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Notes 48

Covariance of the Dirac Equation†

1. Introduction

In accordance with the principle of relativity, physics must “look the same” in all Lorentz

frames. This means that physical theories that are consistent with the principle of relativity must

have the same form in all Lorentz frames, that is, they must be covariant. In this set of notes we

examine the covariance of the Dirac equation.

In these notes we mainly deal with the Dirac wave function ψ, which is understood to be a

four-component spinor. But occasional reference is made to the scalar Klein-Gordon wave function,

which will be denoted by ψKG.

2. Covariant Form of the Dirac Equation

We begin with the free particle. The Dirac equation, as developed in Notes 46, is

ih̄
∂ψ

∂t
= −ih̄cα · ∇ψ +mc2β ψ. (1)

The operator ∂/∂t on the left-hand side is not a Lorentz scalar, because the time t represents just one

component of the 4-vector xµ = (ct,x). The Dirac equation, as written, is not manifestly Lorentz

covariant. Let us bring all the derivatives over to one side, and write the Dirac equation as

ih̄c
( ∂ψ

∂(ct)
+α · ∇ψ

)

= mc2β ψ. (2)

To put this into covariant form, we multiply through by β, using β2 = 1, to obtain

ih̄c
(

β
∂ψ

∂(ct)
+ βα · ∇ψ

)

= mc2ψ. (3)

The constant operator on the right-hand side, mc2, is a Lorentz scalar, while the operators

∂µ =
∂

∂xµ
=

( ∂

∂(ct)
,∇

)

(4)

that appear on the left-hand side transform as a covariant vector (see Appendix E). Therefore we

guess that the coefficients that multiply ∂µ on the left-hand side must transform as a contravariant

4-vector, so that the entire operator on the left-hand side will be a Lorentz scalar.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.
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To bring this out notationally, we define

γ0 = β, γi = βαi, (5)

for i = 1, 2, 3, so that the free particle Dirac equation can be written,

ih̄γµ
∂ψ

∂xµ
= mcψ, (6)

after cancelling a factor of c. We have written the four matrices defined in Eq. (5) as γµ, µ = 0, 1, 2, 3,

which we can think of as a 4-vector of Dirac matrices, much as the Pauli matrices σ constitute a

3-vector of matrices. If we introduce the covariant momentum operators,

pµ = ih̄
∂

∂xµ
= ih̄

( ∂

∂(ct)
,∇

)

(7)

[see Eq. (45.20)], then the free particle Dirac equation takes on the suggestive form,

(γµpµ −mc)ψ = 0. (8)

The notation suggests that γµpµ is a Lorentz scalar, but we will not have proven that until we see

how and in what sense γµ constitutes a 4-vector. To do that, we will have to show that it transforms

as a 4-vector under Lorentz transformations. Moreover, since γµ is a 4-vector of 4× 4 matrices, not

ordinary numbers, its transformation law will not be the same as that of the 4-vectors encountered

in classical relativity theory, as discussed in Appendix E. Instead, as we shall see, it transforms by a

four-dimensional generalization of the definition of a vector operator in quantum mechanics, which

is discussed in Sec. 19.4.

To introduce the coupling with the electromagnetic field, we use the covariant version of the

minimal coupling prescription (46.16),

pµ → pµ − q

c
Aµ, (9)

where Aµ is the 4-vector potential,

Aµ =

(

Φ
A

)

, Aµ =

(

Φ
−A

)

. (10)

See also Sec. B.17. This puts the Dirac equation for a particle interacting with the electromagnetic

field into the form,
(

γµpµ − q

c
γµAµ −mc

)

ψ = 0. (11)

Contractions between γµ and ordinary 4-vectors such as Aµ, or 4-vectors of operators such as

pµ, are very common in the Dirac theory. Here is some notation for such contractions. Let Xµ be

any 4-vector. Then we define

6X = γµXµ, (12)
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which is called the Feynman slash. When you see the Feynman slash, you must recognize that it is

a 4 × 4 Dirac matrix, with components that are numbers, possibly with a space-time dependence,

as in 6A, or operators, as in 6p. In terms of this notation, the Dirac equation becomes

(

6p− q

c
6A−mc

)

ψ = 0. (13)

This is regarded as the covariant version of the Dirac equation. It is equivalent to the Hamiltonian

version, ih̄∂ψ/∂t = Hψ, with H given by Eq. (46.17).

The covariant version of the Dirac equation (13) produces the Pauli equation (46.1) in the

nonrelativistic limit with g = 2, as we showed in Sec. 46.9. And yet it is simpler in form than the

Pauli equation, in spite of the extra notation. In fact, as we will see in a later set of notes, Eq. (13)

contains even more physics than the Pauli equation, for if it is expanded to fourth order in v/c it

produces all the fine structure corrections we saw in Notes 25.

3. The Matrices γµ

The matrices γµ, defined by Eq. (5), constitute an alternative version of the Dirac matrices α

and β, useful when we wish to reveal the covariant aspects of the Dirac equation. All the properties

of the α and β matrices can be converted into properties of the matrices γµ. Here we list some of

them.

First, there are the values of the matrices. In the usual Dirac-Pauli representation, they are

γ0 = β =

(

1 0
0 −1

)

, γi = βαi =

(

0 σi
−σi 0

)

, (Dirac-Pauli) (14)

while in the Weyl representation they are

γ0 = β =

(

0 −1
−1 0

)

, γi = βαi =

(

0 σi
−σi 0

)

. (Weyl) (15)

Next there are the Hermiticity properties. Recall that α and β are Hermitian. This implies that

γ0 is Hermitian, while γi, i = 1, 2, 3, are anti-Hermitian. This is easily proved using the properties

of the α and β matrices, for example,

(γ0)† = β† = β = γ0,

(γi)† = (βαi)
† = αiβ = −βαi = −γi,

(16)

where we have used the anticommutation relation, {αi, β} = 0 and β2 = 1.

Finally, there are the anticommutation properties of the γµ, which are easily derived from those

of α and β. Explicitly, we have

{γ0, γ0} = {β, β} = 2,

{γ0, γi} = {β, βαi} = β2αi + βαiβ = αi − αi = 0,

{γi, γj} = {βαi, βαj} = βαiβαj + βαjβαi = −αiαj − αjαi = −2δij,

(17)
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where again we use the anticommutation relations (46.8).

We can summarize the anticommutation relations of the matrices γµ by writing,

{γµ, γν} = 2gµν .
(18)

Here it is understood that the right hand side multiplies the identity matrix, usually denoted by 1

in the Dirac theory. This equation looks covariant, and indeed we will see that it is, once we have

worked out the transformation properties of the matrices γµ. Equation (18) is a compact, covariant

form of the Dirac algebra first presented in Eq. (46.8), which as we recall arose from the demand

that the relativisitc energy-momentum relations should be satisfied by free particle solutions of the

Dirac equation. It is used frequently in the Dirac theory.

We make a remark on the positions of the spatial index i in γi and αi. We use an upper

(superscript) position on γi because this is seen as the spatial components of a contravariant vector

γµ (it is γµ→i, in the notation discussed in Sec. E.20). On the other hand, α is not the spatial

components of any 4-vector (there is no α0), rather α is seen as an object that is intrinsically a

3-vector, so we just use lower indices for its components. The case of the velocity vector is similar;

we write simply vi for the usual components of the velocity vector v, since this is never the spatial

part of a 4-vector [see the comment after Eq. (E.9), and note that in the Dirac theory, v = cα].

4. Transformation of the Dirac Wave Function

We turn to the transformation properties of the Dirac wave function ψ under Lorentz transfor-

mations. We begin by guessing the form of the transformation law, by analogy with the transfor-

mation laws for different types of fields under ordinary rotations, as well as certain types of fields

under Lorentz transformations.

The transformation laws for scalar and vector fields in 3-dimensional space under ordinary

rotations was reviewed in Sec. 47.11. If S(x) is a scalar field and R specifies a rotation, then the

rotated field S′ is given in terms of the original field S by

S′(x) = S
(

R
−1x

)

. (19)

See Eq. (47.85). This transformation law applies in particular to the wave function of a spin-0

particle, as explained in Sec. 15.2. See Eq. (15.13). Next, if E(x) is a vector field, then the rotated

field is given by

E′(x) = RE
(

R
−1x

)

. (20)

See Eq. (47.87). Next, the case of the wave function of a particle of spin s was treated in Prob. 18.1(a).

If ψ(x) is the 2s+ 1-component spinor of a particle of spin s and R is a rotation, then the rotated

wave function is

ψ′(x) = Ds(R)ψ
(

R
−1x

)

(21)
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(this is the solution to the problem). Here Ds is the (2s+1)× (2s+1) rotation matrix, as explained

in Notes 13, and it is understood that this matrix multiplies the spinor ψ. The rotation matrices

satisfy the representation property,

Ds(R1)D
s(R2) = ±Ds(R1R2), (22)

where the ± sign only applies in the case of half-integer s. See Eqs. (13.72)–(13.74) and the discussion

of double-valued representations in Sec. 12.9.

We see that in all cases (scalar, vector, spinor), the rotated field at point x is expressed in terms

of the original field at the inverse rotated point R−1x, while the value of the field is transformed by

the appropriate rotation matrix (no rotation at all for a scalar, the classical rotation matrix R for a

vector field, and the Ds-matrix for a spinor field of spin s).

In special relativity we consider fields on space-time, and subject them to Lorentz transforma-

tions. Letting x stand for the four space-time coordinates xµ or (x, t), the transformation rule for a

scalar field under a Lorentz transformation Λµ
ν is

S′(x) = S
(

Λ−1x
)

. (23)

See Eq. (47.88). The Klein-Gordon wave function ψKG is a scalar field that represents a spin-0

particle, and it transforms according to this rule,

ψ′
KG(x) = ψKG

(

Λ−1x
)

. (24)

In the case of a contravariant vector field Xµ, the transformation law is

X ′µ(x) = Λµ
ν X

ν
(

Λ−1x
)

. (25)

In these cases the Lorentz transformed field at space-time point x is expressed in terms of the original

field at space-time point Λ−1x, while the value of the field transforms by the appropriate matrix

(none at all for a scalar, and Λµ
ν for a contravariant vector field).

These examples suggest that the Dirac wave function ψ should transform under Lorentz trans-

formations according to

ψ′(x) = D(Λ)ψ
(

Λ−1x
)

, (26)

where D(Λ) is some kind of 4 × 4 matrix that acts on the spin part of ψ. We know that the Dirac

equation is giving us the relativistic quantum mechanics of a spin- 12 particle, and we know that

when the nonrelativistic wave function of a spin- 12 particle is rotated the matrix D1/2 appears as in

Eq. (21). Since rotations are special cases of Lorentz transformations, we must expect some kind of

spin matrix as in Eq. (26) when the Dirac wave function is subjected to a Lorentz transformation.

Moreover, we expect that the matrices D(Λ) should satisfy the representation property,

D(Λ1)D(Λ2) = ±D(Λ1Λ2), (27)

since this means that if we apply a Lorentz transformation Λ2 to a Dirac wave function, then a

second one Λ1, the effect is the same as applying the single Lorentz transformation Λ1Λ2. That
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is, the matrices D(Λ) should form a representation of the Lorentz group. We include a ± sign in

Eq. (27) because we know this sign is necessary in the case of ordinary rotations of a spin- 12 particle,

and because rotations are special cases of Lorentz transformations.

5. The Space-Time Part of the Transformation

Let us concentrate first on the space-time part of the transformation (26), to see if it makes sense.

Consider an eigenfunction of energy and momentum, that is, an eigenfunction of the free-particle

Dirac equation. We write this as

ψ(x) ∼ ei(p·x−Et)/h̄, (28)

where ∼ means that we are concentrating on the space-time dependence of the wave function and

ignoring the spin. (If we were talking about the Klein-Gordon wave function then we could replace

∼ by =.) We can put this into covariant form by using

xµ =

(

ct
x

)

, pµ =

(

E/c
p

)

, (29)

so that

pµx
µ = Et− p · x, (30)

and

ψ(x) ∼ exp
(

− i

h̄
pµx

µ
)

= exp
[

− i

h̄
(p · x)

]

, (31)

where we use the notation of Eq. (47.104) for the scalar product of two 4-vectors. Now subjecting

this to a Lorentz transformation specified by Λ and using the transformation law (26), this becomes

ψ′(x) ∼ exp
[

− i

h̄
p · (Λ−1x)

]

. (32)

But by Eq. (47.105) the scalar product in the exponent can also be written p′ · x where p′ = Λp, or

p′µ = Λµ
ν p

ν . (33)

The momentum p′µ is the Lorentz transformed version of the original momentum pµ, in the

active sense. That is, when we boost and/or rotate a free-particle Dirac eigenfunction according to

Eq. (26), the energy-momentum 4-vector of the new wave function is the boosted and/or rotated

version of the original energy-momentum 4-vector. This is just what we want.

6. The Spin Part of the Lorentz Transformation

The spin part of the Lorentz transformation is specified by the as-yet-unknown matrices D(Λ).

We obtain a condition on these by requiring that the Dirac equation be covariant. For this it suffices

to work with the free particle. Suppose ψ(x) is a free-particle solution, that is, it satisfies

ih̄γµ
∂ψ(x)

∂xµ
= mcψ(x). (34)
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Let us demand that the Lorentz-transformed wave function ψ′(x) = D(Λ)ψ(Λ−1x) also satisfy the

free-particle Dirac equation, that is, let us demand that Lorentz transformations map free particle

solutions into other free particle solutions. Then we have

ih̄γµD(Λ)
∂ψ(Λ−1x)

∂xµ
= mcD(Λ)ψ(Λ−1x). (35)

In this formula, space-time indices are indicated explicitly, for example, γµ∂/∂xµ, but spinor indices

are not. For example, ψ is a 4-component column spinor and D(Λ) is a 4 × 4 matrix, and matrix

multiplication is implied. We have pulled the ∂/∂xµ past D(Λ) since the latter depends on Λ but

not on x.

Let us write

yµ = (Λ−1)µν x
ν (36)

and multiply Eq. (35) by D(Λ)−1 to clear the D(Λ) on the right hand side. Then we get

ih̄D(Λ)−1γµD(Λ)
∂ψ(y)

∂xµ
= mcψ(y). (37)

But since ψ satisfies the Dirac equation, we have

ih̄γν
∂ψ(y)

∂yν
= mcψ(y) (38)

which is just Eq. (34) with x→ y and µ→ ν. We also have

∂ψ(y)

∂xµ
=
∂ψ(y)

∂yν
∂yν

∂xµ
=
∂ψ(y)

∂yν
(Λ−1)νµ. (39)

Now combining Eqs. (37) and (38) and cancelling ih̄, we get

D(Λ)−1γµD(Λ)
∂ψ(y)

∂yν
(Λ−1)νµ = γν

∂ψ(y)

∂yν
. (40)

But ∂ψ(y)/∂yν is arbitrary (by choosing different free particle solutions we can make it anything we

want), so

D(Λ)−1γµD(Λ) (Λ−1)νµ = γν , (41)

or, by multiplying by Λ to clear the Λ
−1 on the left hand side,

D(Λ)−1γµD(Λ) = Λµ
ν γ

ν .
(42)

This result is important because it is the fundamental relation that the matrices D(Λ) must

satisfy. In fact, it allows those matrices to be determined, as we shall see. It is also a statement

that the 4-vector of matrices γµ actually transforms as a 4-vector. For comparison recall the adjoint

formula for rotations of a spin- 12 particle,

U(R)†σU(R) = Rσ (43)
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(see Eq. (12.29)). This is a special case of the transformation law for a vector operator, that is, the

transformation law for a 3-vector under spatial rotations. See also Eq. (19.14) for the general case

of a vector operator.

We remark that had we been using the passive point of view, then our requirement that Lorentz

transformations map free particle solutions of the Dirac equation into other free particle solutions

would become the requirement that the free-particle Dirac equation have the same form in all Lorentz

frames.

7. The Matrices D(Λ) for Infinitesimal Lorentz Transformations

The case of infinitesimal Lorentz transformations is especially important. To see why, note that

if Eq. (42) is valid for two Lorentz transformations,

D(Λ1)
−1γµD(Λ1) = (Λ1)

µ
ν γ

ν

D(Λ2)
−1γµD(Λ2) = (Λ2)

µ
ν γ

ν ,
(44)

then it is true for their product Λ1Λ2. We see this by combining Eqs. (44) to get

D(Λ−1
2 )D(Λ−1

1 )γµD(Λ1)D(Λ2) = D(Λ−1
2 )(Λ1)

µ
ν γ

νD(Λ2) = (Λ1)
µ
ν D(Λ−1

2 )γνD(Λ2)

= (Λ1)
µ
ν (Λ2)

ν
σγ

σ = (Λ1Λ2)
µ
σ γ

σ.
(45)

But according to the representation law (27), the left-hand side of Eq. (45) can be written

D
(

(Λ1Λ2)
−1

)

γµD(Λ1Λ2), (46)

where the ± sign cancels out. This proves the assertion.

Thus, if we can find D(Λ) satisfying Eq. (42) for infinitesimal Lorentz transformations, and if

we use the representation property (27) to build up D(Λ) for finite, proper Lorentz transformations

as products of infinitesimal ones, then the finite ones will automatically satisfy Eq. (42). We recall

that any proper Lorentz transformation can be built up a product of infinitesimal ones (see the end

of Sec. 47.3). This simplifies the problem of finding the matrices D(Λ) considerably.

The general form of an infinitesimal Lorentz transformation was presented in Eq. (47.63). It is

Λ = I+
1

2
θµνJ

µν , (47)

where θµν is an antisymmetric tensor or matrix of small numbers, specifying the infinitesimal Lorentz

transformation, and where J
µν is an antisymmetric “tensor” of 4 × 4 matrices. We recall that for

fixed value of µ and ν, Jµν is a 4 × 4 matrix, that is, the µ and ν are labels of the matrix, not its

component indices. The components are (Jµν)αβ , and are given by Eq. (47.64). Because θµν = −θνµ,
there are only 6 independent components of θµν , which are obtained if we restrict the indices to

µ < ν. Thus we can think of the infinitesimal Λ in Eq. (47) as functions of these six independent

θµν .
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The D-matrix representing this infinitesimal Lorentz transformation, D(Λ), must also therefore

be a function of the six independent θµν . Let us expand thisD(Λ) out to first order in the independent

θµν ,

D(Λ) = D(θµν) = 1 +
∑

µ<ν

θµν
∂D

∂θµν
(0). (48)

Now we define matrices σµν for µ < ν by

∂D

∂θµν
(0) = − i

2
σµν , (49)

and then define σµν = −σνµ for µ ≥ ν. Since the derivatives are evaluated at θµν = 0, the matrices

σµν are independent of θµν , that is, they are constants. The factor −i/2 is conventional, but it is

intended to make the answers come out in familiar form for rotations of nonrelativistic spinors, which

we know about already. The matrices σµν form an antisymmetric “tensor” of 4× 4 Dirac matrices

(that is, matrices that act on spin space). This is a generalization of the 4-vector of Dirac matrices

γµ. Later we will see that σµν actually transforms as a tensor under Lorentz transformations, in a

generalization of Eq. (42). We must find the explicit form of the matrices σµν to determine D(Λ)

for infinitesimal Lorentz transformations.

We extend the sum in Eq. (48) to all µ, ν, so that

D(Λ) = 1− i

4
θµν σ

µν . (50)

To determine the matrices σµν , we substitute the infinitesimal Lorentz transformation (47) or its

spinor representative (50) into the fundamental transformation law for γµ, Eq. (42), switching indices

µν → αβ on σ to avoid collision of indices. This gives

(

1 +
i

4
θαβσ

αβ
)

γµ
(

1− i

4
θαβσ

αβ
)

=
[

I+
1

2
θαβ J

αβ
]µ

ν γ
ν , (51)

or, on multiplying this out and keeping terms that are first order in θαβ ,

i

4
θαβ [σ

αβ , γµ] =
1

2
θαβ(g

µαγβ − gµβγα), (52)

where we have used Eq. (47.64) for the components of J
αβ . The antisymmetric but otherwise

arbitrary coefficients θαβ on both sides are contracted with objects antisymmetric in (αβ), so we

can cancel θαβ to obtain
i

4
[σαβ , γµ] =

1

2
(gµαγβ − gµβγα). (53)

This equation must be solved for σαβ .

The notation suggests that σαβ transforms as a tensor under Lorentz transformations. We guess

that that is true. We already know that γµ transforms as a 4-vector under Lorentz transformations,

in the sense of Eq. (42). This implies that γαγβ (the product of two γ-matrices, another 4× 4 spin

matrix) transforms as a second rank tensor under Lorentz transformations, that is, that

D(Λ−1)γαγβD(Λ) = Λα
σ Λ

β
τγ

σγτ . (54)
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This fact will be left as a easy exercise. But γαγβ is not antisymmetric, in fact, it has a nonvanishing

symmetric part given by the fundamental anticommutation relations (18). However its antisymmet-

ric part is an antisymmetric, second rank tensor of Dirac matrices, so it is a good guess that it must

be the same as σαβ to within a multiplicative constant.

That is, let us guess that σαβ = k(γαγβ − γβγα) = k[γα, γβ] for some constant k. Substituting

this into Eq. (53) and using the anticommutation relations (18), we find after some algebra that it

works with k = i/2. Altogether, we find

σµν =
i

2
[γµ, γν ],

(55)

switching back to indices µ, ν. This is the explicit solution for the matrices that appear in D(Λ) for

an infinitesimal Lorentz transformation, as shown in Eq. (50).

The matrices σµν are considered the generators of the Dirac representation D(Λ) of Lorentz

transformations. They are analogous to the Pauli matrices σ of the nonrelativistic theory, which

play as similar role as the generators of spin rotations for a spin- 12 particle. That is, an infinitesimal

rotation matrix for a spin- 12 particle is given by

U(n̂, θ) = 1− i

2
θn̂ · σ = 1− i

2
θ · σ, (56)

where θ = θn̂ is a vector of small angles specifying the infinitesimal rotation. This is discussed in

Notes 12, and Eq. (56) is a small-angle version of Eq. (12.27). Equation (56) in the nonrelativistic

Pauli theory may be compared to Eq. (50) in the relativistic Dirac theory.

The matrices σµν are a new set of 4 × 4 Dirac matrices, in addition to γµ. As the notation

indicates, σµν transforms as a second rank tensor, in the sense of

D(Λ−1)σµνD(Λ) = Λµ
α Λν

β σ
αβ , (57)

as follows from Eqs. (54) and (55).

8. D(Λ) for Pure Rotations

Let us specialize to the case of pure rotations, which is summarized by Eqs. (47.68), (47.70),

(47.72), (47.74) and (47.75). In this case, of the six θµν we have θ0i = 0. As for the remaining

three components θij , we express these in terms of a 3-vector of angles θi by θi = (1/2)ǫijk θjk,

or its inverse, θij = ǫijk θk. The vector of small angles θi is related to the axis and angle of the

infinitesimal rotation by θ = θn̂, that is, θ = |θ| and n̂ = θ/θ. Then the Dirac D-matrix for an

infinitesimal rotation can be written,

D(n̂, θ) = 1− i

4
θij σ

ij = 1− i

4
ǫijk σ

ij θk = 1− i

2
Σk θk, (58)

where we define

Σi =
1

2
ǫijk σ

jk. (59)
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In this notation we can also write the infinitesimal rotation as

D(n̂, θ) = 1− i

2
θn̂ ·Σ = 1− i

2
θ ·Σ, (60)

which should be compared to Eq. (56) in the nonrelativistic theory. The formulas look the same

except for σ → Σ; of course, σ is a vector of 2× 2 matrices, while Σ is a vector of 4× 4 matrices.

The vector of Dirac matrices Σ is a new set to be added to the collection we have so far. The

menagerie of Dirac matrices can be divided into those that are useful in a 3 + 1-description of the

theory, and those that are useful in a covariant description. The former set includes α, β, and Σ.

We put a lower index on the components Σi of Σ for the same reasons we did on αi. The set of

Dirac matrices useful in a covariant description includes γµ, σµν and one more to be added later.

As for the matrices Σ, they can be worked out by evaluating the commutators in the definition

(55) and using Eq. (14). Since the matrices γi are the same in both the Dirac-Pauli and Weyl

representations, the answers are the same in both representations. We find

Σ =

(

σ 0

0 σ

)

(Dirac-Pauli and Weyl). (61)

We can now find the Dirac D-matrices for rotations of any finite angle, by composing rotations

by an infinitesimal angle. When θ is not small we write

D(n̂, θ) =
[

D
(

n̂,
θ

N

)]N
= lim

N→∞

[

1− i

2

θ

N
n̂ ·Σ

]N

= exp
(

− i

2
θn̂ ·Σ

)

, (62)

where we use a matrix version of the limit (4.42). Another method of building up finite rotations

out of infinitesimal ones is to use a differential equation, as in Secs. 11.9 and 12.5.

If we use the explicit form (61) for Σ, we obtain the Dirac rotation matrices in the form

D(n̂, θ) =

(

U(n̂, θ) 0

0 U(n̂, θ)

)

(Dirac-Pauli and Weyl), (63)

where U(n̂, θ) is the 2× 2 rotation matrix for spin- 12 particles, that is,

U(n̂, θ) = exp
(

−i θ
2
n̂ · σ

)

= cos
θ

2
− i(n̂ · σ) sin θ

2
(64)

(this is Eq. (12.27)). We see that to subject a Dirac 4-component spinor to a purely spatial rotation,

we rotate both the upper and lower 2-component spinors by the nonrelativistic rotation matrix for

a spin- 12 particle. This is true in both the Dirac-Pauli and Weyl representations.

9. D(Λ) for Pure Boosts

The case of pure boosts is summarized by Eqs. (47.69), (47.71), (47.73), (47.76) and (47.77). In

this case, of the six independent θµν , the three parameters contained in θij vanish leaving the three

θ0i to parameterize the boost. We write λi = θ0i for these parameters, the components of a boost
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vector λ with rapidity λ = |λ| and boost axis b̂ = λ/λ. The correction term in the infinitesimal

D-matrix in Eq. (50) is

− i

4
θµνσ

µν = − i

4
(θ0iσ

0i + θi0σ
i0) = − i

2
θ0iσ

0i = − i

2
λiσ

0i. (65)

But

σ0i =
i

2
[γ0, γi] =

i

2
[β, βαi] =

i

2
(β2αi − βαiβ) = iαi, (66)

so for infinitesimal boosts we have

D(b̂, λ) = 1 +
1

2
λ ·α = 1 +

λ

2
b̂ ·α. (67)

We see that the velocity matrices α are the generators of boosts, perhaps not a surprise.

To obtain finite boosts we follow the same procedure shown in Eq. (62) for rotations, which

gives

D(b̂, λ) = exp
(λ

2
b̂ ·α

)

. (68)

The exponential is easiest to carry out in the Weyl representation (46.13), in which the matrices α

are block-diagonal,

α =

(

σ 0

0 −σ

)

(Weyl). (69)

The result can be expressed as

D(b̂, λ) =

(

V (b̂, λ) 0

0 V (b̂, λ)−1

)

(Weyl), (70)

where

V (b̂, λ) = exp
(λ

2
b̂ · σ

)

= cosh
λ

2
+ (b̂ · σ) sinh λ

2
(71)

and

V (b̂, λ)−1 = V (b̂,−λ) = cosh
λ

2
− (b̂ · σ) sinh λ

2
. (72)

Although the rotation matrices U(n̂, θ) (see Eq. (64)) are unitary, the matrices V (b̂, λ) which appear

in the boosts are not (in fact, they are Hermitian). One can see that the V -matrices are like the

U -matrices but with an imaginary angle.

To obtain the boosts in the Dirac-Pauli representation, we can either exponentiate the 4-

dimensional α matrices in that representation, or else change the basis according to

XDP =WXWW
†, (73)

where X is any Dirac matrix and the subscripts DP and W refer to the Dirac-Pauli and Weyl

representations, respectively, and where

W =
1√
2

(

1 −1
1 1

)

. (74)

See Eqs. (46.14)–(46.15). This gives

D(b̂, λ) =

(

cosh(λ/2) (b̂ · σ) sinh(λ/2)
(b̂ · σ) sinh(λ/2) cosh(λ/2)

)

(Dirac-Pauli). (75)
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10. Properties of the matrices D(Λ)

We recall the theorem quoted in Sec. 47.6, that every proper Lorentz transformation can be

represented uniquely as a product of a rotation times a boost, Λ = RB. Since we now have the

D-matrices for both pure rotations and pure boosts, we can use this theorem to find the D-matrix

for an arbitrary Lorentz transformation. It is the product of a rotation matrix of the form (63),

times a boost matrix of the form (70) or (75). As mentioned, the D-matrices for pure rotations

are unitary, while those for pure boosts are Hermitian, and not generally unitary. The product of a

rotation times a boost is a matrix with no particular symmetry, in general.

We usually say that unitary transformations are needed to implement symmetry operations, in

order to preserve probabilities. Why then are the Dirac D-matrices not unitary? The answer is that

the D(Λ) only implement the spin part of a Lorentz transformation, but there is a spatial part, too.

Since the probability density is ψ†ψ in the Dirac theory, a normalized wave function satisfies

∫

d3xψ†(x, t)ψ(x, t) = 1, (76)

for all t. Under a Lorentz transformation the volume element d3x is not invariant, but rather scales

by the relativistic factor γ = 1/
√

1− (v/c)2 of length contraction and time dilation (obviously not

to be confused with a Dirac matrix). Similarly, the spin part of a Lorentz transformation guarantees

that ψ†ψ is not an invariant, either (it is the time component of a 4-vector), rather it also acquires a

factor of γ upon being subjected to a Lorentz transformation, which cancels the factor of γ coming

from the volume element. Thus, the normalization integral is invariant, but ψ†ψ is not. That is,

the overall transformation is unitary, even if the spin part is not. The exception is a pure rotation,

under which both ψ†ψ and d3x are invariant, and D is unitary. This discussion has been rather

imprecise and lacking in details because a proper understanding of probability conservation in a

relativistic theory must take into account the relativity of simultaneity, and is best expressed in

terms of currents and 3-forms in space-time. Nevertheless, we will see the factor of γ appear when

we consider the transformation of spinors for free particles.

Notice that the DiracD-matrices for pure rotations in Eq. (63) have the same double-valuedness

seen in nonrelativistic rotations. That is, rotations about an axis n̂ by angles θ and θ + 2π give

the same classical rotation, but the Dirac rotations differ by a sign, D(n̂, θ + 2π) = −D(n̂, θ). On

the other hand, there is no double-valuedness in the boosts, as seen in Eq. (70) or (75); a classical

boost with a given axis b̂ and rapidity λ corresponds to a unique Dirac D matrix, which boosts a

spinor. Overall, the Dirac D-matrices have the same double-valuedness seen in spinor rotations, with

nothing added on account of boosts. Thus, a sign ambiguity appears if we attempt to parameterize

a Dirac D-matrix by a classical Lorentz transformation, as in the notation D(Λ), but not if we

parameterize rotations and boosts by (n̂, θ) and (b̂, λ).
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11. Conjugation of Dirac Matrices by γ0

The generators of unitary transformations are Hermitian, but since the Dirac D-matrices are in

general not unitary, the generators σµν cannot be in general Hermitian. In fact, the spatial parts,

σij , or, equivalently, Σ, are Hermitian, as can be seen in Eq. (59) and (61). But the components

σ0i = iαi, which generate boosts, are anti-Hermitian. See Eq. (66).

But there is a simple relation between σµν and (σµν )†, given by

γ0σµνγ0 =
(

σµν
)†
.

(77)

This in turn implies

γ0D(Λ)−1γ0 = D(Λ)†.
(78)

This replaces the usual property for unitary matrices, U−1 = U †, when working with Dirac D-

matrices.

To prove Eq. (77), we begin with

γ0γµγ0 =
(

γµ
)†
.

(79)

We recall that γ0 = β is Hermitian, and γi = βαi is anti-Hermitian (see Eq. (16)). So

γ0γ0γ0 = β3 = β = γ0 =
(

γ0
)†
, (80)

and

γ0γiγ0 = β2αiβ = αiβ = −βαi = −γi =
(

γi
)†
. (81)

This proves Eq. (79).

To prove Eq. (77) we use the definition (55), and write

γ0σµνγ0 =
i

2
γ0

(

γµγν − γνγµ
)

γ0 =
i

2

[(

γ0γµγ0
)(

γ0γνγ0
)

− (µ↔ ν)
]

=
i

2

[(

γµ
)†(

γν
)† − (µ↔ ν)

]

=
i

2

(

γνγµ − γµγν
)†

=
(

σµν
)†
.

(82)

Now from Eq. (50), we have, in the case of an infinitesimal Lorentz transformation,

D(Λ)−1 = 1 +
i

4
θµν σ

µν , (83)

and

D(Λ)† = 1 +
i

4
θµν

(

σµν
)†
. (84)

Equation (78) easily follows from this in the case of an infinitesimal Lorentz transformation. But

it is easy to show that if Eq. (78) is true for two proper Lorentz transformations, then it is true
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for their product. Since an arbitrary proper Lorentz transformation can be built up as a product

of infinitesimal Lorentz transformations, the result must be true for an arbitrary proper Lorentz

transformation.

The case of parity, an improper Lorentz transformation, is taken up below.

12. The Adjoint Spinor and Probability Current

We are now prepared to show that the Dirac probability current, defined by Eq. (46.23), trans-

forms as a 4-vector under Lorentz transformations. To begin we write the components of the current

in the following way:

J0 = cρ = cψ†ψ = cψ†γ0γ0ψ,

J i = cψ†αiψ = cψ†γ0γ0αiψ = cψ†γ0γiψ.
(85)

The combination ψ†γ0 is of frequent occurrence in the Dirac theory, so we give it a special notation,

ψ̄ = ψ†γ0,
(86)

and we call it the adjoint spinor. Notice that the adjoint spinor contains a complex conjugated

version of ψ, and is a row spinor. In terms of the adjoint spinor, we can write

Jµ = c ψ̄γµψ.
(87)

This is regarded as the covariant form of the probability current.

Let us see how Jµ(x) transforms under a Lorentz transformation. The Dirac spinor ψ itself

transforms according to Eq. (26), which we write in the form

ψ(x)
�−−→ D(Λ)ψ

(

Λ
−1x

)

. (88)

Thus the adjoint spinor transforms according to

ψ̄(x) = ψ†(x)γ0
�−−→ ψ†

(

Λ
−1x

)

D(Λ)†γ0 = ψ†
(

Λ
−1x

)

γ0γ0D(Λ)†γ0 = ψ̄
(

Λ
−1x

)

D(Λ)−1, (89)

where we have used Eq. (78). Therefore Jµ itself transforms according to

Jµ(x) = cψ̄(x)γµψ(x)
�−−→ cψ̄

(

Λ
−1x

)

D(Λ)−1γµD(Λ)ψ
(

Λ
−1x

)

= Λµ
ν cψ̄

(

Λ
−1x

)

γνψ
(

Λ
−1x

)

= Λµ
ν J

ν
(

Λ
−1x

)

,
(90)

where we have used Eq. (42). The result is that Jµ(x) transforms as a vector field on space-time

should under an active Lorentz transformation, as shown in Eq. (25). Thus, the continuity equation

(46.28) is covariant, as we require.
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13. How Fields Transform

We are collecting several examples of different kinds of fields and how they transform under

Lorentz transformations. Table 1 summarizes the ones we have encountered so far, and several

new ones as well. The transformation properties of Dirac spinors and adjoint spinors has been

discussed in these notes. The case of scalars (that is, scalars under Lorentz transformations) has

been discussed in Notes 47, in which it was pointed out that E2 − B2 is a Lorentz scalar that can

be constructed out of the electromagnetic field [see Eqs. (47.88)–(47.89]. It has also been mentioned

that the Klein-Gordon wave function ψKG is a Lorentz scalar. Can we construct a Lorentz scalar

out of the Dirac wave function? Yes, it turns out that the quantity ψ̄(x)ψ(x) is a Lorentz scalar.

The proof of this fact will be left as an exercise. Notice that ψ†(x)ψ(x) is not a Lorentz scalar, in

fact it is the time-component of a 4-vector (essentially the current Jµ).

Spinor ψ(x)
�−−→ D(Λ)ψ

(

Λ
−1x

)

Adjoint Spinor ψ̄(x)
�−−→ ψ̄

(

Λ
−1x

)

D(Λ)−1

Scalar S(x)
�−−→ S

(

Λ
−1x

)

Vector V µ(x)
�−−→ Λµ

ν V
ν
(

Λ
−1x

)

Tensor T µν(x)
�−−→ Λµ

α Λν
β T

αβ
(

Λ
−1x

)

Pseudoscalar K(x)
�−−→ (detΛ)K

(

Λ
−1x

)

Pseudovector Wµ(x)
�−−→ (detΛ) Λµ

ν W
ν
(

Λ
−1x

)

Table 1. Transformation properties of various types of fields under an active Lorentz transformation.

The table shows the transformation law for a generic 4-vector field V µ(x); examples include the

4-vector potential Aµ in electromagnetism (see Eq. (10)), the Klein-Gordon probability current (see

Eq. (45.27)) and the Dirac probability current (which we have gone to some trouble in these notes

to show is a genuine 4-vector, see Sec. 12).

The table also refers to a generic second-rank, relativistic tensor T µν and its transformation law.

Such tensors occur in electromagnetic theory, for example, the field tensor Fµν and the stress-energy

tensor. A second-rank, antisymmetric tensor occurs in the Dirac theory; it is ψ̄(x)σµνψ(x). This

is proportional to a relativistic generalization of the magnetization M (the dipole moment per unit

volume), which in the nonrelativistic Pauli theory of the electron can be written as ψ†µψ, where µ

is the magnetic moment operator for the electron. See Sec. 18.6. We will see this tensor appear in

the Gordon decomposition of the current, which is discussed in Sec. 50.10.
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14. Improper Lorentz Transformations and Parity

Recall that an improper Lorentz transformation is one that cannot be built up from near-identity

transformations, rather it is the product of a proper Lorentz transformation times time-reversal or

parity or both. See Sec. 47.3.

Recall also that in the nonrelativistic theory we classified vectors as either true vectors or

pseudo-vectors, depending on how they transform under parity (odd and even, respectively). See

Sec. 21.6. We also spoke of scalars and pseudoscalars.

In the relativistic theory a pseudoscalar (for example, K in the table, or E ·B in electromag-

netism) transforms as a scalar under proper Lorentz transformations but under improper ones it

acquires a sign given by detΛ. Similarly, a pseudovector (for example, Wµ in the table) transforms

as a vector under proper Lorentz transformation but under improper ones it acquires the same sign.

In the following the only improper Lorentz transformation we will consider is parity, or products of

parity times proper Lorentz transformations. For simplicity we will leave time-reversal out of the

picture. With this understanding, detΛ = +1 for proper Lorentz transformations and detΛ = −1

for improper ones.

The classical Lorentz transformation corresponding to parity is

P =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






, (91)

in other words, it is the spatial inversion operation, which leaves time alone. Notice that detP = −1.

Let us look for the operator π that acts on Dirac wave functions, corresponding to the spatial

inversion operation P. In the nonrelativistic theory, parity is a purely spatial operation with no effect

on the spin [see Eq. (21.33)]. Therefore we might guess that the same is true in the Dirac theory,

that is, that the transformation law for the Dirac wave function should be ψ(x, t)
π−−→ψ(−x, t). It

turns out, however, that this does not work. Instead we must write

ψ(x, t)
π−−→ D(P)ψ(−x, t), (92)

where D(P) is a spin matrix to be determined. Notice that the transformation of the space-time

dependence in Eq. (92) can also be written,

ψ(x)
π−−→ D(P)ψ

(

P
−1x

)

, (93)

which makes the transformation law under parity a generalization of Eq. (26), which was originally

intended to apply to proper Lorentz transformations only.

We determine D(P) by requiring that parity map free particle solutions of the Dirac equation

into other free particle solutions. The analysis of this question proceeds exactly as in Sec. 6, and it

leads to a conclusion of the same form as Eq. (42), that is, D(P) must satisfy

D(P)−1γµD(P) = Pµ
ν γ

ν , (94)
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where Pµ
ν are the components of P. This implies

µ = 0 : D(P)−1γ0D(P) = γ0 =
(

γ0
)†
,

µ = i : D(P)−1γiD(P) = −γi =
(

γi
)†
.

(95)

But in view of Eq. (79), we see that Eqs. (95) are satisfied if we take

D(P) = eiα γ0, (96)

where α is any phase. And we see that D(P) = 1 will not work; in the relativistic theory, parity

must involve the spin. This is another indication of the more intimate coupling between spatial and

spin degrees of freedom in the relativistic theory.

The classical Lorentz transformation P obeys certain properties, including

PR(n̂, θ) = R(n̂, θ)P, (97a)

PB(b̂, λ) = B(b̂,−λ)P, (97b)

P
2 = I, (97c)

where R and B refer to pure rotations and pure boosts, respectively. (Spatial inversion commutes

with rotations but inverts the direction of a boost.) If we demand that D(P), taken along with the

D(Λ) that we have worked out, form a representation of the extended Lorentz group including parity

(but still excluding time-reversal), then we should have

D(P)D(n̂, θ) = D(n̂, θ)D(P), (98a)

D(P)D(b̂, λ) = D(b̂,−λ)D(P), (98b)

D(P)2 = 1, (98c)

where D(n̂, θ) and D(b̂, λ) are pure rotations and pure boosts as in Eqs. (63) and (70) or (75),

respectively.

Equation (98c) implies that eiα in Eq. (96) must be ±1, so that

D(P) = ±γ0. (99)

The final choice of sign is purely a convention; if we take it to be +1, then it means that the

intrinsic parity of the electron (see Sec. 21.5) is +1. This in turn means that the intrinsic parity of

the positron is −1, although we are jumping the gun to be talking about positrons at this point.

But no physics would change if we made the opposite convention. For any fermion, the intrinsic

parities of the particle and antiparticle are opposite, but it is a matter of convention which is which.

In the following we will settle the matter by taking

D(P) = +γ0. (100)

Does this choice ofD(P) satisfy Eqs. (98a) and (98b)? In the case of Eq. (98a) for an infinitesimal

rotation, the question boils down to

γ0σijγ0 = σij , (101)
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which is true in view of Eq. (77) and the fact that σij consists of Hermitian matrices. In the case of

Eq. (98b) for an infinitesimal boost, we must check

γ0αiγ
0 = −αi, (102)

which is also true. But if these relations are true for infinitesimal Lorentz transformations then they

are true for any proper Lorentz transformation, by building up finite transformations as the products

of infinitesimal ones (by now you must appreciate the power of this argument). We conclude that

our definition of D(P) (100) is satisfactory.

With this definition of D(P) it is easy to check that the Dirac current, proportional to ψ̄γµψ,

transforms as a true vector (not a pseudovector), and that ψ̄ψ transforms as a true scalar (not a

pseudoscalar).

15. Pseudoscalars and Pseudovectors

Pseudoscalars and pseudovectors are important in the weak interactions, notably in the theory

of the neutrino, which do not conserve parity. To construct these types of fields we must introduce

a new (and final) Dirac matrix,

γ5 = γ5 = iγ0γ1γ2γ3. (103)

The 5 index is not a space-time index (obviously), rather it is a way of defining a new Dirac matrix

without using up another letter of the Greek alphabet. We do not use a 4 because γ4 is a Dirac

matrix used in (mostly older) versions of the theory which use x4 = ict as an imaginary coordinate

on space-time. See Sec. E.21. The upper or lower position of the index 5 is of no significance. The

complete set of Dirac matrices useful in a covariant description includes γµ, σµν and γ5 (one can

also include the identity matrix 1).

The explicit form of the matrix γ5 is

γ5 =

(

0 1
1 0

)

(Dirac-Pauli),

(

1 0
0 −1

)

(Weyl). (104)

Other properties of γ5 include the following:

(

γ5
)†

= γ5, (105a)

(

γ5
)2

= 1, (105b)

{γ5, γµ} = 0, (105c)

[γ5, σ
µν ] = 0, (105d)

Notice that Eq. (105c) implies

{γ5, D(P)} = 0, (106)

and Eq. (105d) implies

[γ5, D(Λ)] = 0, (107)
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for all proper Lorentz transformations Λ. We will just prove property (105c). Take the case µ = 2.

We have

γ5γ
2 = iγ0γ1γ2γ3γ2 = −iγ0γ1γ2γ2γ3 = −iγ2γ0γ1γ2γ3 = −γ2γ5, (108)

where in the first step we move the γ2 on the right past γ3, incurring one minus sign, and in the

second step we move the γ2 on the left past γ1 and γ0, incurring two minus signs. We can summarize

Eqs. (106) and (107) by writing

γ5D(Λ) = (detΛ)D(Λ)γ5, (109)

valid for both proper and improper Lorentz transformations Λ (still excluding time-reversal).

It is now easy to construct the pseudoscalar and pseudovector in the Dirac theory. The pseu-

doscalar is ψ̄(x)γ5ψ(x), and the pseudovector is ψ̄(x)γ5γ
µψ(x).

16. The Dirac Algebra and Bilinear Covariants

The various fields with the various transformation properties under Lorentz transformations

that are summarized in Table 1 are needed to construct Lorentz invariant Lagrangians that model

experimental data. That data shows that nature either does or does not respect various symmetries,

which in turn dictates the kinds of fields that may appear in the Lagrangian. It is believed that

all interactions are invariant under proper Lorentz transformations, at least at scales at which

gravitational effects are unimportant, but it is known that some interactions do not respect parity

or time-reversal (more precisely, CP -invariance). For example, at low energies the Lagrangian for

the weak interactions involves the difference between a vector and a pseudovector (the “V − A”

theory), which is responsible for parity violation.

The types of fields listed in Table 1 are bilinear covariants, which we now describe. These are

associated with the algebra of the Dirac matrices γµ. The algebra is defined as the set of all linear

combinations, with complex coefficients, of all matrices that can be formed by multiplying the γµ.

It is the space of all complex polynomials that can be constructed out of the γµ.

The algebra generated by the 2 × 2 Pauli matrices is simpler, so let us look at it first. There

are three Pauli matrices σi, i = 1, 2, 3, but (σi)
2 = 1 so the algebra includes the identity matrix. A

general quadratic monomial in the Pauli matrices can be reduced to a polynomial of first degree by

the formula,

σiσj = δij + iǫijk σk, (110)

so the algebra generated by the Pauli matrices consists of all first degree polynomials, that is, all

matrices of the form a + b · σ, where a and b are complex coefficients. But the set of matrices,

{1,σ} spans the space of all 2× 2 matrices, so the algebra generated by the Pauli matrices consists

of all 2× 2 matrices.

The Dirac algebra is generated by the four 4 × 4 Dirac matrices γµ. Since
(

γµ
)2

= ±1, the

Dirac algebra contains the identity matrix. The quadratic monomial γµγν looks like 16 matrices, but

only six of these are independent, because of the anticommutator {γµ, γν} = γµγν + γνγµ = 2gµν
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(times the identity matrix). The antisymmetric part is captured by σµν = (i/2)[γµ, γν ], which has

6 independent components.

As for cubic monomials, say, γµγνγσ, these can be reduced to a first degree polynomial if any of

the indices µ, ν, and σ are equal. For example, γ2γ3γ2 = −γ2γ2γ3 = γ3. But if all three indices are

distinct, then one index must be omitted, so there are 4 independent cubic monomials that cannot

be reduced to lower degree. In fact, these are given by γ5γ
µ, where µ indicates the index that is

omitted. For example, if µ = 2 we have

γ5γ
2 = iγ0γ1γ2γ3γ2 = −iγ0γ1

(

γ2
)2
γ3 = +iγ0γ1γ3, (111)

where the final result is a cubic monomial with µ = 2 omitted.

Finally, a quartic monomial γµγνγσγτ can be reduced to a lower degree unless all four indices

are distinct, in which case the matrix is proportional to γ5. Thus, there is one independent quartic

monomial. All higher degree monomials must contain repetitions of indices, and so can be reduced

to lower degree.

Matrices Name Count

1 Scalar 1

γµ Vector 4

σµν Tensor 6

γ5γ
µ Pseudovector 4

γ5 Pseudoscalar 1

Total 16

Table 2. Bilinear covariants and the Dirac algebra.

The list of Dirac matrices that span the Dirac algebra is summarized in Table 2. By sandwiching

these matrices between ψ̄ and ψ we obtain one of the bilinear covariants given in Table 1. The

matrices listed are linearly independent, so they span the space of all 4×4 Dirac matrices. Thus the

Dirac algebra consists of all 4× 4 matrices, and an arbitrary 4× 4 matrix can be expressed uniquely

as a linear combination of the the 16 basis matrices listed in Table 2.

17. Angular Momentum of the Dirac Particle

In Notes 12 we defined the angular momentum of a system as the generator of rotations. See

Eq. (12.13). Since we now know how to apply rotations to the Dirac particle, we can work out the

angular momentum operator by considering infinitesimal rotations and examininng the correction

term.

The Dirac wave function ψ(x) transforms under a general Lorentz transformation according to

Eq. (26). The transformation has two parts, a space-time Lorentz transformaiton specified by Λ,
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which in the case of pure rotations only affects the spatial coordinates x and leaves the time alone;

and a spin part, specified by a Dirac matrix D(Λ), which in the case of pure rotations is given by

Eq. (63). Making the Lorentz transformation a pure rotation with an infinitesimal angle θ, we can

write Eq. (26) as

ψ′(x, t) =
(

1− i

2
θn̂ ·Σ

)

ψ
(

x− θ(n̂ · J)x, t) = ψ(x, t)− i

2
θ(n̂ ·Σ)ψ − θ[(n̂ · J)x] · ∇ψ, (112)

where we use Eqs. (47.74) and (47.70) for the infinitesimal rotation Λ and Eq. (62) for the corre-

sponding infinitesimal D-matrix. But by Eq. (11.26) the second correction term in Eq. (112) can be

written,

−θ(n̂×x) · ∇ψ = − i

h̄
(n̂×x) · pψ = − i

h̄
n̂ · (x×p)ψ = − i

h̄
n̂ · Lψ, (113)

where p = −ih̄∇ and L = x×p. This is essentially the same derivation of the orbital angular

momentum as given in Sec. 15.3, but here we also have a spin part, the first correction term in

Eq. (112). Writing −(i/h̄)n̂ · J for the entire correction term, we obtain

J = L+
h̄

2
Σ (114)

for the entire angular momentum of the Dirac particle. This is an obvious generalization of the

angular momentum J = L+ (h̄/2)σ of a spin- 12 particle in the Pauli theory.

Problems

1. The generators σµν of the Dirac representation of Lorentz transformations must satisfy Eq. (53),

which is a version of Eq. (42) when the Lorentz transformation is infinitesimal. We guess that

σµν = k[γµ, γν ] for some constant k, since both sides are antisymmetric tensors of Dirac matrices.

Substitute this guess into Eq. (53) and verify that for an appropriate choice of k the guess is correct.

This will give you some practice with working with Dirac matrices; you must pay attention to what

is a matrix and what is a number.

2. The transformation properties of fields constructed out of the Dirac wave function ψ(x) under

Lorentz transformations. All examples in this problem consist of complete contractions over spin

indices, that is, the quantities are scalars as far as the spin indices are concerned. However, they

still have a space-time dependence (in this problem x means (ct,x)), and they may have space-time

indices such as µ, ν etc.

(a) Show that ψ̄(x)ψ(x) transforms as a scalar under proper Lorentz transformations.

(b) Show that ψ̄(x)σµνψ(x) transforms as a second rank tensor under proper Lorentz transforma-

tions.
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(c) Show that ψ̄(x)ψ(x) transforms as a scalar (not a pseudoscalar) under parity. Show that the

Dirac current transforms transforms as a vector (not a pseudovector) under parity.

(d) Show that ψ̄(x)γ5ψ(x) transforms as a pseudoscalar, and that ψ̄(x)γ5γ
µψ(x) transforms as a

pseudovector.

3. A continuation of Problem 46.1. A fact not mentioned in that earlier problem is that the represen-

tation of the Dirac algebra in 2+1 dimensions has two inequivalent two-dimensional representations.

Recall that in 3 + 1 dimensions, the four-dimensional representation found by Dirac is the only one

at that dimensionality (all others are equivalent). To do Problem 46.1 or this one, it does not matter

which of the two-dimensional representations you use.

(a) Assume that the 2-component Dirac wave function transforms under proper Lorentz transfor-

mations Λ in 2 + 1 dimensions according to

ψ′(x) = D(Λ)ψ(Λ−1x), (115)

where D(Λ) is some (as yet unknown) 2× 2 representation of the proper Lorentz transformations in

2 + 1 dimensions and x = (ct, x1, x2) (1,2 mean x, y). Assuming that ψ(x) satisfies the free particle

Dirac equation, and that ψ′(x) is given by Eq. (115), demand that ψ′(x) also satisfy the free particle

Dirac equation and thereby derive a condition that the representation D(Λ) must satisfy.

(b) Write out explicitly the matrices D(ẑ, θ) for the case of pure rotations and D(b̂, λ) for the case

of pure boosts, where b̂ lies in the x-y plane. Do this in the Dirac-Pauli representation. Show that

if you work in the Maiorana representation, the D-matrices are purely real.

(c) Show that in 2+1 dimensions, the spatial inversion operation is a proper Lorentz transformation,

that is, it can be continuously connected with the identity. Thus there is no problem of determining

D(P) as in 3+1 dimensions; it is already taken care of by the proper Lorentz transformations worked

out in part (b).

4. This problem is borrowed from Bjorken and Drell, Relativistic Quantum Mechanics, chapter 4.

We have seen that the Dirac equation with minimal coupling to the electromagnetic field gives

a g-factor of 2, very close to the experimental value for the electron. What do we do with spin- 12
particles such as the proton and neutron, which have “anomalous” g-factors?

In this problem we use natural units, h̄ = c = 1. Next, we modify the Dirac equation to include

another coupling to the electromagnetic field, in addition to the minimal coupling,
(

6p− q 6A− κe

4m
σµνF

µν −m
)

ψ = 0, (116)

where m is the mass, q the charge, and κ the strength of the anomalous magnetic moment term.

For the electron, q = −e and κ = 0; for the proton, q = e and κ = 1.79; and for the neutron, q = 0

and κ = −1.91. Here Fµν is defined in terms of the vector potential Aµ by

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
, (117)
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which agrees with Jackson. See also Sec. B.13, and Eqs. (B.56) and (B.57).

(a) Write out the modified Dirac Hamiltonian, and show that it is Hermitian.

(b) Show that probability is conserved, i.e.,

∂Jµ

∂xµ
= 0, (118)

where Jµ is defined exactly as for the unmodified Dirac equation, Jµ = ψ̄γµψ.

(c) Covariance. Suppose ψ(x) satisfies the modified Dirac equation (116), and let

ψ′(x) = D(Λ)ψ(Λ−1x),

A′µ(x) = Λµ
ν A

ν(Λ−1x),

F ′µν(x) = Λµ
α Λν

β F
αβ(Λ−1x).

(119)

Then show that ψ′(x) satisfies the modified Dirac equation (116), but with Lorentz transformed

fields A′µ(x) and F ′µν(x) instead of the original fields.

(d) Assume E = 0, B 6= 0 (in order to see what the effective magnetic moment of the particle

is). Perform a simple nonrelativistic approximation as in Sec. 46.9, and show that you get the right

g-factors for the proton and neutron.


