomb potential, the asymptotic form of the radial wave function

is

ukℓ(r) ∼ exp
{

±i
[

kr −
a

2k
ln(kr)

]}

. (53)

The Coulomb potential gives rise to long range, logarithmic phase shifts that do not approach the

free particle phases as r → ∞.

In summary, if the potential V (r) goes to zero faster than 1/r, then the asymptotic form of the

radial wave function is given by the linear combinations e±ikr (for ukℓ) or by e
±ikr/r (for Rkℓ), the

latter of which is what we assumed in the derivation of the partial wave expansion (42) or (43). For

the rest of these notes we will assume that V (r) does satisfy this condition, thereby excluding the

Coulomb potential.

By the way, the derivation of Eq. (30) did not make any assumption about the asymptotic

behavior of Skl(r), but now we have shown that if V (r) → 0 faster than 1/r then Rkl(r) ∼ e±ikr/r,

so in that case Skl(r) has the same behavior. Then if we choose outgoing boundary conditions we

obtain the form (5) for the scattered wave. In the case of the Coulomb potential, however, the form

(5) of the scattered wave is not correct.

11. Partial Wave Expansion of the Cross Section

We return to the partial wave expansion of the scattering amplitude, Eq. (42) or (43), which give

the scattering amplitude as a linear combination of spherical harmonics or Legendre polynomials.
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Squaring the scattering amplitude we obtain the differential cross section,

dσ

dΩ
(θ, φ) =

(4π

k

)2 ∑

ℓmℓ′m′

ei(δℓ−δ
ℓ′
) sin δℓ sin δℓ′ Y

∗
ℓm(k̂)Yℓ′m′(k̂)Yℓm(r̂)Y ∗

ℓ′m′(r̂), (54)

or, with k = kẑ,

dσ

dΩ
(θ) =

1

k2

∑

ℓℓ′

(2ℓ+ 1)(2ℓ′ + 1)ei(δℓ−δ
ℓ′
) sin δℓ sin δℓ′ Pℓ(cos θ)Pℓ′(cos θ). (55)

These expressions have cross terms that do not simplify, but which show up experimentally as

oscillations in the angular dependence of the differential cross section. Some of these may be seen

in Figs. 8 or 9.

On the other hand, when we integrate over all angles to obtain the total cross section, the cross

terms integrate to zero. This is easiest to see in the form (54), due to the orthonormality of the

Yℓm’s. The result is

σ =

∫

dΩ
dσ

dΩ
=

(4π

k

)2 ∑

ℓm

sin2 δℓ Y
∗
ℓm(k̂)Yℓm(k̂), (56)

or, with another application of the addition theorem (and noting that k̂ · k̂ = 1 and Pℓ(1) = 1),

σ =
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ. (57)

This is the partial wave expansion of the total cross section.

12. The Phase Shifts δℓ

These results show the importance of the phase shifts δℓ, which determine the coefficients of

the angular expansion of the scattering amplitude and cross section. We now make some comments

on the properties and intuitive meaning of these phase shifts.

The phase shifts are defined by the asymptotic form of the radial wave functions (34) and are

determined by the potential V (r). That is, δℓ is the phase of the incoming or outgoing part of the

exact radial wave function, relative to that of a free particle. Thus, the phase shifts vanish for a

free particle. The phase shifts depend on ℓ because the radial wave function does so. They depend

on the energy, too, and if we wish to emphasize this we can write δℓ(E). Since by our analysis the

phase of the radial wave is determined to within a ± sign, the phase shift δℓ is determined to within

an integer multiple of π.

For an intuitive view of the phase shifts we can imagine launching spherical waves inward at

the scatterer from a large distance, allowing them to converge on the origin and then bounce back.

The wave can be given an angular modulation proportional to a Yℓm to give it a dependence on ℓ.

Then we will find a certain phase shift in the reflected wave compared to the incident wave. We can

do this both for the free particle and the one with a potential; the difference in the phase shifts in

the two cases is δℓ.
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As a more practical matter, the phase shifts can be determined by solving the radial wave

equation somehow and then comparing the asymptotic form of the solution with the form (34) to

get the phase shifts. In some cases this can be done analytically, and it can also be done numerically.

For the latter one simply chooses regular boundary conditions for R(r) at r = 0, and then integrates

the radial Schrödinger equation outward numerically. When a radius is reached where the potential

is negligible a comparison of the numerical solution to Eq. (33) gives the phase shifts. Another

approach is to use WKB theory; since the radial wave equation is one-dimensional, WKB theory

can be very effective in obtaining information about the radial wave function. Some aspects of this

approach were explored in Prob. 7.4.

WKB theory leads easily to some general conclusions about the phase shifts. Suppose we have

a well localized potential, for example, one that dies off exponentially with r such as the Yukawa

potential (34.116). Let a be a measure of the range of the potential. Then the centrifugal potential,

which only falls off as 1/r2, will dominate for large r if ℓ > 0. Thus for a given E, if ℓ is big enough

the radial turning point in the centrifugal potential will lie outside the range a of the true potential,

and the radial wave function will be able to reach the true potential only by tunneling through the

centrifugal potential. The wave function decays exponentially in the classically forbidden region,

so for such large ℓ values the true potential will have only an exponentially small influence on the

wave function, which will be nearly the same as a free particle radial wave function of the same

value of ℓ and E. Thus for such large ℓ values we expect the phase shifts to be small, and to decay

exponentially with ℓ as ℓ increases beyond a certain cutoff.

To estimate the ℓ value beyond which such behavior holds, we set the nominal turning point in

the centrifugal potential to the range of the true potential, that is,

E =
h̄2k2

2m
=
ℓ(ℓ+ 1)h̄2

2ma2
. (58)

If we ignore the difference between ℓ and ℓ+ 1, this gives the estimate,

ℓcutoff = ka, (59)

beyond which the phase shifts decay exponentially toward δℓ = 0. In summary, for a well localized

potential of range a, an estimate of the number of terms that contribute significantly to the partial

wave expansion is ka.

This means that for well localized potentials such as the Yukawa potential, the partial wave

sum (57) converges, and the total cross section is finite. A more careful WKB analysis is capable of

giving more precise conditions on the potential for the total cross section to be finite.

13. Hard Sphere Scattering

As an example of the partial wave expansion, let us consider scattering from a hard sphere.

The potential is

V (r) =
{∞, r < a,
0, r > a,

(60)
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where a is the radius of the sphere. In the region r > a the solution is a linear combination of free

particle solutions, which we write as

Rkl(r) = Bℓ h
(1)
ℓ (kr) +B∗

ℓ h
(2)
ℓ (kr), (61)

which is the same as Eq. (31) except for the hard sphere it is exact and Eq. (31) was only an

asymptotic form. As in the analysis of Eq. (31) we write Bℓ = |Bℓ|e
iδℓ and absorb |Bℓ| into the

normalization of the Rkℓ(r), so that δℓ are the phase shifts.

These are determined by imposing the boundary condition that Rkl(r) vanish at the surface of

the sphere,

Rkl(a) = eiδℓ h
(1)
ℓ (ka) + e−iδℓ h

(2)
ℓ (ka) = 0, (62)

or,

e2iδℓ = −
h
(2)
ℓ (ka)

h
(1)
ℓ (ka)

. (63)

This can be solved for the δℓ, which give us the scattering amplitude and differential cross section.

We will consider two limiting cases, in which the limiting forms of the spherical Bessel functions can

be used.

14. The limit ka≪ 1

In the first case we assume ka ≪ 1. This is equivalent to λ ≫ a, where λ = 2π/k is the

wavelength of the incident waves, that is, the scatterer is much smaller than a wavelength. The

small argument forms of jℓ and yℓ, Eqs. (16.27) and (16.28), show that in this case yℓ(ka) is large

and negative and jℓ(ka) is small and positive. We write Eq. (63) as

e2iδℓ = −
jℓ(ka)− iyℓ(ka)

jℓ(ka) + iyℓ(ka)
=

1 + i(jℓ/yℓ)

1− i(jℓ/yℓ)
= 1 + 2i(jℓ/yℓ) = e2i(jℓ/yℓ), (64)

valid when jℓ(ka)/yℓ(ka) is small, as here. Thus we find, to a good approximation,

δℓ = jℓ(ka)/yℓ(ka) = −
(ka)2ℓ+1

(2ℓ− 1)!!(2ℓ+ 1)!!
. (65)

Since ka≪ 1, this shows that not only is the lowest phase shift δ0 small, the higher phase shifts

δℓ for ℓ ≥ 1 are even smaller. In this limit

δ0 = −ka, (66)

and the series (43) for the scattering amplitude is dominated by the single term ℓ = 0. Thus we

have

f(θ) =
1

k
(−ka) = −a, ka≪ 1, (67)

since eiδℓ ≈ 1 and P0(cos θ) = 1. We see that the differential cross section is independent of angle,

dσ

dΩ
= a2, (68)
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and the total cross section is

σ =

∫

dΩ
dσ

dΩ
= 4πa2. (69)

The total cross section is four times as large as the geometrical cross-sectional area of the small

sphere. The classical cross section is just this cross-sectional area, πa2, but the regime λ≫ a is the

one in which we expect classical mechanics to be a poor approximation to quantum mechanics, so

we should not be surprised by the difference.

15. s-wave Scattering

When the partial wave ℓ = 0 dominates the expansion of the scattering amplitude, we speak

of s-wave scattering. The scattered wave is isotropic and has an equal intensity in all directions,

including the forward direction. Since a ≪ λ the sphere is too small to create a shadow; instead,

the incident wave effectively wraps all the way around the scatterer. As we will see later, s-wave

scattering applies to any localized potential whose characteristic size a satisfies a ≪ λ, that is,

ka ≫ 1 (not just hard spheres). The fundamental reason was given in Sec. 12: for ℓ > 0 the

radial wave functions must tunnel through the centrifugal potential to reach the scatterer, and the

tunneling is deeper the higher the ℓ value. We see from Eq. (65) that when ka≪ 1 the phase shifts

are indeed an exponentially decreasing function of ℓ (in fact, including the factorials, even faster

than exponential).

There are many physical examples in which s-wave scattering is important. For example, a Bose-

Einstein condensate is a dilute gas of atoms at a temperature at which the de Broglie wavelength

λ of the atoms due to their thermal motion is larger than the interparticle separation. Since the

gas is dilute, the interparticle separation in turn is much larger than the atomic size, call it a, so

we have λ ≫ a, or ka ≪ 1. Thus the interactions of the atoms with one another is described by

s-wave scattering, and scattering of atoms by atoms, in all its complexity, is described by a single

parameter, which is the phase shift δ0.

In s-wave scattering any two potentials that give the same phase shift δ0 will have the same

effect. Therefore in theoretical models the exact potential can be replaced by a simpler one, as long

as the phase shift is the same. Delta function potentials are popular for this purpose, which explains

their appearance in the models of Bose-Einstein condensates such as the Gross-Pitaevski equation

(for which see Prob. 32.3).

When light scatters from particles that are much smaller than the wavelength, for example, when

optical radiation is scattered by atoms in a gas, is this s-wave scattering, and is the scattered wave

isotropic? (This is a tricky question.) The answer is no, because electromagnetic waves are vector

waves, not scalar waves as we have been discussing in these notes. In the case of electromagnetic

waves, the scattering when ka≪ 1 is dominated by dipole radiation, which has a nontrivial angular

dependence. Electromagnetic waves have no monopole radiation (that is, s-wave radiation), and the

next higher term in the multipole series is the first one to appear. It is the one that dominates at
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small ka.

Similarly, gravitational radiation, which has received much attention since its actual detection

a few years ago, has neither a monopole nor a dipole term, rather the first multipole to appear is

the quadrupole.

16. The Limit ka≫ 1

The second case we consider is the opposite extreme, ka ≫ 1, that is, λ ≪ a. In this case the

sphere is much larger than a wavelength. Now there are many ℓ values that contribute to the partial

wave sum. For small ℓ, for which ℓ≪ ka, we can use the asymptotic forms (25) in Eq. (63). We find

e2iδℓ = −e−2i[ka−(ℓ+1)π/2], (70)

or, with −1 = e−iπ,

δℓ =
ℓπ

2
− ka. (71)

This says that δℓ advances by π/2 when ℓ increases by 1, but this is an approximation that is only

valid when ℓ≪ ka. According to Eq. (59) we need to sum the partial wave expansion out to ℓ ≈ ka,

after which we expect the terms of the series to rapidly approach zero. Actually the increment in δℓ,

which is indeed π/2 when ℓ≪ ka, gradually decreases as ℓ climbs toward ka, after which it rapidly

goes to zero. This behavior is illustrated in some numerical examples in Figs. 4 and 5.

15
x

y

ka = 10

0

5

10

Fig. 4. Phase shifts in hard sphere scattering. The phase
shifts δℓ are represented as points on a circle with plane
polar angle δℓ. The radius of the circle grows as ℓ increases,
to keep the points from getting mixed up with each other
as they orbit the circle. Some points are labeled with
their ℓ values. The phase shifts increase with decreasing
increment as ℓ increases, until ℓ ≈ ka, whereupon δℓ → 0.
Plot is for ka = 10.
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Fig. 5. Same as Fig. 4 except ka = 20.

The cutoff at ℓ ≈ ka was explained earlier in terms of WKB theory; a more intuitive explanation

is illustrated in Fig. 6. We imagine particles of fixed energy E = h̄2k2/2m emitted in various
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directions from a point on the surface of a sphere of radius a. These represent the waves scattered

by the sphere. The angular momentum of the particles depends on the direction of emission; its

minimum value is L = 0 when the particles are launched in the radial direction, and its maximum

value L = pa = h̄ka is when the particles are launched tangentially to the sphere. The maximum

value of L corresponds to a maximum angular momentum quantum number, ℓ = L/h̄ = ka. The

same reasoning works for any short-range potential with an effective range of a; the partial wave

expansion cuts off near ℓ ≈ ka.

a

Lmin

Lmax

Fig. 6. Particles of fixed energy are launched in various directions from a point on the surface of a sphere. The
maximum angular momentum is achieved when the direction is tangent to the sphere at the point of launch.

We can use the behavior of the phase shifts to estimate the total cross section in the limit

ka≫ 1. While the points representing the δℓ are orbiting their circle as in Figs. 4 and 5, the average

value of sin2 δℓ is 1/2. Since the series cuts off near ℓ ≈ ka, the total cross section (57) can be

estimated by

σ ≈
4π

k2

ka
∑

ℓ=0

(2ℓ+ 1)
1

2
. (72)

Using the sum

L
∑

ℓ=0

(2ℓ+ 1) = (L+ 1)2, (73)

we obtain the estimate

σ ≈
4π

k2
(ka)2

2
= 2πa2, (74)

where we ignore the difference between ka and ka + 1. We see that the cross section is twice the

classical value in the case ka≫ 1.

These conclusions are confirmed by detailed calculations, which show that σ → 4πa2 as ka→ 0

and σ → 2πa2 as ka→ ∞. See Fig. 7.



Notes 36: Time-Independent Scattering Theory 21

0.01 0.1 1 10 100 1000

2.0

2.5

3.0

3.5

4.0

ka

σ/πa2

Fig. 7. Total cross section σ as a multiple of πa2 for hard sphere scattering as a function of ka. The total cross section
has the limits σ → 4πa2 as ka→ 0 and σ → 2πa2 as ka→ ∞.

If we think of the classical limit as one in which the de Broglie wavelength λ is much smaller

than the scale of the potential, then it is surprising that the limit σ → 2πa2 as ka → ∞ since this

is twice the classical cross section, πa2. To see how this “extra” cross-section is distributed in angle

we refer to Fig. 8, a plot of the differential cross section for various values of ka.

Figure 8 shows that for small values of ka, the differential cross section is nearly independent

of angle, confirming that we have s-wave scattering. The cross section dσ/dΩ is nearly a2 in this

range, confirming Eq. (68). As ka increases, dσ/dΩ decreases at large angles toward the classical

value, but at small angles a forward peak rises up, growing narrower and higher. At the edge of

forward peak there also arise oscillations. Figure 9 is a similar plot except that dσ/dΩ has been

multiplied by sin θ, which makes the integrated cross section proportional to area under the curve.

This makes it easier to see that the total cross section in the forward peak is about the same as the

classical cross section. In fact, detailed calculations (see Prob. 1) show that both the forward peak

and the classical cross section contribute πa2 to the total. The “extra” cross section comes entirely

from the forward peak.

This peak is due to diffraction. As the waves pass by the edge of the sphere they are bent

in an inward direction, that is, the direction necessary to close in the shadow behind the sphere.

Diffraction theory shows that if we move far enough downstream, the shadow is completely filled by

diffracted waves. Of course the differential cross section is defined in the limit r → ∞, so there is

no shadow in the differential cross section. Diffraction causes the direction of the waves to change

from the incident direction, and so must be counted as part of the scattering.
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Fig. 8. Differential cross section in hard sphere scattering,
as a multiple of a2. Curves are labeled by the value of
ka, which increases from 0.1 to 8. Scattering angle θ is
measured in degrees.
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Fig. 9. Same as Fig. 8 except multiplied by sin θ. Area
under curves in a given angle range is proportional to the
total cross section in that range.

17. The Optical Theorem

The optical theorem is an exact relationship between the total cross section σ and the scattering

amplitude f . In the context of potential scattering that we have considered in these notes, the optical

theorem is

σ =
4π

k
Im f(0), (75)

where f(0) refers to the scattering amplitude in the forward direction.

The optical theorem is trivial to prove in the case of scattering by central force potentials. We

place the z-axis along the direction of the beam so that the usual polar angle θ is the scattering

angle. Then Eq. (43) implies

4π

k
Im f(0) =

4π

k2
Im

∞
∑

ℓ=0

(2ℓ+ 1)eiδℓ sin δℓ Pℓ(1) =
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ = σ, (76)

where we have used Eqs. (57) and (15.75). This proof is straightforward but it gives no insight into

what the theorem means.

The theorem (75) actually applies to scattering by any potential V (x) that dies off faster than

1/r as r → ∞, so that the asymptotic wave function is

ψ(x) ∼ eik·x +
eikr

r
f(θ, φ), (77)
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as indicated by Eqs. (3) and (5). That is, we need not assume that the potential is rotationally

invariant. The two terms in Eq. (77) are the incident and scattered waves, respectively.

Since the wave function ψ(x) is a solution of the time-independent Schrödinger equation, the

current

J = Reψ∗(x)
(

−
ih̄∇

m

)

ψ(x) (78)

satisfies ∇ · J = 0, so by Stokes’ theorem the integral of J over any closed surface vanishes. See

Eqs. (5.55)–(5.57). We will integrate J over a large sphere of radius r centered at the origin of the

coordinates, which we assume is inside the region occupied by the potential as in Fig. 2. We will

take the limit r → ∞, so that the asymptotic form (77) of the wave function can be used.

Thus the asymptotic form of the current is

J ∼ Re
[

e−ik·x +
e−ikr

r
f∗(θ, φ)

](

−
ih̄∇

m

)[

eik·x +
eikr

r
f(θ, φ)

]

= vRe
[

e−ikr cos θ +
e−ikr

r
f∗(θ, φ)

][

ẑ eikr cos θ + r̂
eikr

r
f(θ, φ)

]

,

(79)

where we have set k = kẑ and v = h̄k/m and retained only the leading term in the gradient of

the scattered wave, as in Eq. (12). The neglected terms will not contribute to the integral over the

sphere when we take the limit r → ∞.

The current is quadratic in the wave function ψ(x), so in addition to the incident current

and scattered current there is a contribution coming from the cross terms, which represent the

interference between the incident wave and the scattered wave. We write

J = Jinc + Jscatt + Jx, (80)

where Jx is the interference current. By Stokes’ theorem we have
∫

sphere

J · da = 0, (81)

where da = r2r̂ dΩ is the area element of the sphere.

Jinc

Fig. 10. The incident current passes straight through the
sphere and produces no net flux across its surface.

Jscatt

Fig. 11. The scattered current produces a net flux of
particles leaving the sphere, proportional to the total cross
section.
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The incident current is

Jinc = vRe
[

e−ikr cos θ
][

ẑ eikr cos θ
]

= v ẑ, (82)

It is a constant vector whose integral over sphere vanishes,

∫

sphere

Jinc · da = 0, (83)

as is obvious from Fig. 10.

The scattered current was already computed in Sec. 6. It is

Jscatt = vRe
[e−ikr

r
f∗(θ, φ)

][

r̂
eikr

r
f(θ, φ)

]

= v
r̂

r2
|f(θ, φ)|2, (84)

whose integral over the sphere is

∫

sphere

J · da = v

∫

sphere

|f(θ, φ)|2 dΩ = σv, (85)

where σ is the total cross section and where we have used Eq. (15). The scattered wave gives a net

outgoing flux, proportional to the cross section, which is no surprise. See Fig. 11.

Therefore the interference current must provide a net inward flux that cancels the scattered

flux. From Eq. (79) we have

Jx =
v

r
Re

[

ẑ e−ikr(1−cos θ) f∗(θ, φ) + r̂ eikr(1−cos θ) f(θ, φ)
]

. (86)

But the real part of a complex number is the same as the real part of its complex conjugate, so we

can replace the first term in Eq. (86) by its complex conjugate to obtain

Jx =
v

r
Re

[

(ẑ+ r̂) eikr(1−cos θ) f(θ, φ)
]

. (87)

Now the interference flux is

∫

sphere

Jx · da = vrRe

∫ 2π

0

dφ

∫ π

0

sin θ dθ (1 + cos θ) eikr(1−cos θ) f(θ, φ). (88)

We wish to evaluate this integral in the limit r → ∞, which is slightly delicate. The prefactor

of r would tend to make the integral diverge, but the factor eikr(1−cos θ) in the integrand oscillates

ever more rapidly in θ as r gets larger, thereby chopping up the integrand and tending to make the

integral vanish. To clarify the competition between these tendencies, we integrate by parts in θ,

obtaining

∫

sphere

Jx · da = vrRe

∫ 2π

0

dφ

∫ π

0

dθ
1

ikr

[ d

dθ
eikr(1−cos θ)

]

(1 + cos θ)f(θ, φ)

=
v

k
Re

∫ 2π

0

dφ
{

−ieikr(1−cos θ) (1 + cos θ)f(θ, φ)
∣

∣

∣

θ=π

θ=0

+ i

∫ π

0

dθ eikr(1−cos θ) d

dθ

[

(1 + cos θ)f(θ, φ)
]

}

.

(89)
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The integration by parts has eliminated the prefactor of r, so now the final integral oscillates itself

to death as r → ∞ and can be dropped. Evaluating the remaining term under the φ-integral at the

limits θ = 0, π, we see that it vanishes at θ = π and that at θ = 0 it is proportional to f(0, φ) which

is what we are writing simply as f(0) and which is independent of φ. Thus we find

∫

sphere

Jx · da =
v

k
Re

∫ 2π

0

dφ 2if(0) = −
4πv

k
Im f(0). (90)

The sum of this plus the scattered flux σv vanishes, which produces the optical theorem (75).

We see that the interference flux comes in from the forward direction, where it partially cancels

the incident flux going in the other direction.

The optical theorem has many generalizations. One version of it applies for the scattering

of classical electromagnetic waves (vector waves, in contrast to the scalar waves considered here).

Another applies to inelastic scattering in quantum mechanics, in which σ is the total cross section,

including both elastic and inelastic scattering, while f(0) refers only to the forward amplitude for

elastic scattering. This is because only the wave for elastic scattering can interfere with the incident

wave. There are many other applications in fields ranging from quantum mechanics to black hole

physics.

Problems

1. The strange thing about scattering from a hard sphere in the limit ka≫ 1 is that the total cross

section is 2πr2, not πr2, the geometrical cross section. When the wave length is short, we expect

quantum mechanics to agree with classical mechanics, but it does not in this case.

(a) Work out the classical differential cross section dσ/dΩ for a hard sphere of radius a, and integrate

it to get the total cross section σ.

(b) In problem 9.1, you worked out the far field wave function ψ(x, y, z), for z ≫ ka2, when a plane

wave eikz traveling in the positive z-direction strikes a screen in the x-y plane with a circular hole

of radius a cut out. In that problem the hole was centered on the origin. The solution was worked

out for θ = ρ/z ≪ 1 (the paraxial approximation), where ρ =
√

x2 + y2.

By subtracting this solution from the incident wave eikz , you get the far field wave function

when a plane wave eikz strikes the complementary screen, that is, just a disk of radius a at the

origin.

It turns out this wave field is the same as the wave field in hard sphere (of radius a) scattering

in the limit ka ≫ 1, if measured in the forward direction. That is because for forward scattering

from a hard scatterer, the physics is dominated by diffraction, so it is only the projection of the

scatterer onto the x-y plane that matters.
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Write the scattered wave as (eikr/r)f(θ), express r as a function of z and θ for small θ, expand

out to lowest order in θ, and compare to the asymptotic wave field to get an expression for the

scattering amplitude for small angles θ. Use the optical theorem, Eq. (75), to compute σ.

(c) Show that dσ/dΩ in the forward direction has a narrow peak of width ∆θ ∼ 1/ka ≪ 1. Write

down an integral giving the contribution of this forward peak to the total cross section in terms

of the first root b of the Bessel function J1. You can approximate sin θ = θ in this integral, since

θ is small. It turns out that the value of this integral does not change much if the upper limit is

extended to infinity. Use the integral

∫ ∞

0

dx

x
J1(x)

2 =
1

2
, (91)

to find the contribution of the forward peak to the total cross section. (See Gradshteyn and Ryzhik,

integral number 6.538.2.)

2. This problem is borrowed from Sakurai. Consider a potential

V (r) =

{

V0 = const, r < a,

0, r > a,
(92)

where V0 may be positive or negative. Using the method of partial waves, show that for |V0| ≪ E =

h̄2k2/2m and ka ≪ 1 the differential cross section is isotropic and that the total cross section is

given by

σtot =
16π

9

m2V 2
0 a

6

h̄4
. (93)

Suppose the energy is raised slightly. Show that the angular distribution can then be written as

dσ

dΩ
= A+B cos θ. (94)

Obtain an approximate expression for B/A.

3. This problem is best done after some experience with scattering of particles with spin, such as

Problem 34.2.

Consider the scattering of a polarized, spin 1
2 particle by a target, such as a neutron by the

nucleus of an atom (we may assume that the nucleus is polarized, too). There is some amplitude

for scattering that does not flip the spin, and some for scattering that does.

Suppose the incident particle is polarized spin up, so that the incident wave function can be

taken to be

ψinc = eik·r
(

1
0

)

. (95)

The asymptotic form for the scattered wave is

ψscatt ∼
eikr

r

(

f+(θ, φ)
f−(θ, φ)

)

, (96)
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where f± are the scattering amplitudes with (−) and without (+) spin flip.

Find a generalization of the optical theorem in this case. Recall Eq. (18.30) for the probability

current for particles with spin. Is it possible that some target could cause the spin to flip with 100%

probability? How do your answers change if a magnetization term such as seen in (18.33) is included

in the probability current?


