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Electromagnetic Interactions With the Dirac Field†

1. Introduction

In the previous set of notes we second-quantized the Dirac equation for a free particle, and

using ideas from hole theory we created a field theory of free electrons and positrons. Notable

elements of this procedure were the use of anticommuting creation and annihilation operators and

the redefinition of the vacuum to be the state corresponding to the filled Dirac sea in first quantized

hole theory. In this set of notes we solve some problems involving the interaction of the second

quantized Dirac field with an electromagnetic field. In the first application we adopt a model in

which the electromagnetic field is just a given c-number field interacting with the quantized Dirac

field; this allows us to find the cross section for a relativistic version of Rutherford scattering, called

Mott scattering. In a second application our model takes both the electromagnetic field and the Dirac

field to be quantized, giving us a theory of electrons, positrons and photons. We use this to find the

cross section for e+-e− annihilation. In the process of working through these examples we develop

several computational techniques that are useful for similar problems in quantum electrodynamics.

In these notes we continue with natural units, in which h̄ = c = 1.

2. The Dirac Field Interacting With an External Electromagnetic Field

The Dirac Lagrangian density for the free field was given by Eq. (51.23), which we reproduce

here with a slight change of notation,

L0 = ψ̄(iγµ∂µ −m)ψ = ψ̄(i 6∂ −m)ψ, (1)

where the 0-subscript means “free particle.” Note that i 6∂ = iγµ∂µ can also be written 6p, if pµ is

interpreted as the 4-momentum operator i∂µ of the first quantized Dirac theory. To incorporate

interactions with the electromagnetic field, we introduce the vector potential Aµ(x), assumed to be

a given function of x = (x, t). We assume that the interaction between the Dirac field and the

electromagnetic field is given by the minimal coupling prescription, which in the present context

means making the replacement

i∂µ → i∂µ − qAµ. (2)

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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It is a guess that this gives us the correct interaction between the Dirac field and the electromagnetic

field, but as we have seen minimal coupling works well in the first quantized Dirac theory of the

electron. Minimal coupling causes the Lagrangian density L0 to be replaced by

L = L0 + L1, (3)

where the interaction Lagrangian is given by

L1 = −q ψ̄γµAµψ = −q ψ̄ 6Aψ = −JµAµ, (4)

where Jµ = qψ̄γµψ is the charge current in the Dirac theory.

Altogether, the Lagrangian density is

L = ψ̄(i 6∂ − q 6A−m)ψ. (5)

Regarded as a classical Lagrangian density for the “classical” fields ψ and ψ̄, this gives the Euler-

Lagrange equation,

(i 6∂ − q 6A−m)ψ = 0, (6)

which is the first quantized Dirac equation for a particle interacting with an external electromagnetic

field. See Eq. (48.13) and the derivation of Eq. (51.25). From the Lagrangian density we compute

the Hamiltonian density as in Sec. 51.10, finding

H = H0 +H1, (7)

where H0, the free particle Hamiltonian density, is

H0 = ψ̄(−iγ · ∇+m)ψ = ψ†(−iα · ∇+mβ)ψ, (8)

as in Eq. (51.36), and where the interaction Hamiltonian density is

H1 = −L1 = q ψ̄γµAµψ. (9)

This is all at the “classical” or first quantized level.

To second-quantize the electron-positron field we interpret ψ and ψ̄ (but not Aµ) as field oper-

ators and normal order. Then the Hamiltonian is

H =

∫

d3x (H0 +H1) = H0 +H1, (10)

where

H0 =

∫

d3x :ψ†(−iα · ∇+mβ)ψ : =
∑

ps

Ep(b
†
psbps + d†psdps), (11)

exactly as in Eq. (51.85a), and where

H1 = q

∫

d3x : ψ̄γµAµψ : . (12)

We will apply perturbation theory to this Hamiltonian, with the free particle part H0 serving as the

unperturbed system.
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Fig. 1. Feynman diagrams for the interaction of the electron-positron field with an external electromagnetic field. The
external field is indicated by ×. Notice the minus sign on diagram (d), arising from the normal ordering.

Let us look at the processes engendered by H1 in first order perturbation theory. The relevant

matrix element is 〈b|H1|a〉, where |a〉 and |b〉 are two states. The same matrix element appears in

higher order perturbation theory. It has the structure

〈b|H1|a〉 ∼
∫

d3x 〈n| :
∑

ps

(b†ps . . . dps) γ
µAµ(x, t)

∑

p′s′

(bp′s′ . . . d
†
p′s′) : |i〉, (13)

where we use Eqs. (51.81) and (51.82) and where we omit all normalization constants, etc., and

concentrate just on the creation and annihilation operators. There are four combinations of creation

and annihilation operators that occur in H1, corresponding to the four types of Feynman diagrams

illustrated in Fig. 1. As in Notes 43, the Feynman diagrams are basically space-time diagrams, with

time increasing from bottom to top.

At the top of the figure is the product of creation and annihilation operators corresponding to

the diagram below it. Note the minus sign in part (d) of the figure, which is due to the normal

ordering. Part (a) of the figure is the scattering of an electron; part (b) is electron-positron pair

creation; part (c) is pair annihilation; and part (d) is the scattering of a positron, all taking place in

the external field. The interaction with the external field is marked with the symbol ×. Note that

all four diagrams are topologically identical, and just differ by their orientations in space-time. By

convention the arrows on the electron lines point in the direction of increasing time, while those on

positron lines point backwards in time. This follows the ideas of Stückelberg and Feynman in which

a positron is, in a sense, an electron traveling backwards in time. This convention makes the arrows

flow continuously in the same direction along a particle line, even when an electron and positron are

created or are annihilated.

3. Scattering by an External Potential Φ(x)

Let us now consider scattering of an electron by an external electrostatic potential, Φ(x). This



4 Notes 52: Electromagnetic Interactions With the Dirac Field

is a model, for example, of scattering by an atomic nucleus. Thus we take

Aµ = (Φ,0) and 6A = γµAµ = γ0Φ(x). (14)

We let the incident electron have mode (ps) and the scattered electron have mode (p′s′), so the

initial and final states are

|i〉 = b†ps|0〉, |n〉 = b†p′s′ |0〉. (15)

We set q = −e for the charge of the electron. Then the matrix element appearing in first-order

time-dependent perturbation theory is

M = 〈n|H1|i〉 = 〈0|bp′s′H1b
†
ps|0〉

= − e

V

∫

d3x 〈0|bp′s′ :
∑

p1s1

√

m

E1

(

b†p1s1 ūp1s1e
−ip1·x + dp1s1 v̄p1s1e

ip1·x
)

× γ0Φ(x)
∑

p2s2

√

m

E2

(

bp2s2up2s2e
ip2·x + d†p2s2vp2s2e

−ip2·x
)

: b†ps|0〉,

(16)

where we have used the Fourier series (51.81) and (51.82) for ψ(x) and ψ̄(x), and where we have

been careful to use dummy variables of summation (p1s1) and (p2s2) so as to avoid confusion

with the initial and final electron modes (ps) and (p′s′). Notice that Eq. (16) contains an implied

multiplication of a row spinor (ūp1s1 or v̄p1s1) times a Dirac matrix (γ0) times a column spinor (up2s2

or vp2s2).

Because of the anticommutation relations among the creation and annihilation operators, the

only term from the two Fourier series that survives is the b†b term with (p1s1) = (p′s′) and (p2s2) =

(ps). That is, when we evaluate the field part of the matrix element (16), we get

〈0|bp′s′b
†
p1s1bp2s2b

†
ps|0〉 = δpp2

δss2 〈0|bp′s′b
†
p1s1 |0〉 = δpp2

δss2 δp′p1
δs′s1 , (17)

where we have used the anticommutation relations (51.53) to migrate annihilation operators b toward

the vacuum ket on the right, which they annihilate. All other terms such as the one in b†d† give

zero, so that only the electron scattering diagram (a) in Fig. 1 contributes. Thus we find

M =− e

V

∫

d3x

√

m2

EE′

(

ūp′s′γ
0ups

)

e−i(p′−p)·xΦ(x)

= − e

V
(2π)3/2

√

m2

EE′
Φ̃(q)

(

ūp′s′γ
0ups

)

,

(18)

where we use the convention (34.78) for the Fourier transform Φ̃ of Φ and where q = p′ − p is the

momentum transfer.

According to first-order time-dependent perturbation theory, the probability Pn of the system

being in final state |n〉 is
Pn(t) = 2πt∆t(ωni)|〈n|H1|i〉|2, (19)
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where n, the general notation for the final state, is identified with (p′s′) in our application. To

compute the differential cross section dσ/dΩ′, where Ω′ refers to the direction of the scattered

electron, we must sum over all final states (p′s′) such that p′ lies in a small cone of solid angle dΩ′

centered on some direction (θ′, φ′). We must also divide by the time to get the transition rate, and

by the incident flux, which is

Jinc =
v

V
=

p3
EV

, (20)

where v, p3 = |p| and E are the velocity, momentum and energy of the incident electron. Because

of box normalization, there is one incident electron in the box of volume V , so that the density of

incident particles is 1/V . We write p3 for the magnitude of the incident 3-momentum p since we

are using the symbol p = (E,p) for the 4-momentum. The initial and final energies are E and E′,

so ωni in Eq. (20) is identified with E′ − E.

We follow the usual procedures in time-dependent perturbation theory, including replacing

∆t(ωni) by δ(E − E′), and making the replacement,

∑

p′∈ cone

→ V

(2π)3

∫

cone

d3p′ =
V

(2π)3
∆Ω′

∫ ∞

0

p′ 23 dp′3, (21)

where p′3 = |p′| is the magnitude of the final 3-momentum, not to be confused with the final 4-

momentum p′ = (E′,p′). Then

dσ

dΩ′
=
EV

p3

V

(2π)3

∫ ∞

0

p′ 23 dp′3 2π δ(E
′ − E) |M |2. (22)

Now using the rules of δ-functions we can write

δ(E′ − E) =
E′

p′3
δ(p′3 − p3), (23)

and using Eq. (18) for M we obtain finally

dσ

dΩ′
= 2πe2m2|Φ̃(q)|2|ūp′s′γ

0ups|2. (24)

Note that the δ-function forces p′3 = p3 and therefore E′ = E, so that after the integral has been

done the initial and final 4-momenta become

p = (E,p), p′ = (E,p′), (25)

that is, with the same energy.

4. Summing and Averaging over Spin States

The differential cross section (22) depends the energy E of the incident momentum, the di-

rections of the initial and final momenta p and p′, and the spins s and s′ of the initial and final

electron states. Recall that in the nonrelativistic (electrostatic) limit the scattering cross section is
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independent of the spin. (See Eq. (34.80), in which Ũ can be replaced by −eΦ̃ to compare with

Eq. (22).)

In many applications the initial electron beam is unpolarized and we do not care about the spin

of the scattered electron. Then the effective cross section is obtained by averaging over initial spin

states and summing over final spin states. This means that we must make the replacement,

|ūp′s′γ
0ups|2 → 1

2

∑

ss′

|ūp′s′γ
0ups|2. (26)

Spin sums of this type are very common in problems involving relativistic electrons, so we will now

illustrate some techniques that are useful in evaluating them.

First we write
1

2

∑

ss′

|ūp′s′γ
0ups|2 =

1

2

∑

ss′

(ūp′s′γ
0ups)(ūpsγ

0up′s′). (27)

This result would be more obvious if the second factor were written

(ūp′s′γ
0ups)

∗, (28)

but in fact they are the same, since the expression (28) can be written

(u†p′s′γ
0γ0ups)

∗ = u†psγ
0γ0up′s′ = ūp′s′γ

0up′s′ , (29)

since γ0 is Hermitian. Now the sum (27) can be written as a trace,

1

2
tr
[

γ0
(

∑

s

upsūps

)

γ0
(

∑

s′

up′s′ ūp′s′

)]

, (30)

in which the sums are positive energy projectors Π+, as indicated by Eq. (50.146). Then we can use

Eq. (50.38) to write the spin sum as

1

2
tr
[

γ0
(m+ 6p

2m

)

γ0
(m+ 6p ′

2m

)]

. (31)

In this manner, the spin sum has been transformed into the trace of a polynomial in the γ matrices.

5. Traces of Products of γ-Matrices

We now present some rules for evaluating the traces of products of γ-matrices. The rules we

will use are

tr 1 = 4, (32a)

tr(γµγν) = 4gµν , (32b)

tr(γµγνγαγβ) = 4(gµνgαβ − gµαgνβ + gµβgνα), (32c)

tr(any odd number of γ’s) = 0. (32d)



Notes 52: Electromagnetic Interactions With the Dirac Field 7

Alternative versions of rules (32b) and(32c) are

tr(6a 6b) = 4(a · b), (33a)

tr(6a 6b 6c 6d) = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)], (33b)

where we use the notation (a · b) = aµb
µ for the scalar product of two 4-vectors, as in Eq. (47.104).

Now we present the proofs of these formulas. The proof of Eq. (32a) is trivial. We prove

Eq. (32b) with the help of the fundamental anticommutation relation (48.18),

tr(γµγν) = 2gµν tr(1)− tr(γνγµ). (34)

But by cycling the products in the final trace, it becomes equal to the trace on the left-hand side.

Using Eq. (32a) we then obtain Eq. (32b).

The proof of Eq. (32c) is similar but more elaborate. We use the fundamental anticommutation

relation (48.18) to migrate γµ to the right in three steps, obtaining

tr(γµγνγαγβ) = 2gµν tr(γαγβ)− 2gµα tr(γνγβ) + 2gµβ tr(γνγα)− tr(γνγαγβγµ), (35)

whereupon by cycling the factors in the final trace it becomes equal to the left-hand side. Then

with the aid of Eq. (32b) we derive Eq. (32c). It is clear that with techniques like this the trace of

the product of any even number n of γ-matrices can be reduced sums of traces of products of n− 2

γ-matrices.

The proof of Eq. (32d) uses the properties of the matrix γ5 = iγ0γ1γ2γ3, namely, γ25 = 1 and

{γ5, γµ} = 0 (see Eqs. (48.105)). For example, in the case of the trace of the product of three

γ-matrices we have

tr(γµγνγα) = tr(γ25γ
µγνγα) = − tr(γ5γ

µγνγαγ5) = − tr(γ25γ
µγνγα)

= − tr(γµγνγα) = 0,
(36)

where in the second equality we have migrated one of the γ5’s past the three other γ-matrices,

incurring three minus signs, and in the third we have cycled the factors, restoring the original trace

but with a minus sign. This procedure obviously works for any odd number of γ-matrices.

6. The Mott Cross Section

Now we may evaluate the trace (31). Multiplying the factors out and dropping terms that are

of odd order in γµ, the expression (31) becomes

1

8m2
tr
(

m2γ0γ0 + γ0 6pγ0 6p ′
)

=
1

2m2

(

m2g00 + 2EE′ − g00(p · p′)
)

. (37)

But g00 = 1, p · p′ = EE′ − p · p′, E = E′, and m2 = E2 − |p|2, so this expression becomes

1

2m2
(2E2 − |p|2 + p · p′) =

1

2m2
[2E2 − |p|2(1− cos θ)], (38)
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where we have used |p| = |p′| and where θ is the angle between p and p′, that is, it is the scattering

angle. This can also be written

1

m2
[E2 − |p|2 sin2(θ/2)] = E2

m2
[1− v2 sin2(θ/2)], (39)

where v = |p|/E is the velocity of the incident electron.

Now we can make the replacement (26) in the cross section (24), obtaining,

dσ

dΩ′
= 2π e2E2|Φ̃(q)|2[1− v2 sin2(θ/2)]. (40)

If the potential Φ(x) arises from an extended charge distribution, for example, the interior of a

proton or a nucleus, then the method of form factors can be used, as discussed in Sec. 34.17. But in

the case of scattering by a point charge Ze, for which the potential is Φ(x) = −Ze2/|x|, the Fourier

transform of the potential is

Φ̃(q) = −2Ze2√
2π

1

q2
. (41)

A direct evaluation of the Fourier transform of the Coulomb potential is tricky because of the

singularity, but by multiplying the potential by e−κr it becomes a Yukawa potential whose Fourier

transform is easier to evaluate, and which is given in Eq. (34.121). Taking the limit κ → 0 then

gives Eq. (41). Also, the square of the 3-momentum transfer can be written,

q2 = 2|p|2(1− cos θ) = 4|p|2 sin2(θ/2), (42)

so that altogether we obtain the cross section for the scattering of relativistic electrons by a positive

point charge,
dσ

dΩ′
=

Z2e4E2

4p4 sin4(θ/2)
[1− v2 sin2(θ/2)], (43)

where we now just write p for the magnitude of the 3-momentum p. This is a relativistic version of

the Rutherford cross section, given by Eq. (34.113); in comparing the two, it should be noted that E

in the nonrelativistic formula is p2/2m, whereas in Eq. (43) it is the relativistic energy, (m2+p2)1/2,

and that moreover the relativistic formula is expressed in units in which h̄ = c = 1. Formula (43) is

called the Mott cross section. The correction factor v2 sin2(θ/2) comes from the spin of the electron;

it is absent in the scattering of charged particles of spin 0. It obviously becomes important at large

scattering angles (θ → π) and at high velocities (v → 1, in the formula; v → c in ordinary units).

As v → c, magnetic forces become as important as electric forces, which is what we see here.

7. Covariant Lagrangian for the Interacting Dirac and Electromagnetic Fields

Now we turn to problems that involve the second-quantized Dirac field and the quantized

electromagnetic field, that is, problems with electrons, positrons and photons.

We begin at the “classical” level at which this system is the first-quantized Dirac field interacting

with a classical or c-number electromagnetic field. The classical Lagrangian density is

L = LD + Lem + Lint, (44)
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where LD is the free Dirac Lagrangian density,

LD = ψ̄(i 6∂ −m)ψ (45)

(see Eq. (51.23)), where Lem is the Lagrangian density for the free electromagnetic field,

Lem =
1

16π
FµνFνµ =

1

8π
(E2 −B2) (46)

(see Eq. (51.13)), and where Lint is the interaction Lagrangian density,

Lint = −JµAµ (47)

(see Eq. (51.19)). This is a combination of the Lagrangian density for the electromagnetic field

driven by a matter current Jµ, as in Sec. 51.7, and the Lagrangian density (5) for the “classical”

Dirac field driven by an external electromagnetic field via minimal coupling. Note that the current

is given by

Jµ = −eψ̄γµψ, (48)

so that

Lint = eψ̄ 6Aψ, (49)

where we set q = −e for the electron.

If Aµ (all four components), ψ and ψ̄ are regarded as independent fields, then the Euler-Lagrange

equations arising from the Lagrangian density (44) are

(i 6∂ −m)ψ = −e 6Aψ, (50a)

∂νF
νµ = 4πJµ, (50b)

that is, they are the first quantized Dirac equation driven by the electromagnetic field, and Maxwell’s

equations, driven by the Dirac charge current. Here we present Maxwell’s equations in covariant

form, see Eq. (E.93), because we wish to emphasize that that the equations of motion, taken as

a whole, are covariant. But Eq. (50b) is equivalent to the (3 + 1)-version of Maxwell’s equations,

Eqs. (51.21).

8. Coulomb Gauge and Covariant Quantization

In preparation for quantization of this system we now introduce Coulomb gauge, which breaks

both gauge invariance and manifest Lorentz covariance. This means that the intermediate steps in

our subsequent calculations will not be Lorentz covariant, although the final answers will be, since

the theory itself is Lorentz covariant and a choice of gauge is just a convention that drops out when

physical answers are derived.

As pointed out in Notes 40 and shown in detail in Notes 42, one of the advantages of Coulomb

gauge is that it gives good unperturbed Hamiltonians for the interaction of matter with radiation

when the matter is essentially nonrelativistic and all velocities are small compared to the speed of
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light. In the applications we are about to consider, however, we will be dealing with problems in

which the particles may take on relativistic velocities, and ones in which particles are created and/or

destroyed. Therefore this would be a good point to switch over to completely covariant methods,

were it not for the extra formalism required to do so. Nevertheless, we will say a few words about

what is involved in covariant quantization.

The quantization of the Dirac field outlined in Notes 51 is already fully covariant, but that of the

electromagnetic field, carried out in Coulomb gauge in Notes 41, is not. The electromagnetic field is

a gauge field with nonphysical gauge degrees of freedom. These are associated with “constraints,”

that is, algebraic relations among the field variables that are not evolution equations. The principal

constraint in electromagnetism is Gauss’s law, ∇ · E = 4πρ, which ties the longitudinal component

of the electric field to the matter degrees of freedom. It is not an evolution equation. There are

fully covariant ways of quantizing the electromagnetic field, but they involve the introduction of new

degrees of freedom, corresponding to “longitudinal” and “scalar” photons. Photons that correspond

to actual light waves are always transverse, and these are the only ones that we see in Coulomb

gauge. But in a covariant quantization, the longitudinal and scalar photons appear when describing

electromagnetic fields that do not propagate, such as electrostatic fields, and they also appear in a

covariant description of intermediate states in perturbation theory, that is, as virtual photons.

Moreover, the version of perturbation theory that we have been using, which is sometimes called

“old fashioned perturbation theory,” is not covariant. Covariant perturbation theory exists, but it

is another piece of formalism we would have to master before turning to a fully covariant treatment

of the interaction of the Dirac field with the electromagnetic field.

We shall proceed with Coulomb gauge and noncovariant perturbation theory. It is not wrong,

and it is not too bad for the problems we shall consider. You will be able to see how the results we

obtain can be assembled into covariant answers, and it how the pieces of noncovariant perturbation

theory can be assembled into their fully covariant versions.

9. Coulomb Gauge in the “Classical” Theory

Recall that in Coulomb gauge the scalar potential Φ is not an independent variable, but rather

it is determined by the charge density via Coulomb’s law. That is,

Φ(x) =

∫

d3x′ ρ(x′)

|x− x′| , (51)

where in the present context the charge density is that of the Dirac electron,

ρ(x) = −eψ†(x)ψ(x). (52)

Recall also that the fields in Eq. (51) are evaluated at the same time, that is, Φ is the nonretarded

potential. Also, the vector potential A is purely transverse, so its longitudinal component vanishes,

and the longitudinal and transverse parts of the electric field are

E‖ = −∇Φ, E⊥ = −∂A
∂t

. (53)
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In Coulomb gauge it is convenient to transform the Lagrangian, the spatial integral of the

Lagrangian density (44). Ignoring the Dirac part of the Lagrangian for the moment, we have

Lem + Lint =

∫

d3x
[ 1

8π
(E2 −B2)− ρΦ + J ·A

]

, (54)

where ρ is given by Eq. (52). First we note that
∫

d3xE2 =

∫

d3x (E‖ +E⊥)
2 =

∫

d3x (E2
‖ + E2

⊥), (55)

since the cross terms involving E‖ · E⊥ vanish when integrated over all space (see Eq. (40.25)). As

for the longitudinal electric field energy, it can be transformed as in Sec. 40.18,

1

8π

∫

d3xE2
‖ =

1

8π

∫

d3x (∇Φ)2 =
1

8π

∫

d3x [∇ · (Φ∇Φ)− Φ∇2Φ] =
1

2

∫

d3xΦρ, (56)

where we drop boundary terms and use ∇2Φ = −4πρ (valid in Coulomb gauge). The final expression

cancels one half of the term −ρΦ in the Lagrangian (54), so that overall the Lagrangian (including

now the Dirac term) is

L =

∫

d3x
[ 1

8π
(E2

⊥ −B2)− 1

2
ρΦ+ J ·A+ ψ̄(i 6∂ −m)ψ

]

. (57)

The independent fields in this Lagrangian are the transverse components of A (which has

no longitudinal component), and ψ and ψ̄. The scalar potential Φ depends on ψ and ψ̄ through

Eqs. (51)–(52), and is not independent. It can be shown that when the action S =
∫

Ldt is forced

to be stationary with respect to variations in these independent fields, the result is the equations of

motion (50). The derivation is slightly tricky, and is relegated to Prob. 1.

We can now derive the Hamiltonian from the Lagrangian (57). The momentum conjugate to ψ

is

π =
∂L
∂ψ̇

= ψ̄(iγ0), (58)

as in Eq. (51.34), while the momentum π̄ conjugate to ψ̄ vanishes. The momentum conjugate to A

is

P =
∂L
∂Ȧ

= −E⊥

4π
, (59)

where it is understood that E⊥ is an abbreviation for −Ȧ in the Lagrangian (57). Altogether, then,

the Hamiltonian density is

H = ψ̄
(

iγ0
∂ψ

∂t

)

+P · Ȧ− L = HD +Hem +HCoul +HT , (60)

where

HD = ψ̄
(

−iγ · ∇+m
)

ψ = ψ†
(

−iα · ∇+mβ
)

ψ, (61a)

Hem =
E2

⊥ +B2

8π
, (61b)

HCoul =
1

2
ρΦ, (61c)

HT = −J ·A = eψ̄γ ·Aψ = eψ†
α ·Aψ, (61d)
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and where the T on HT stands for “transverse.”

10. The Quantum System

We quantize the system by interpreting the fields ψ, ψ̄ and A as quantum fields with the Fourier

expansions (51.81), (51.82) and (41.22), respectively. All three of these employ box normalization

in a box of volume V . For reference we write out the last of these in natural units (h̄ = c = 1):

A(x) =

√

2π

V

∑

λ

1√
ω
[aλǫ̂λ e

ik·x + a†λǫ̂
∗
λ e

−ik·x], (62)

where as usual λ = (kµ) is an abbreviation for the mode of the electromagnetic field. The Hamilto-

nian is then the spatial integral of the Hamiltonian density, which we must normal order. We write

it as H = H0 +H1, where H0 = HD +Hem is the free field Hamiltonian,

HD =

∫

d3x :ψ†(−iα · ∇+m)ψ : =
∑

ps

Ep(b
†
psbps + d†psdps), (63a)

Hem =

∫

d3x
:E2

⊥ +B2 :

8π
=

∑

λ

ωλ a
†
λaλ, (63b)

and where H1 = HCoul +HT is the perturbing Hamiltonian,

HCoul =
1

2

∫

d3x : ρ(x)Φ(x) : =
1

2

∫

d3x d3x′ : ρ(x)ρ(x
′) :

|x− x′|

=
e2

2

∫

d3x d3x′ :[ψ̄(x)γ
0ψ(x)][ψ̄(x′)γ0ψ(x′)] :

|x− x′| , (64a)

HT = −
∫

d3x :J ·A : = e

∫

d3x : ψ̄(x)γ ·A(x)ψ(x) : . (64b)

Let us now consider the processes engendered by HT in first order perturbation theory. For

simplicity we treat only HT and ignore HCoul. The matrix element has the structure

〈b|H1|a〉 ∼
∫

d3x 〈b| :
∑

ps

(b†ps . . . dps)
∑

λ

(aλ . . . a
†
λ)

∑

p′s′

(bp′s′ . . . d
†
p′s′) : |a〉, (65)

as in Eq. (13) except that now the vector potential A is a quantum field. There are altogether

23 = 8 combinations of creation and annihilation operators, which produce the Feynman diagram

fragments seen in Fig.2.

Diagrams (a1) and (d1) are the emission of a photon by an electron or positron, while (a2) and

(d2) are the absorption of a photon by an electron or positron, respectively. Diagram (b1) is the

creation of an electron-positron pair plus a photon out of the vacuum, and (c2) is the annihilation of

the same into the vacuum. Finally, diagram (c1) is electron-positron annihilation into a photon, while

diagram (b2) is a photon materializing into an electron-positron pair. As in Fig. 1, all diagrams

are topologically identical, and differ only by the directions in which the lines go in space-time.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)
Fig. 2. Feynman diagrams generated by HT . These are the same as in Fig. 1, except for the addition of a photon line,
representing either the creation or the destruction of a photon.

Note also that in all diagrams, charge is conserved at the vertex. As we will see, in noncovariant

perturbation theory, 3-momentum is also conserved at each vertex but not energy, while in covariant

perturbation theory, 4-momentum (including energy) is conserved at each vertex.

11. Electron-Positron Annihilation

Now we consider the reaction,

e− + e+ → γγ, (66)

that is, electron-positron annihilation into two photons, as an example of a process involving the

Dirac field with multiple particles. Although there is a diagram for the annihilation of an electron and

positron into a single photon, (c1) in Fig. 2, single-photon annihilation cannot take place in vacuum

because it is impossible to satisfy overall energy and momentum conservation. But annihilation into

two photons can occur, and we shall now calculate the cross-section for the process. We denote the

modes of the incident electron and positron by (ps) and (p′s′) respectively, and of the two photons by

λ = (kµ) and λ′ = (k′µ′). We will write 4-vectors p = (E,p) and p′ = (E′,p′) for the initial electron

and positron, respectively, and 4-vectors k = (ω,k) and k′ = (ω′,k′) for the two final photons.

The process (66) cannot happen in first-order perturbation theory, because HT is capable of

creating only a single photon. That is,

〈n|HT |i〉 = 0. (67)

Therefore we will have to take HT in second order perturbation theory to find a contribution to

the process (66). As for HCoul, it does not contain any photon creation operators, so it does not
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contribute and we will ignore it for this calculation.

The transition probability is

Pn = 2πt∆t(ωni) |M |2, (68)

in a general notation in which |i〉 and |n〉 are the initial and final states, and where for this problem

we have

M =
∑

k

〈n|HT |k〉〈k|HT |i〉
Ei − Ek

, (69)

where |k〉 is an intermediate state. For this problem we write

|i〉 = b†psd
†
p′s′ |0〉, |n〉 = a†λa

†
λ′ |0〉 (70)

so that

ωni = ω + ω′ − E − E′. (71)

It is important to recognize that the final state is identified by the two modes {λ, λ′} without regard

to order, since the photons are identical. That is, the state (λ, λ′) is identical to (λ′, λ).

The sum over intermediate states in principle runs over a complete set of states of both the

electron-positron and the electromagnetic field, including any number of particles. But most terms

in this vast sum vanish. To see which terms do contribute, let us write out the structure of the

product of matrix elements that appears in Eq. (69):

〈n|HT |k〉〈k|HT |i〉

∼
∫

d3x d3x′〈n| :(b† . . . d)(a . . . a†)(b . . . d†) : |k〉〈k| :(b† . . . d)(a . . . a†)(b . . . d†) : |i〉,
(72)

where the first matrix element contains fields ψ̄Aψ evaluated at x, and the second fields ψ̄Aψ

evaluated at x′.

There are 26 = 64 combinations of creation and annihilation operators in this, but most of

them do not contribute. First of all, the initial state has no photons and the final state has two,

so each application of the vector potential A must create a single photon. That is, the terms

involving the aλ operators do not contribute, and we keep only the ones involving a†λ. (Recall that

time advances from right to left, taking us from the initial state to the final state.) Next, because

we must annihilate the incident e−, e+ pair in two steps, and because there are a total of four

fermion creation or annihilation operators between the initial and final state, we must use three

annihilation and one creation operator. Moreover, the pattern must be AAAC or AACA, because,

if it were, for example, CAAA, then the intermediate state would contain no fermions, and the

third annihilation operator (proceeding from the right) would annihilate it. And if it were ACAA,

then normal ordering in 〈n|HT |k〉 would convert it to CAAA, with the same effect. The surviving

possibilities are summarized in Table 1.

Row 1A of the table contains the pattern AACA of fermion operators. Since we are picking the

annihilation operator from the final factor ψ(x′) it must be an electron annihilation operator; and
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Case ψ̄(x) A(x) ψ(x) ψ̄(x′) A(x′) ψ(x′)

1A dp′s′ a†λ′ bp1s1 b†p1s1 a†λ bps

2A dp2s2 a†λ bps dp′s′ a†λ′ d†p2s2

1B dp′s′ a†λ bp1s1 b†p1s1 a†λ′ bps

2B dp2s2 a†λ′ bps dp′s′ a†λ d†p2s2

Table 1. Patterns of creation/annihilation operators that contribute to e−-e+ annihilation.

since the electron we must annihilate is the incident electron, its mode is (ps), and the operator is

bps, as indicated at the right side of row 1A. In the factor ψ̄(x′) we must pick a creation operator,

which must be an electron creation operator; we have denoted its mode by (p1s1) in the table, and

it is an electron in the intermediate state |k〉. There is also a photon creation operator in A(x′); it

must create one of the final photons, which in row 1A we arbitrarily choose to be mode λ. Thus,

in row 1A, the intermediate state contains the incident positron, in mode (p′s′); the intermediate

electron, in mode (p1s1); and one of the final photons, that in mode λ. The final two annihilation

operators in row 1A (counting from the right) annihilate the intermediate electron and the incident

positron, and a second photon creation operator creates the other outgoing photon.

Row 2A contains the pattern AAAC of fermion operators, in which the first annihilation op-

erator (counting from the right) belongs to ψ̄(x′) and so must be a positron annihilation operator.

Therefore it must annihilate the incident positron, and its mode must be (p′s′) as indicated. Then

the creation operator belongs to ψ(x′) and must be a positron creation operator; it must create a

positron in the intermediate state, in a mode we denote by (p2s2). The first two fermion operators

(counting from the right) are thus dp′s′d
†
p2s2 , as indicated by the table. But when we actually evalu-

ate the matrix element, these must be normal ordered, and replaced with −d†p2s2dp′s′ (with a minus

sign). The sign is crucial, because amplitudes add before they are squared to get probabilities, and

the wrong sign produces the wrong interference terms. As in row 1A, the final two annihilation

operators in AAAC (counting from the right) annihilate the intermediate positron and the incident

electron, and a final photon creation operator creates the other final photon.

Finally, rows 1B and 2B differ from 1A and 2A by a swap of the photon labels λ and λ′.

Each row of Table 1 corresponds to a Feynman diagram that contributes to pair annihilation.

The diagrams are shown in Fig. 3. In diagrams 1A and 1B the intermediate state contains an

electron; in 2A and 2B it contains a positron. The A diagrams and the B diagrams differ only in

the order in which the two photons are emitted, that is, by a swap of photon labels λ and λ′.

Instead of wending our way through the combinatorics of creation and annihilation operators, we

can directly write down the Feynman diagrams that contribute by combining the diagram fragments

that appear in Fig. 2 in such a way as to take us from the given initial state to the given final state.

Once we have the diagram it is straightforward to write down the matrix elements, although we
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e−(p1s1)

e−(ps) e+(p′s′)

λ λ′

e+(p2s2)

e−(ps) e+(p′s′)

λ λ′

1A 2A 1B 2B

e−(p1s1)

e−(ps) e+(p′s′)

λ λ′

e+(p2s2)

e−(ps) e+(p′s′)

λ λ′

Fig. 3. Feynman diagrams in noncovariant perturbation theory that contribute to the pair annihilation, e−+ e+ → γγ.

must be careful about normal ordering and sign changes.

12. Computing the Matrix Elements

Let us now compute the contribution of diagram 1A to the quantity M , given in Eq. (69).

From the diagram we see that the intermediate state contains the initial positron in mode (p′s′),

the intermediate electron in mode (p1, s1), and the final photon in mode λ. We write it as

|k〉 = a†λb
†
p1s1d

†
p′s′ |0〉, (73)

and the sum on k is interpreted as a sum on (p1, s1). We write p1 = (E1,p1) for the 4-momentum

of the intermediate electrons, so that the energy denominator is

Ei − Ek = E − E1 − ω. (74)

The field part of the matrix element 〈k|HT |i〉 is obtained from Table 1 or from inspection of

the Feynman diagram. It is

〈k|: b†p1s1a
†
λbps :|i〉 = 〈0|dp′s′bp1s1aλb

†
p1s1a

†
λbpsb

†
psd

†
p′s′ |0〉, (75)

where in this case the normal ordering does nothing. Because the boson operators a†λ, aλ commute

with all fermion operators, they can be migrated adjacent to the vacuum ket on the right, producing

aλa
†
λ|0〉 = |0〉. In what is left we have

〈0|dp′s′bp1s1b
†
p1s1bpsb

†
psd

†
p′s′ |0〉 = 〈0|bp1s1b

†
p1s1bpsb

†
psdp′s′d

†
p′s′ |0〉, (76)

where we have migrated dp′s′ four steps to the right, incurring four minus signs. But dp′s′d
†
p′s′ |0〉 =

|0〉, so what is left is

〈0|bp1s1b
†
p1s1bpsb

†
ps|0〉 = 1, (77)

where we have used bpsb
†
ps|0〉 = |0〉 and bp1s1b

†
p1s1 |0〉 = |0〉, and finally 〈0|0〉 = 1.
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e−(p1s1)

e−(ps) e+(p′s′)

λ λ′

1A

Fig. 4. The matrix element 〈k|HT |i〉 conserves 3-mo-
mentum at the first vertex (inside the circle), that is, the
matrix element vanishes unless p = p1 + k.

1A

e−(p1s1)

e−(ps) e+(p′s′)

λ λ′

Fig. 5. 3-momentum is also conserved at the second ver-
tex, that is, 〈n|HT |k〉 vanishes unless k′ = p′ + p1.

The rest of the matrix element is

〈k|HT |i〉1A =
e

V

√

2π

V

∫

d3x

√

m2

E1Eω
(ūp1s1γ · ǫ̂∗ups) eix·(−p1−k+p)

= e

√

2π

V

√

m2

E1Eω
(ūp1s1γ · ǫ̂∗ups) δp,p1+k,

(78)

where we have written simply ǫ̂ for ǫ̂λ. The Kronecker δ shows that momentum is conserved at the

first vertex in diagram 1A, as shown in Fig. 4.

It is convenient to promote the polarization 3-vector ǫ̂ into a 4-vector by writing

ǫµ = (0, ǫ̂), (79)

which is similar to what we did with the electron spin when promoting the spin polarization 3-

vector ŝ into the 4-vector sµ. One difference is that the frame in which sµ is purely space-like has

an invariant meaning, that is, it is the rest frame of the electron. But the photon has no rest frame,

so one can ask what the invariant meaning of Eq. (79) is. The answer is that it has no invariant

meaning, rather Coulomb gauge is only valid in one frame, and that is the frame in which ǫµ is

purely space-like. In spite of this the definition is useful, as it allows us to write

6ǫ = γµǫµ = −γ · ǫ̂, (80)

so that

〈k|HT |i〉1A = −e
√

2π

V

√

m2

E1Eω
(ūp1s1 6ǫ∗ups) δp,p1+k, (81)

where 6ǫ∗ means γµǫ∗µ.
We treat the matrix element 〈n|HT |k〉 similarly. The field part of the matrix element is

〈0|aλ′aλ : dp′s′a
†
λ′bp1s1 : a

†
λb

†
p1s1d

†
p′s′ |0〉. (82)
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When we normal order and then migrate the boson operators to the right, we obtain aλ′aλa
†
λ′a

†
λ|0〉

on the right, which reduces to simply |0〉 when we take account of the boson commutation relations

and the fact that λ 6= λ′. The latter fact follows from overall energy and momentum conservation,

which will be discussed momentarily, which implies k′ 6= k. (This is easily seen in the center of mass

frame, in which k = −k′.) The remaining fermion operators can be reduced as before, showing that

the field part of the matrix element (82) is just 1. Evaluating the rest of the matrix element as

before, we obtain

〈n|HT |k〉1A = −e
√

2π

V

√

m2

E′E1ω′
(v̄p′s′ 6ǫ ′∗up1s1) δk′,p′+p1

. (83)

The final Kronecker-δ implies 3-momentum conservation at the second vertex of diagram 1A, as

shown in Fig. 5.

Putting the pieces from Eqs. (69), (81), (83) and (74) together, we obtain the contribution of

diagram 1A to the quantity M ,

M1A = e2
2π

V

√

m2

EE′ωω′

∑

p1s1

m

E1

(v̄p′s′ 6ǫ ′∗up1s1)(ūp1s1 6ǫ ∗ups)
E − E1 − ω

δk′,p′+p1
δp,p1+k. (84)

The sum on p1 really means a sum on the 3-momentum p1, which can be done because of the

Kronecker deltas. These force

p1 = p− k = k′ − p′, (85)

and they leave behind δp+p′,k+k′ which represents overall conservation of 3-momentum in the Feyn-

man diagram. Although we continue to write p1 after the sum is carried out, it stands for the values

in Eq. (85). Also, E1 and p1 are now understood to mean

E1 =
√

m2 + |p1|2, (86)

and

p1 = (E1,p1). (87)

As for the spin sum over s1, it becomes a positive energy spin projector according to Eqs. (50.38)

and (50.146),
∑

s1

up1s1 ūp1s1 =
m+ 6p1
2m

= Π+(p1). (88)

Altogether, M1A is reduced to

M1A = e2
2π

V
δp+p′,k+k′

√

m2

EE′ωω′

1

2E1

[v̄p′s′ 6ǫ ′∗(m+ 6p1)6ǫ ∗ups]
E − E1 − ω

. (89)

The contribution of diagram 2A to the quantity M can be computed in a similar manner. We

summarize the results. The intermediate state is

|k〉 = a†λ′d
†
p2s2b

†
ps|0〉, (90)
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the energy denominator is

Ei − Ek = E′ − E2 − ω′, (91)

the first matrix element (counting from the right) is

〈k|HT |i〉2A = −e
√

2π

V

√

m2

E′ω′E2
(v̄p′s′ 6ǫ ′∗vp2s2) δp′,k′+p2

, (92)

where the minus sign comes from normal ordering and fermion anticommutators, and the second

matrix element is

〈n|HT |k〉2A = e

√

2π

V

√

m2

EωE2
(v̄p2s2 6ǫ ∗ups) δk,p2+p. (93)

Now when we do the p2 sum we get

p2 = k− p = p′ − k′, (94)

and afterwards we understand p2 to stand for one of these values. We also understand that

E2 =
√

m2 + |p2|2, (95)

and

p2 = (E2,p2). (96)

We also get a Kronecker delta representing overall momentum conservation. As for the s2 sum, it

can be expressed in terms of the negative energy projector, again via Eqs. (50.38) and (50.146),

∑

s2

vp2s2 v̄p2s2 =
6p2 −m

2m
= −Π−(p2). (97)

Altogether, this gives

M2A = −e2 2π
V
δp+p′,k+k′

√

m2

EE′ωω′

1

2E2

[v̄p′s′ 6ǫ ′∗(6p2 −m)6ǫ ∗ups]
E′ − E2 − ω′

. (98)

The amplitudesM1B andM2B are obtained fromM1A andM2A, Eqs. (89) and (98), by swapping

λ↔ λ′, that is, k ↔ k′, ω ↔ ω′ and 6ǫ ∗ ↔ 6ǫ ′∗.
The conservation of 3-momentum at the vertices of the Feynman diagrams means that the 3-

momentum of the intermediate state is equal to the 3-momentum of both the initial and final states.

And the energies of the initial and final states are forced to be equal by the energy-conserving delta-

function in the transition probability (68), in the limit t → ∞. But the energy of the intermediate

state is not equal to the energies of the initial and final states. If it were, the energy denominators

Ei−Ek, which appear in Eqs. (74) and (91), would vanish. The intermediate states arose originally

in the Dyson series from a resolution of the identity, which means a sum over all states, regardless

of energy.
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13. The Feynman Propagator

The amplitudes M1A and M2A can be combined. These amplitudes have many factors in

common, so computing the sum boils down to adding the parts that are different, that is, combining

the fractions
1

2E1

m+ 6p1
E − E1 − ω

− 1

2E2

6p2 −m

E′ − E2 − ω′
. (99)

The algebra of doing this is straightforward. What is interesting is that the result can be written in

covariant form.

k′

e−(ps) e+(p′s′)

λ λ′

p p′

p − k′

k k′

A

e−(ps) e+(p′s′)

λ λ′

p p′

p− k

k

B

Fig. 6. Feynman diagrams A and B that appear in covariant perturbation theory. All lines are labelled by their 4-
momenta, and 4-momentum is conserved at each vertex. But the 4-momentum of the internal or virtual electron-positron
line is not “on mass shell.”

We are using noncovariant or “old-fashioned” perturbation theory. It is based on Hamiltonians

and the selection of a privileged Lorentz frame. The use of a Hamiltonian, which is the generator of

time translations, always implies a privileged Lorentz frame, since the time of one Lorentz frame is

not the same as the time of another. Thus, Hamiltonian methods are never covariant (at least this

is the usual point of view). Noncovariant perturbation theory is not wrong, but it is not as efficient

or as elegant as covariant perturbation theory. In covariant perturbation theory, diagrams 1A and

2A combine into a single diagram A, and likewise diagrams 1B and 2B combine to a single diagram

B. These diagrams are illustrated in Fig. 6.

To combine the fractions (99) we first use Eqs. (85) and (94) to express p2 in terms of p1,

p2 = (E2,p2) = (E1,−p1). (100)

We then use overall energy conservation, E + E′ = ω + ω′, to express the second denominator in

Eq. (99) as

E′ − E2 − ω′ = −(E − ω + E1). (101)

These allow us to write the expression (99) as

1

2E1

( 6p1 +m

E − ω − E1
+

6p2 −m

E − ω + E1

)

=
1

2E1

(E − ω)(6p1 + 6p2) + E1(6p1 − 6p2 + 2m)

(E − ω)2 − E2
1

. (102)
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But 6p1 + 6p2 = 2E1γ
0 and 6p1 − 6p2 = −2p1 · γ, so the fractions combine to

(E − ω)γ0 − (p− k) · γ +m

(E − ω)2 − (p− k)2 −m2
=

6p− 6k +m

(p− k)2 −m2
= DF (p− k), (103)

where we define the photon 4-momentum k = (ω,k), where dot products are understood in the

4-dimensional sense, for example, (p− k)2 = (pµ − kµ)(pµ − kµ), and where for any p,

DF (p) =
6p+m

p2 −m2
. (104)

The function DF is called the Feynman propagator; it is a kind of Green’s function for the free

particle Dirac equation.

We can now write out the sum of amplitudes,

MA =M1A +M2A = e2
2π

V
δp+p′,k+k′

√

m2

EE′ωω′
[v̄p′s′ 6ǫ ′∗DF (p− k)6ǫ ∗ups], (105)

which is the amplitude associated with diagram A in Fig. 6. We obtain the amplitude for diagram

B by swapping photon labels,

MB = e2
2π

V
δp+p′,k+k′

√

m2

EE′ωω′
[v̄p′s′ 6ǫ ∗DF (p− k′)6ǫ ′∗ups]. (106)

To complete the calculation of the cross section we must average over initial electron and

positron states (if we are thinking of unpolarized beams). This process is rather tedious so we will

stop here.

Courses on quantum field theory normally begin with covariant quantization and perturbation

theory, but without any of the background given in these notes which show how those topics are

connected with the rest of quantum mechanics or how they developed historically.

Perhaps the biggest question left unanswered by these notes is why the first quantized Dirac

equation gives such good results, if we ignore the negative energy solutions. We have explained

that the first quantized theory, prior to the introduction of hole theory, is physically incomplete,

becuase of a lack of interpretation of the negative energy solutions. And we have indicated how those

interpretational problems are solved by the introduction of field theory. But from a logical standpoint

it would be nice to show how and in what sense the first quantized theory is an approximation to field

theory. That is an interesting subject that is not usually covered in courses in quantum field theory,

which mostly deal with problems that can be solved by the Born approximation. It is perhaps a

question that will be covered in a future set of notes.

Problems

1. The purpose of this problem is to derive the equations of motion (50) from the Lagrangian (57),

for which the independent fields are ψ, ψ̄ and A, the last of which is understood to be transverse.

The work is carried out in Coulomb gauge.
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It is best not to use the Euler-Lagrange equations (51.12), but rather to vary the action S =
∫

Ldt with respect to the independent fields, and to demand that δS = 0 for all such variations. For

practice on this you may see how we obtained Maxwell’s equations in Sec. 51.7. Note that when we

vary ψ or ψ̄, there is a nonvanishing variation δρ, because of Eq. (52), which causes a nonvanishing

variation δΦ, because of Eq. (51). If we write SCoul for the Coulomb contribution to the action,

SCoul =

∫

dt
1

2

∫

d3x ρΦ, (107)

show that under variations of ψ or ψ̄ we have

δSCoul =

∫

dt

∫

d3x δρΦ. (108)

Then use this to derive the covariant Dirac equation (50a), driven by the electromagnetic field.

To derive Maxwell’s equations driven by the Dirac field, Eq. (50b), we must vary with respect

to A. Note that if V is any vector field and if we demand that
∫

d3xV(x) · δA(x) = 0 (109)

for all transverse variations δA, then we cannot conclude that V(x) = 0, only that V⊥(x) = 0.

That is because
∫

d3xV · δA =

∫

d3x (V‖ +V⊥) · δA =

∫

d3xV⊥ · δA, (110)

where we use Eq. (40.25). Therefore when you vary A you will obtain a transverse equation of

motion. Show that the longitudinal component of this equation is implied by Coulomb gauge, so

that overall the equation of motion is equivalent to Maxwell’s equations driven by the Dirac current,

Eq. (50b).

This calculation is an example of how Coulomb gauge takes us through noncovariant interme-

diate steps but produces covariant results. It also shows that the Lagrangian (57) gives the correct

equations of motion (for the model we are using).

2. Positrons were first observed by Anderson in 1932 in cosmic ray tracks in a cloud chamber. The

experimental apparatus consisted of a series of parallel plates of lead (a high Z material), separated

by air gaps. Cosmic rays at the earth’s surface are mainly muons, some of which have very high

energies. In the Anderson apparatus, a high energy muon, passing close to a nucleus of lead and

being accelerated in the electric field, produced a gamma ray. This process is called Bremsstrahlung

(German for “braking radiation”). The gamma ray, in turn, passing near a lead nucleus in one of

the lower plates, produced an electron-positron pair.

To model this process, we add a term to the perturbing Hamiltonian H1 = HCoul +HT , given

by Eqs. (64), to account for the interaction with the nucleus,

Hext =

∫

d3x : ρ(x)Φext(x) : = −e
∫

d3x : ψ̄(x)γ0Φext(x)ψ(x) : . (111)
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This is exactly how we treated the field of the nucleus Mott scattering (see Eq. (12) and Sec. 3).

In effect, we are dividing the electromagnetic field into a c-number field (from the nucleus) plus the

quantized field. If we wish to model the lead nucleus as a point charge, we can take Φext(x) = Ze/r,

but for this problem we will leave Φext unspecified. Thus, the perturbing Hamiltonian is now

H1 = HCoul +HT +Hext. (112)

(a) Consider a process in which a photon passes close to a nucleus, and an electron-positron pair is

produced. (This process cannot happen in free space because of energy-momentum conservation.)

Let (ps) be the 4-momentum and spin of the outgoing electron, let (p′s′) be the 4-momentum and

spin of the outgoing positron, let λ = (k, ǫ) be the mode of the incident photon. Also write

pµ = (E,p),

p′µ = (E′,p′),

kµ = (ω,k). (113)

Find and draw all Feynman diagrams which contribute to this process at lowest order in α = e2.

Count the external potential Φ as containing one power of e (since we are thinking of Φ = Ze/r).

Indicate the interaction with the nucleus by an × drawn next to an electron or positron line, as in

Fig. 1.

(b) Write the transition probability as in Eq. (68), which definesM . Pick out two Feynman diagrams

which differ from one another only in the time ordering of the creation of the outgoing electron and

positron. Work out in detail the contribution to M from each of these Feynman diagrams. Express

your answer in terms of the Fourier transform of the potential Φ̃(q), as we did with Mott scattering.

(c) Combine the two terms, and express the result in terms of the Feynman electron propagator

(104).

The steps remaining to convert M into a cross section are straightforward but tedious so we

will stop at this point.


