
Copyright c© 2021 by Robert G. Littlejohn

Physics 221A

Academic Year 2021–22

Notes 27

Hyperfine Structure in Atoms†

1. Introduction

The nucleus of an atom contains localized charge and current distributions, which produce

electric and magnetic fields that can be decomposed into multipole fields much as in classical elec-

trostatics or magnetostatics. The first of the multipole moments, the electric monopole, is the

Coulomb electrostatic field that holds the electrons in their orbits and produces the gross structure

of the atom. The higher order multipole moments produce small corrections to the atomic structure

that are known generally as hyperfine effects.

The terminology “hyperfine” refers to the energy scale of these effects, which is smaller than

that of the fine structure. The physics, however, of hyperfine effects is completely different from that

of fine structure. In practice, the most important hyperfine effects are those due to the magnetic

dipole and electric quadrupole fields of the nucleus. Higher multipole moments of the nucleus are

important in nuclear physics, but not usually in atomic physics.

In these notes we will study hyperfine effects in atoms, concentrating mainly on the magnetic

dipole field in the case of ordinary hydrogen. As we shall see, hyperfine effects couple the dynamics

of the atomic electron to that of the nucleus, thereby enlarging the Hilbert space, introducing new

quantum numbers, and shifting and splitting the energy levels.

In spite of the small energy scales involved, hyperfine effects are quite important in applications

ranging from atomic physics to astrophysics. For example, the radiative transition between the two

hyperfine levels of the ground state of the hydrogen atom produces the 21 centimeter line that plays

an important role in radio astronomy.

For another example, atomic clocks often use as their basic oscillator a hyperfine transition in

the ground state of the heavy alkali atoms, rubidium or cesium. The reproducibility of the frequency

of these transitions is so great that the second is now defined in terms of the hyperfine transition in

the 133Cs atom, that is, the second is defined as 9,192,631,770 periods of the photon emitted in this

transition, exactly. Atomic clocks based on cesium hyperfine transitions currently have a precision of

the order of one part in 1015. More recently “optical clocks” have been invented that use transitions

in the optical range of frequencies. Some of these have precisions approaching one part in 1018.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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The GPS (global positioning system) relies on radio timing signals emitted by satellites in

high earth orbit containing atomic clocks. In order to achieve the desired precision of position

measurements on the earth it is necessary to take into account the effects of both special and

general relativity in analyzing the timing signals. Special relativity enters because of the time

dilation of the clocks moving in their orbits, and general relativity because of the difference in the

gravitational potential between the clock in orbit and the receiver on the surface of the earth (this

is the gravitational red shift).

2. Multipoles in Electrostatics and Magnetostatics

In classical electrostatics, a localized charge distribution ρ produces a potential Φ that at field

points outside the charge distribution can be expanded into multipoles,

Φ(r) =
q

r
+

d · r

r3
+

1

6

∑

ij

Qij Tij

r5
+ . . . , (1)

where q is the total charge of the distribution, d is its dipole moment vector and Qij is its quadrupole

moment tensor, and where the tensor Tij is defined by

Tij = 3xixj − r2 δij . (2)

See Fig. 1. The terms of the series (1) are the monopole, dipole and quadrupole terms, in that order.

See Sec. 15.11 for more details on the electrostatic multipole expansion.

Similarly, a localized, steady current distribution J produces a vector potential that can be

expanded into multipoles,

A(r) =
µ×r

r3
+ . . . , (3)

where it is assumed that magnetic monopoles do not exist so there is no monopole term, where the

dipole term with magnetic dipole moment µ is shown, and where higher order terms not shown

include the magnetic quadrupole term etc. Each term of the multipole expansion falls off as one

higher power of r than the previous term. The multipole expansion of the electric and magnetic

fields is obtained by computing E = −∇Φ and B = ∇×A.

J

x

y

z

r

ρ

Fig. 1. The origin of coordinates is placed inside a region to which a charge distribution ρ and current distribution J
are confined. The field point r is outside the charge and current distributions.
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The quantities q, d, Qij and µ that appear in the multipole expansions are moments of the

charge and current distributions,

q =

∫

d3r ρ(r), d =

∫

d3r ρ(r) r,

Qij =

∫

d3r ρ(r) (3xixj − r2 δij), µ =
1

2c

∫

d3r r×J(r),

(4)

The dipole moment vector d is the charge-weighted position vector, and the quadrupole moment

tensor Qij is the charge-weighted tensor Tij . The tensors Tij and Qij are symmetric and traceless,

and thus contain five independent components. These moments characterize the source distribution

but are independent of position.

The nomenclature of the multipoles is explained in Table 1. Each pole is associated with an

integer k = 0, 1, 2, . . ., and the name contains a Latin or Greek prefix indicating the number 2k. We

shall refer to them in general as 2k-poles.

k Pole Numbers

0 Monopole 1 = 20

1 Dipole 2 = 21

2 Quadrupole 4 = 22

3 Octupole 8 = 23

Table 1. The names of the multipoles are obtained by using Latin or Greek prefixes indicating a power of 2.

3. About Nuclei and Nuclear Multipole Moments

We denote the spin of the nucleus by I, reserving the symbol S for the electron spin. We let

the quantum number of the operator I2 be i, so that I2 has eigenvalues i(i + 1)h̄2. We denote

the nuclear Hilbert space by Enucl, a (2i + 1)-dimensional space in which the standard basis is

{|imi〉,mi = −i, . . . ,+i}. The nuclear Hilbert space consists of a single irreducible subspace under

rotations. In actual stable nuclei, the spin ranges from i = 0 to i = 15/2. For example, the proton,

the nucleus of ordinary hydrogen, has i = 1/2, while the deuteron, the heavier isotope of hydrogen,

has i = 1. The isotope 133Cs used in atomic clocks has i = 7/2.

Not all the multipole fields that occur classically are allowed in the case of a nuclei. There

are two rules governing the allowed multipole moments of the nucleus. The first is that electric

multipoles of odd k and magnetic multipoles of even k are forbidden. To see why, consider what

would happen if the nucleus had an electric dipole moment. Then the dipole term in Eq. (1) would

be a (presumably small) correction to the potential seen by the atomic electron. Since the potential



4 Notes 27: Hyperfine Structure

seen by the electron is V = −eΦ, the perturbing Hamiltonian would be

H1 = −e
d · r

r3
. (5)

The dipole moment vector d is not a c-number as in classical electrostatics, rather it is a (vector)

operator acting on the nuclear Hilbert space, just like the magnetic moment µ. And just like µ, d

must be proportional to the spin, say, d = kI, because all vector operators on a single irreducible

subspace are proportional. See Prob. 20.2(a). Thus,

H1 = −ke
I · r

r3
. (6)

Now under parity π the angular momentum I is invariant, but the electron position vector r

changes sign. And under time reversal Θ the angular momentum vector I changes sign and r does

not. Thus we find that H1 violates both parity and time reversal,

πH1π
† = −H1,

ΘH1Θ
† = −H1.

(7)

A similar argument applies to the other forbidden terms.

The presence of such terms would indicate a violation of both parity and time reversal. The

weak interactions do violate parity, and we do know that time reversal (more precisely, CP) is

violated at a very small level in certain decay processes (see Notes 21 and 22), so it is possible that

the terms forbidden by this rule actually exist at a small level. For example, the neutron or the

electron may have an electric dipole moment, but if such moments exist, they are certainly very

small. There is currently considerable experimental interest in lowering the known upper bounds on

these “forbidden” moments, or possibly even discovering a nonzero value for some of them, because

a numerical value for one of these moments would shed light on physics beyond the standard model.

The experimentally known limits on the electric dipole moment of the neutron give rise to

what is known as the “strong CP-problem” in particle physics. Theories of the strong interactions

suggest that they should violate CP symmetry at a level that would show up as an electric dipole

moment of the neutron that is larger than the experimentally known upper bound. Recall that

the CPT theorem says that the product CPT is an exact symmetry of all quantum fields, so CP

violation implies violation of time reversal. This suggests that there is some mechanism to suppress

CP violation. One possibility that has been explored involves postulating the existence of a particle

of very small mass, the “axion.” Nowadays the axion, in addition to solving the strong CP-problem,

is looked upon as a candidate for dark matter, and extensive searches are underway to find it. Its

discovery would be a major advance in both particle physics and astrophysics.

The second rule states that a 2k-pole can occur only if k ≤ 2i. For example, the proton with

i = 1
2
can (and does) possess an electric monopole moment and a magnetic dipole moment, but not an

electric quadrupole moment. The deuteron with i = 1 can (and does) possess an electric quadrupole
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moment, but the alpha particle with i = 0 can possess only the electric monopole moment. There

are no hyperfine effects in 4He, or with any other isotope with spin 0 (such as 12C or 16O).

Lying behind this rule is the fact that the operator representing the 2k-pole on the nuclear

Hilbert space is, in fact, an order k irreducible tensor operator. We have already studied the examples

of the magnetic dipole moment and the electric quadrupole moment, which are respectively k = 1

and k = 2 irreducible tensor operators. In fact, the expansion of classical electric and magnetic fields

into multipoles is an example of the decomposition of a space of fields on three-dimensional space

into irreducible subspaces under rotations, each of which has an angular momentum value (ℓ = 0

for monopole, ℓ = 1 for dipole, etc). The fields in question are classical fields, not quantum wave

functions, but the transformation properties under rotations is exactly as presented in Notes 13 and

15.

But the maximum order of an irreducible tensor operator on the nuclear Hilbert space with

spin i is k = 2i. To see this notice that any operator A that acts on the nuclear Hilbert space can

be expanded as a linear combination of the operators |mi〉〈m
′
i|, where |mi〉 = |imi〉 (we suppress the

index i, which is constant):

A =
∑

mi,m′

i

|mi〉〈mi|A|m
′
i〉〈m

′
i| =

∑

mi,m′

i

Amim′

i
|mi〉〈m

′
i|, (8)

where

Amim′

i
= 〈mi|A|m

′
i〉. (9)

Thus, the (2i + 1)2 operators |mi〉〈m
′
i| form a basis in the space of operators acting on the nu-

clear Hilbert space. But since the kets |mi〉 transform under rotations according to the irreducible

representation j = i, and since the bras 〈m′
i| also transform according to the same irreducible

representation, the operator |mi〉〈m
′
i| transforms according to

i⊗ i = 0⊕ . . .⊕ 2i. (10)

Each k in the range 0 ≤ k ≤ 2i occurs precisely once in this list, so on the nuclear Hilbert space

there is precisely one scalar operator (to within a multiplicative constant), one vector, etc, all the

way up to one order k = 2i irreducible tensor operator. Equivalently, any operator that acts on

the nuclear Hilbert space can be represented as a sum of irreducible tensor operators of order not

exceeding k = 2i. Operators with k > 2i do not occur. See Prob. 20.2(a).

To understand how the moments that are forbidden in the case of a nucleus or an elementary

particle can occur classically, see the discussion in Secs. 19.9 and 19.12 (it has to do with the fact

that in the case of the nucleus, we are dealing with a single irreducible subspace under rotations).

4. Magnetic Dipole Hyperfine Effects. The Physical Picture

The only hyperfine effect we shall examine in these notes is the one due to the magnetic dipole

moment of the nucleus. It turns out that if the electric quadrupole moment exists, then its effects are
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of the same order of magnitude as those of the magnetic dipole, so any realistic treatment requires

that the two be treated together (unless selection rules make the quadrupole term vanish). In the

following we will treat magnetic dipole effects in a single electron atom with nuclear spin i, but to

be realistic i should not exceed 1
2
. This condition holds in ordinary hydrogen with the proton as its

nucleus, and at a certain point in the calculation we will specialize to that case.

A classical model of the effect will be useful in understanding what we do. To be specific we

think of hydrogen. The proton at the center of the atom produces a magnetic dipole field in addition

to the electrostatic, Coulomb field. The Coulomb field is rotationally invariant, but the magnetic

dipole field depends on the orientation of the proton. As the electron moves in its orbit, which is

largely determined by the electrostatic force, it also feels a v×B force due to the proton’s magnetic

field, which modifies the orbit somewhat. At the same time the electron’s spin has an energy of

orientation in the proton’s magnetic field, and precesses in response. Also, the proton itself feels a

magnetic field produced by the electron, both by its orbital motion and by its own magnetic moment,

and precesses in response. Thus the orientation of the proton is not constant, but evolves in time

as the electron executes its orbit. This picture makes it clear that the dynamics of the proton spin

is coupled to the dynamics of the atomic electron, and that they must be handled together.

In the following we shall make a quantum mechanical analysis of these effects. Perhaps sur-

prisingly, it turns out to be possible to obtain a closed formula for the shifts in the atomic energy

levels, in terms of the expectation value of 1/r3. In the case of hydrogen, the latter can be evaluated

explicitly.

5. About Magnetic Dipoles

We begin by considering magnetic dipole fields in classical magnetostatics. A point magnetic

dipole of moment µ situated at the origin of the coordinates produces a magnetic field B = ∇×A,

where

A(r) =
µ×r

r3
= −µ×∇

(1

r

)

. (11)

The vector potential A falls off as 1/r2 and the magnetic field B as 1/r3 at large r, both with a

nontrivial angular dependence. Both fields have a singularity at the origin that must be treated

with some care in the quantum mechanical analysis of hyperfine effects.

We will do this by smearing out the point dipole moment over a sphere of small radius a,

producing a model in which the dipole is replaced by a uniformly magnetized sphere at the origin.

Recall that in magnetostatics the magnetization M is the dipole moment per unit volume, so we

require

µ = VM, (12)

where M is the constant magnetization inside the sphere and where V is the volume of the sphere,

V =
4

3
πa3. (13)
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This model produces fields that are well behaved everywhere in space. When we are done with the

quantum mechanical calculation, we will take a → 0 in such a way that µ is constant, and we will

find physical results that are finite and well behaved. Notice that in this limit, M → ∞.

The problem of the uniformly magnetized sphere is a standard one in courses on electromag-

netism. The vector potential A at a field point r can be computed as an integral over the source

distribution inside the volume of the sphere,

A(r) =

∫

vol

d3r′
M×(r− r′)

|r− r′|3
= M×

[

−∇

∫

vol

d3r′
( 1

|r− r′|

)

]

. (14)

The field point r can be either inside or outside the sphere. The quantity in the square brackets is

easily evaluated with some reasoning from electrostatics. The integral is the electrostatic potential

produced at field point r due to a uniformly charged sphere of radius a and charge density ρ = 1.

Thus, the negative gradient of that integral is the electric field produced by the same charge density.

But by Gauss’s law, that electric field is r̂/r2 times the amount of charge inside radius r. Thus we

have

−∇

∫

vol

d3r′
( 1

|r− r′|

)

=
r

r3
×











4π

3
r3, r < a,

4π

3
a3, r > a.

(15)

Combining this with Eqs. (12)–(14), we obtain

A(r) = µ×r















1

a3
, r < a,

1

r3
, r > a.

(16)

The exterior solution is identical to that of a point dipole, Eq. (11); in the region r > a, one cannot

tell from the field alone whether it is produced by a point dipole or a uniformly magnetized sphere

of the same strength.

By taking the curl we compute the magnetic field,

B(r) =















2µ

a3
, r < a,

µ · T

r5
, r > a.

(17)

where T is defined in Eq. (2). The notation µ·T means the vector whose j-th component is
∑

i µiTij .

Notice that Tij is a symmetric and traceless tensor, something that becomes a k = 2 irreducible

tensor operator when reinterpreted as a quantum operator. The vector potential (16) is continuous

at the radius r = a; the magnetic field (17), however, has a discontinuity there, due to a surface

current.

To express both A and B in single formulas, we introduce the following functions:

∆(r) =

{ 1

a3
, r < a,

0, r > a,
(18)
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and

f(r) =

{

0, r < a,

1, r > a.
(19)

Then we can write

A(r) = (µ×r)

[

∆(r) +
f(r)

r3

]

, (20)

and

B(r) = µ ·

[

2∆(r)I+ f(r)
T

r5

]

, (21)

where I is the identity tensor.

When we take the limit a → 0, ∆(r) becomes a function that is concentrated inside a small

volume (4π/3)a3 with a value that goes to ∞ in such a way that the integral of ∆(r) over all space

is the constant 4π/3. This is the behavior of a function whose limit is a delta function, so we can

write

lim
a→0

∆(r) =
4π

3
δ(r). (22)

As for f(r), it has the limit,

lim
a→0

f(r) = 1. (23)

6. The Hamiltonian and the Hilbert Space

We turn now to the atom in which the nucleus resides. In these notes we will be mainly

interested in hyperfine effects in hydrogen and alkali atoms, the latter treated as atoms with a single

electron (the valence electron) moving in a screened Coulomb potential.

In the following we use atomic units and take g = 2 for the g-factor of the electron, so µB = 1/2c.

The Hamiltonian for the atomic electron is

H =
1

2

(

p+
1

c
A

)2

+ V (r) +HFS +HLamb +
1

c
S ·B, (24)

where V (r) is the central force potential. This could be the Hamiltonian for the Zeeman effect, except

that in this case the fields A and B are not external fields, rather they are the magnetic dipole fields

of the nucleus. Thus, they are given by Eqs. (20) and (21). We include in the Hamiltonian the fine

structure terms HFS, the sum of the three terms shown in Eq. (25.25), and terms responsible for the

Lamb shift, since we wish to make a realistic treatment of hyperfine effects which are smaller than

those just listed. We will not need to know much about the Lamb shift in the following analysis,

except that it splits the energy levels in hydrogen to give them a dependence on ℓ.

The expressions (20) and (21) for A and B are the fields of a classical magnetic dipole at the

origin, but now for use in the Hamiltonian (24) we must reinterpret µ as an operator acting on the

nuclear Hilbert space, given in terms of the nuclear spin by

µ = gNµNI, (25)
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where gN is the g-factor of the nucleus and µN is the nuclear magnetic moment (see Sec. 14.8).

Thus, the Hamiltonian (24) must be interpreted as an operator acting the total Hilbert space

E = Eelec ⊗ Enucl, (26)

where Eelec, the electronic Hilbert space, is the product of its orbital and spin parts,

Eelec = Eorb ⊗ Espin. (27)

Basis states in E can be defined as products of basis states in Eelec and in Enucl. For Eelec the

obvious basis is the eigenbasis of H0, {|nℓjmj〉} in the notation of Notes 25, which have energies

Enℓj . In alkalis the energies depend strongly on ℓ, and in hydrogen they depend on ℓ because of the

Lamb shift. The obvious basis in Enucl is {|imi〉}. Thus we define the basis states in E ,

|nℓjmj〉 ⊗ |imi〉 = |nℓjmjmi〉, (28)

where we suppress the index i in the shorthand notation on the right hand side, since it is a constant.

We will call this the “uncoupled basis,” because the electronic angular momentum J and nuclear

angular momentum I are not coupled. Of course, orbital and spin angular momentum have already

been coupled to produce J, so the basis (28) is really only partially uncoupled. These uncoupled

basis states are eigenstates of H0 on the whole Hilbert space E . The energy does not depend on the

quantum numbers mj or mi, so the energy eigenstates are (2j + 1)(2i+ 1)-fold degenerate.

Now we expand the kinetic energy in the Hamiltonian (24) as in Notes 26 and neglect the term

in A2, writing the result as H = H0 +H1, where

H0 =
p2

2
+ V (r) +HFS +HLamb, (29)

and

H1 =
1

c
(p ·A+ S ·B). (30)

Here we have used the fact that our A is in Coulomb gauge, ∇ ·A = 0, so p ·A = A · p. We write

the two terms in H1 as H1,orb and H1,spin. For H1,orb we use 1/c = 2µB and Eqs. (25) and (20),

rearranging the triple product,

p · (I×r) = I · (r×p) = I · L. (31)

This gives

H1,orb =
1

c
p ·A = k(I · L)

[

∆(r) +
f(r)

r3

]

, (32)

where we have set

k = 2gNµBµN = gegNµBµN (33)

for the product of the effective magnetic moments of the electron and the nucleus (including g-

factors). As for H1,spin, we rearrange it similarly, obtaining

H1,spin =
1

c
S ·B = k

[

2∆(r)(I · S) + f(r)
(I · T · S)

r5

]

. (34)
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Notice that H1,orb is a kind of spin-orbit interaction (but it is the spin of the nucleus, not the spin

of the electron), and H1,spin is a kind of spin-spin interaction.

Properly we should only take the limit a → 0 after we have formed matrix elements, but in

many books this limit is taken before, resulting in the formulas,

H1,orb = k(I · L)

[

4π

3
δ(r) +

1

r3

]

, (35)

and

H1,spin = k

[

8π

3
δ(r)(I · S) +

(I · T · S)

r5

]

. (36)

The terms involving δ(r) are called “Fermi contact terms,” because they vanish except when the

electron and nucleus are in contact with one another (r = 0), and in honor of Fermi, who first carried

out the calculation presented in this set of notes.

7. The Perturbation Calculation

Both terms (32) and (34) in the perturbing Hamiltonian have the form of I dotted into a vector

that is constructed out of electronic operators, that is, operators that act only on the electronic

Hilbert space. Since the angular momentum J generates rotations that rotate electronic vectors,

while I generates rotations that rotate I itself, the dot products in H1 are not invariant under either

electronic rotations alone or under nuclear rotations alone. For this reason, H1 does not commute

with either Jz or Iz , and the uncoupled basis (28) is not the best one for carrying out the perturbation

calculation (see Sec. 25.5).

The dot products in question, however, are invariant under total rotations of the system, elec-

tronic plus nuclear, which are generated by the total angular momentum of the system defined

by

F = J+ I = L+ S+ I. (37)

This suggests that we couple together J and I to create eigenstates of F 2 and Fz . We will call the

result the “coupled basis”; it is given by

|nℓjfmf〉 =
∑

mj ,mi

|nℓjmjmi〉〈jimjmi|fmf〉, (38)

where the final scalar products are the Clebsch-Gordan coefficients.

In the coupled basis the matrix elements we need to consider for degenerate perturbation theory

are

〈nℓjfmf |H1|nℓjf
′m′

f 〉, (39)

where the unprimed indices on the two sides specify the degenerate unperturbed energy level Enℓj ,

while the remaining indices specify the basis inside the degenerate eigenspace of the unperturbed

system. But since [F, H1] = 0, and since if H1 commutes with F it commutes with any function of

F such as F 2, the matrix (39) is diagonal in both f and mf , and the primes can be dropped. We
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need only compute the diagonal matrix elements to find the energy shifts, and once again we have

succeeded in doing a degenerate perturbation calculation without diagonalizing any matrices. Thus

we have

∆E = 〈nℓjfmf |H1|nℓjfmf〉. (40)

We now evaluate these matrix elements for the case ℓ 6= 0. In this case the contact terms do

not contribute in the limit a → 0, because the wave functions go as rℓ near r = 0, and thus vanish

at r = 0 when ℓ 6= 0. As for the other terms, we take the limit a → 0 so f(r) = 1, and write the

result in the form

∆E = k〈nℓjfmf |I ·G|nℓjfmf〉, (41)

where

G =
L

r3
+

T · S

r5
=

L

r3
+

3r(r · S)− r2S

r5
, (42)

where we use Eq. (2). Note that G is a purely electronic vector operator.

We simplify Eq. (41) by using the projection theorem (see Sec. 26.7 and Prob. 26.1), which tells

us that an operator such as G, which is a vector under rotations generated by J, sandwiched between

eigenstates of J2 with the same j value on both sides, can be replaced by an operator proportional

to J:

G →
(G · J)J

j(j + 1)
. (43)

Thus

∆E =
k

j(j + 1)
〈nℓjfmf |(I · J)(J ·G)|nℓjfmf〉. (44)

Now the two dot products can be simplified. First, by Eq. (37), we have

I · J =
1

2

(

F 2 − J2 − I2). (45)

Next, we use r · J = r · S (since r · L = 0) to write

G · J =
L2

r3
+

3(r · S)2 − r2S2

r5
, (46)

where a term L · S/r3 has cancelled. Then, since S = (1/2)σ and since σiσj = δij + iǫijk σk, the

final term in Eq. (46) simplifies,

3(r · S)2 =
3r2

4
, (47)

which cancels r2S2 = 3r2/4. The result is simply

G · J =
L2

r3
. (48)

Then, with Eqs. (45) and (48), the energy shift (44) becomes

∆E = k
f(f + 1)− j(j + 1)− i(i+ 1)

2j(j + 1)
ℓ(ℓ+ 1)

〈 1

r3

〉

, (49)
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where the final expectation value of 1/r3 can be reduced to a purely spatial matrix element with

respect to the state |nℓ0〉 exactly as in Sec. 25.7. Specializing to hydrogen and using Eqs. (33) and

(25.47), we find

∆E =
gegNµBµN

a30

1

n3

f(f + 1)− j(j + 1)− i(i+ 1)

j(j + 1)(2ℓ+ 1)
, (50)

where we have introduced a factor of 1/a30 (a0 is the Bohr radius) to make the answer have dimensions

of energy (thus it is now valid in ordinary units).

Equation (50) is the final expression for the hyperfine structure energy shift in hydrogen in the

case ℓ 6= 0. However, one can show that the same answer holds also in the case ℓ = 0, so Eq. (50)

applies in all cases.

8. The New Energy Levels

The energy levels were Enℓj before the hyperfine interactions were turned on, but since ∆E in

Eq. (50) depends on f , they now have the form Enℓjf . The energy eigenstates are |nℓjfmf〉, and

are (2f +1)-fold degenerate, since the energy does not depend on mf . This is precisely the situation

expected of a generic system invariant under rotations; the energy eigenspaces consist of a single

irreducible subspace under rotations (see Secs. 19.9–19.12; and the degeneracy present is explained

by rotational invariance alone.

The energy shift (50) causes the fine structure levels in the Dirac picture of hydrogen to split,

giving rise to hyperfine multiplets. For example, the ground state 1s1/2 splits into two levels f = 0

and f = 1, of which f = 0 is lower since by Eq. (50) the energies are an increasing function of f .

This f = 0 level is the true ground state of hydrogen. It is nondegenerate. The f = 1 level is 3-fold

degenerate, and lies above the ground state by an energy of approximately 1.42 GHz in frequency

units, or 21 cm in wave length units, or 0.068 K in temperature units. Since ℓ = 0 for these states,

the total angular momentum F is really just the total spin S + I, and the f = 0 and f = 1 states

are the spin singlet and triplet states, respectively. The electron and proton spins are antiparallel in

the ground (singlet) state; when one of the spins is flipped to make them parallel (the triplet state),

the energy is raised.

Similarly, other j = 1/2 states including the 2s1/2 and 2p1/2 states split into an f = 0 and

f = 1 pair. The 2p3/2 state in the Dirac picture splits into an f = 1 and f = 2 pair.

Electric dipole transitions between the various hyperfine levels are governed by the matrix

element,

〈nℓjfmf |xq|n
′ℓ′j′f ′m′

f 〉. (51)

The selection rules for this matrix element follow from the Wigner-Eckart theorem and parity. The

Wigner-Eckart theorem can be used three times, once for each of the three angular momenta L, J

and F, since xq is a k = 1 irreducible tensor operator with respect to rotations generated by any of

these angular momenta. Thus, the matrix element (51) vanishes unless the following selection rules
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are satisfied:

mf = m′
f + q,

∆f = 0,±1 but f = 0 → f = 0 not allowed,

∆j = 0,±1,

∆ℓ = ±1. (52)

The exclusion of f = 0 → f = 0 comes from the fact that 0⊗1 = 1, so if f = f ′ = 0, then the matrix

element vanishes. The only reason we do not also exclude j = 0 → j = 0 is that j is half-integral,

and cannot take on the value 0. And the only reason we do not make a special case of excluding

ℓ = 0 → ℓ = 0 is that that case is already excluded by parity.

The hyperfine splitting of the 1s1/2 level in hydrogen is particularly interesting. The separation

between the f = 0 and f = 1 hyperfine levels is 1.42 GHz, or 21 cm in wavelength units. Electric

dipole transitions between these two levels are forbidden by parity, but magnetic dipole transitions

are allowed. (One can see this from another standpoint: since spins do not interact with electric

fields, an electric dipole transition cannot flip the spins to convert the triplet to the singlet state.

But magnetic dipole transitions can.)

The 21 cm line is quite important in radio astronomy. Spiral galaxies typically possess large

clouds of atomic hydrogen, which radiate at the 21 cm wavelength. A population of the excited state

f = 1 is maintained by collisions; the temperatures prevalent in the clouds are high enough that the

populations of the ground state f = 0 and the first excited state f = 1 are determined mostly by the

degeneracies (1 for f = 0 and 3 for f = 1, although there is some effect due to the Boltzmann factor).

By measuring Doppler shifts, the state of motion of the clouds can be measured. In this way, it was

first proven that the Milky Way is a spiral galaxy. The 21 cm line is also important in absorption

spectra, which can be used to determine the temperature of the clouds of atomic hydrogen.

Molecular hydrogen has a completely different hyperfine structure from atomic hydrogen, arising

from the spin-spin interaction of the two protons in the molecule. The transitions between the

hyperfine levels of molecular hydrogen are in the megahertz range of frequencies.

Problems

1. A problem on the hyperfine interaction in hydrogen.

(a) Equation (50) was derived in the case ℓ 6= 0. Show that it also applies in the case ℓ = 0. Hint: Use

the fact that the components of the tensor Tij , defined in Eq. (2), are r2 times linear combinations

of the Y2m(θ, φ), for m = −2, . . . ,+2. This is related to the fact that Tij is the Cartesian version of

an order 2 irreducible tensor.

(b) Our analysis of the hyperfine interaction in hydrogen has included the energy of interaction

of the electron with the magnetic dipole field produced by the proton, but it seems that we have
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not included the energy of interaction of the proton spin with the magnetic field produced by the

electron. As seen by the proton, the electron produces a magnetic field for two reasons: first, it is a

charge in motion, therefore a current, which makes a magnetic field. This is the magnetic field due

to the orbital motion of the electron. Next, the electron has a magnetic moment of its own, which

makes a dipole magnetic field. This is the magnetic field produced by the spin of the electron.

Work out an expression for the energy of interaction of the proton spin with the magnetic field

produced by the orbital motion of the electron. Follow the analysis of the spin-orbit interaction in

Sec. 25.2, but run it backwards. That is, putting primes on the fields in the electron rest frame and

no primes on fields in the proton rest frame, use Coulomb’s law to write down the field E′ of the

electron in its own rest frame, then Lorentz transform to the lab frame to get B (call this Borb,

the magnetic field due to the orbital motion of the electron). Then the energy of interaction of the

proton with this magnetic field is −µp ·Borb, where µp is the proton magnetic moment. Notice that

unlike the analysis of Sec. 25.2, there is no factor of 1
2
from Thomas precession, because the proton

frame is not accelerated.

Now use Eq. (21) in the limit a → 0 to obtain the magnetic field produced by the dipole moment

of the electron at the position of the proton. Call this Bspin, and write down an expression for the

energy of interaction −µp ·Bspin.

If you add these terms to the Hamiltonian (Eqs. (29) plus (30)), does it change the energy shifts

(50)? These energy shifts are confirmed experimentally (for example, by the 21 cm line). What is

wrong?

(c) Compute the hyperfine splitting of the ground state of positronium in wavelength units. Notice

that in positronium, the fine structure and hyperfine structure are of the same order of magnitude.

Now some remarks about part (c). The interesting thing about this calculation is that the

answer based on what you now know is actually wrong, because it omits a virtual process (a Feynman

diagram) in which the positron and electron annihilate into a photon, which then materialize back

into a positron and electron.

The analysis of this process requires quantum field theory. The Hamiltonians we usually use in

atomic, molecular and solid state physics, expressed in terms of a finite number of particles and a

finite number of degrees of freedom, are only valid up to a certain degree of accuracy, beyond which

interactions with the infinite degrees of freedom in various fields (electromagnetic, electron-positron,

strong interactions, . . .) cannot be ignored. The first place where this occurs in hydrogen is with

the Lamb shift. In positronium, it happens at the level of the fine structure (in positronium, the

hyperfine structure is considered part of the fine structure).

2. In our derivation of the energy shifts (50), we assumed that hyperfine effects were much smaller

than the Lamb shift. This is what allowed us to assume that the ℓ values on the two sides of the

matrix element (39) were the same. Compute the hyperfine energy shifts for the 2s1/2 and 2p1/2

levels in hydrogen, and compare to the Lamb shift. Make a sketch of the energy levels like that in
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Fig. 25.3, including the hyperfine structure (but you can omit the 2p3/2 levels). It’s convenient to

measure energies in GHz.

3. Hyperfine transitions in alkali atoms, usually cesium or rubidium, are used in atomic clocks.

Atomic clocks can also be based on hydrogen. Hydrogen and alkali atoms have one unpaired electron,

so s = 1/2. When this is coupled to the nuclear spin i, where I2 = i(i + 1)h̄2, the resulting total

angular momentum is f = i ± 1/2. Thus, there are two hyperfine levels, characterized by their f

values. For example, in cesium, where i = 7/2, we have either f = 3 or f = 4.

In the usual atomic clock an atomic beam is passed through a region of space with an oscillating

magnetic field produced by an RF oscillator, much as in the magnetic resonance experiments dis-

cussed in Notes 14. When the frequency of the oscillator is close enough to the hyperfine transition

frequency, it causes the hyperfine state to change, thereby modifying the trajectory of the atom in

a subsequent Stern-Gerlach apparatus. A feedback mechanism locks the frequency of the oscillator

onto the hyperfine transition frequency, so that only atoms following a certain trajectory, corre-

sponding to a certain f value, are passed. See R. E. Beehler, R. C. Mockler and J. M. Richardson,

Metrologia 1, 114(1965).

Hyperfine transition frequencies in the alkali atoms and hydrogen are among the most accurately

known physical quantities. In fact, as mentioned, the second is currently defined in terms of the

hyperfine transition frequency in cesium. As for hydrogen, measurements of the transition frequency

give ν0 = 1, 420, 405, 751.7667 ± 0.001Hz [see L. Essen, R. W. Donaldson, M. J. Bangham and

E. G. Hope, Nature (London) 229, 110(1971)].

Unfortunately, to flip the hyperfine state we need a background field B0, in addition to the oscil-

lating magnetic field, as explained in Notes 14, and this modifies the hyperfine transition frequency.

Thus, it is necessary to know how the hyperfine transition frequency depends on the background field

B0 in order to make the correction. Also, the accuracy of the clock now depends on the accuracy

with which we can measure B0.

In this problem for simplicity we will work with hydrogen, but the theory is not much more

complicated for atoms such as cesium.

(a) Let W be the energy difference between the two hyperfine states in hydrogen (the f = 0 and

f = 1 states). This can be calculated from Eq. (50), or from the experimental value of ν0. (They

should agree, and since you shouldn’t believe everything you read you might want to check that they

do.) To estimate the magnetic field strengths we will be talking about, let us note that the energy

of interaction of an electon spin with a magnetic field B is of the order of µBB, and let us define a

field strength B1 by

B1 =
W

µB
, (53)

where µB is the Bohr magneton. Evaluate B1 in Gauss or Tesla (see Sec. A.7). This is roughly

the field strength at which the effect of an external field is comparable to the hyperfine interaction.
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When B0 ≈ B1 the hyperfine structure seen at B0 = 0 is strongly modified by the external field.

We will want to operate the atomic clock at field strengths B0 ≪ B1, so that the corrections due to

B0 are small.

(b) Write the Hamiltonian for the hydrogen atom as H = H0 +H1 where

H0 = HES +HFS +HLamb,

H1 = HHFS +HZ .
(54)

Here HES is the Hamiltonian in the electrostatic model, HFS are the fine structure corrections

studied in Notes 25, HLamb are terms responsible for the Lamb shift, HHFS are the hyperfine

corrections, what was called H1 in Eq. (30) (which is presented in atomic units), and HZ contains

terms representing the interaction of the atom with the external field B0. By treating both HHFS

and HZ as of the same order of magnitude, we will be able to see what happens to the hyperfine

structure as the external field B0 is varied from zero up to the value B1 and beyond.

The answers to this problem do not depend on HLamb and it can be ignored for the purpose

of doing the problem. We include it anyway in Eq. (54) because it is really there. It is worthwhile

thinking about why it does not affect the answers.

Write out an expression for HZ , including the interaction of the proton spin with the magnetic

field B0. The latter interaction is small but it has a qualitative effect on the energy level diagram

so we will keep it. Neglect other terms that are very small. Express HZ as a multiple of µBB0, and

use the abbreviation,

γ =
gpme

2mp
. (55)

I suggest you use the gauge A0 = (1/2)B0×r, so that B0 = ∇×A0 and ∇ ·A0 = 0.

(c) Find the energy shifts of the ground state (1s) of the hydrogen atom in the model represented

by H0 due to H1.

I suggest you write ∆E0 and ∆E1 for the energies of the hyperfine states f = 0 and f = 1,

respectively, relative to the energy of the 1s level in the model represented by H0. These are the

energies computed from Eq. (50) with f = 0 and f = 1. Note that

W = ∆E1 −∆E0. (56)

Sketch the behavior of the 1s energy levels as a function of B0, as B0 is varied from zero up to

B1 and beyond.

(d) You will see that when B0 ≪ B1 the effect of HZ is to split the energy levels indicated by

Eq. (50) in proportion to their mf values, with an effective g-factor, as in the weak field Zeeman

effect studied in Notes 26. Therefore when we operate the atomic clock, we have to decide which

pair of magnetic substates we will use for the transition. Actual atomic clocks use the two mf = 0

substates (for example, in cesium it is the transition between |fmf 〉 = |30〉 and |40〉). Explain why

this is the best choice.
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(e) Let ν0 = 1, 420, 405, 751.7667± 0.001Hz be the hyperfine transition frequency in hydrogen in

the absence of a background field B0, as quoted above, let ν be the frequency of the transition when

there is a background field B0, and let ν = ν0 +∆ν. When B0 ≪ B1, express ∆ν/ν0 as a function

of the dimensionless ratio B0/B1.

Suppose B0 = 0.05G, which is known to within an accuracy of δB0/B0 = 1%. Find the

corresponding accuracy δ(∆ν/ν0). This is the limitation on the precision with which the clock can

measure time, due to the accuracy in the measurement of B0.


