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Notes 16

Central Force Motion†

1. Introduction

In these notes we provide an introduction to central force motion, including the examples of

the free particle, the rigid rotor and diatomic molecules. We will take up the hydrogen atom in

Notes 17.

2. The Radial Schrödinger Equation

Initially we imagine a force center at the origin of a system of coordinates creating a force field

described by a potential V (r). The potential is a function only of the radius r and is invariant under

rotations. A particle moves in this force field.

x
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z

Fig. 1. If the object creating a central force field is very massive, we may treat the motion of a particle in the field as
a one-body problem.

The force is presumably created by some particle or physical object. We assume that its mass

is infinite (or much larger than that of the particle in orbit) so that the frame attached to it is an

inertial frame. Sometimes this is not a bad approximation, for example, in atoms where the nucleus

is much heavier than the electrons. If this is the case, then we obtain a one-body problem for the

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/2122/221.html.



2 Notes 16: Central Force Motion

motion of the particle, which is described by the Hamiltonian

H =
p2

2m
+ V (r). (1)

We assume the particle is spinless, or that spin effects can be neglected. Thus the Hilbert space

for the particle is the space of wave functions ψ(x). In Notes 15 we developed the theory of the

rotation operators U(R) and angular momentum operators L that act on this space. We also found

the standard angular momentum basis, which consists of radial wave functions times Yℓm’s.

The Hamiltonian (1) possesses rotational symmetry, that is, it commutes with all rotation

operators U(R), whose action on wave functions is given by Eq. (15.13). Without going into details,

this is obvious from the fact that the kinetic energy is proportional to p2 = p · p, the dot product

of two vectors, while the potential energy is a function of r =
√
r2, where r2 = x · x, another dot

product of two vectors. Since the dot product of classical (c-number) vectors is invariant under

classical rotations, we expect the same for vectors of quantum operators. We will explore this

question in more detail in Notes 20, but for now the basic line of reasoning should be clear. If there

is any doubt, one can explicitly verify the commutators

[L, H ] = 0, (2)

which show that

[U(R), H ] = 0 (3)

since U(R) is a function of L. Conversely, if an operator commutes with all rotations U(R), then it

commutes in particular with infinitesimal rotations, and therefore with the three components of L.

As a result, H commutes with the commuting operators L2 and Lz, so the three operators

(H,L2, Lz) possess a simultaneous eigenbasis. From Notes 15 we already know the general form of

a simultaneous eigenfunction of L2 and Lz; it is

ψ(r, θ, φ) = R(r)Yℓm(θ, φ), (4)

where R(r) is an arbitrary radial wave function. See Eq. (15.42). By demanding that this wave

function also be an eigenfunction of H , we can determine the radial wave function R(r).

To do this we substitute Eq. (4) into the Schrödinger equation for the Hamiltonian (1),

[ p2

2m
+ V (r)

]

ψ = Eψ. (5)

Working on the kinetic energy first and using Eq. (15.30), we have

p2

2m
ψ = − h̄2

2m
∇2ψ = − h̄2

2m

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
L2

2mr2
ψ. (6)

But if ψ has the form (4), then L2 acting on the Yℓm part brings out ℓ(ℓ+ 1)h̄2, and all terms have

a common factor of Yℓm. This also applies to the potential energy and total energy terms in the
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Schrödinger equation, so the common factor of Yℓm can be cancelled. We obtain an equation for the

radial function R(r) alone,

− h̄2

2m

1

r2
d

dr

(

r2
dR

dr

)

+ U(r)R(r) = ER(r),

(7)

where U(r) is the effective potential,

U(r) =
ℓ(ℓ+ 1)h̄2

2mr2
+ V (r). (8)

The effective potential is the sum of the centrifugal potential (the first term) and the true potential,

V (r). The centrifugal potential is physically the angular part of the kinetic energy, what could be

written classically as
m

2
(r2θ̇2 + r2 sin2 θφ̇2) =

L2

2mr2
. (9)

Mathematically, however, it looks like a potential and it is usually treated that way. The first term

of Eq. (7) is the radial part of the kinetic energy, what could be written classically as (m/2)ṙ2.

Equation (7) is called the radial Schrödinger equation, or, as we shall call it, version one of the

radial Schrödinger equation.

Version two of the radial Schrödinger equation is created by making the substitution

f(r) = rR(r), (10)

which after a little algebra results in

− h̄2

2m

d2f(r)

dr2
+ U(r)f(r) = Ef(r).

(11)

This version is easy to remember because it is almost the same as the one-dimensional Schrödinger

equation (usually written in terms of some variable x with −∞ < x < +∞). The only differences

are the presence of the centrifugal potential in the radial Schrödinger equation and the fact that r

lies in the range 0 ≤ r <∞.

It is reasonable to define the normalization of the radial wave function R(r) by the integral,
∫

∞

0

r2 dr |R(r)|2, (12)

because that is the radial part of the three-dimensional normalization integral
∫

d3x |ψ(x)|2 =

∫

∞

0

r2 dr

∫

dΩ |ψ(r, θ, φ)|2 (13)

when ψ has the form (4). Notice that this implies the normalization of the version two radial function

f(r),
∫

∞

0

dr |f(r)|2, (14)

which is the usual one for the one-dimensional Schrödinger equation apart from the range of inte-

gration.
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3. Separation of Variables

The usual way of deriving the radial Schrödinger equation in introductory courses is to separate

the three-dimensional Schrödinger equation in spherical coordinates. The results are the same as

in Sec. 2. The method of separation of variables, when it works, is a powerful one for solving

multidimensional partial differential equations that sometimes leads to exact solutions that would be

difficult to find otherwise. Most wave equations are not separable in any coordinate system, however.

Fortunately, many common model problems are separable in at least one coordinate system, while

many others are close to a separable system and can be treated by perturbation theory. If this

is not so, then usually numerical techniques will be required to find solutions. Some systems are

separable in more than one coordinate system, for example, the Schrödinger equation for all central

force problems in three dimensions is separable in spherical coordinates, while the free particle is also

separable in rectangular coordinates and the hydrogen atom is also separable in confocal parabolic

coordinates.

In all cases, separability is related to the existence of constants of the motion, that is, operators

that commute with the Hamiltonian that are related to some symmetry of the system. If the

Schrödinger equation for some multidimensional system is not separable in any coordinate system,

it probably means that the system does not possess any continuous symmetries at all. It may

possess discrete symmetries, such as parity and time reversal, but these do not lead to separability

of the wave equation in any coordinates. If the Schrödinger equation is separable in more than one

coordinate system, it means that the system respects a larger symmetry group than that needed

to ensure the solvability of the problem at all. For example, all central force problems in quantum

mechanics are separable in spherical coordinates, which corresponds to the SO(3) symmetry of the

system under rotations. But the free particle is also invariant under translations, so the free particle

Schrödinger equation is also separable in rectangular coordinates, while the hydrogen atom, which

possesses an SO(4) symmetry group, is separable also in confocal parabolic coordinates.

Thus, the success of the method of separation of variables is due to some symmetry of the

system, although this is usually not obvious when we apply the method. In this course we are

emphasizing the symmetries and their impact on our understanding of the quantum mechanics, so

we have approached the solution of several problems by studying the symmetry operators first and

then studying the Hamiltonian. For example, in solving the problem of the charged particle in a

uniform magnetic field, we diagonalized the operators that commute with the Hamiltonian first,

whereupon the Hamiltonian was easy to diagonalize. Also, in central force motion, we diagonalized

the operators L2 and Lz first, which led to the standard angular momentum basis, and then we

turned our attention to the Hamiltonian (as in this set of notes). This approach leads to the

solution of some problems or at least useful results even when the system is not separable. For

example, as we shall see in Sec. 19.9, it is possible to understand some important general features

of systems with rotational invariance, including very complicated ones, with no need to talk about

separating the wave equation (indeed, in some cases we do not even know what the wave equation
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is, only the symmetries it possesses). We will accumulate several examples of this type before the

course is over. In all cases, it turns out to be a good strategy to diagonalize the symmetry operators

first, and then to turn our attention to the Hamiltonian.

4. Quantum Numbers and Degeneracies

The radial Schrödinger equation is parameterized by ℓ, with ℓ = 0, 1, 2, . . ., because the cen-

trifugal potential depends on ℓ. Thus we might say that there is a different radial Schrödinger

equation for each value of ℓ. The energy eigenvalues for a given value of ℓ may be either discrete or

continuous. In fact, for potentials V (r) that go to 0 as r → ∞, there will be a continuous spectrum

above the continuum threshold at E = 0. For such potentials and for a given value of ℓ, there will

always be a continuous spectrum, but there may or may not be any bound states. For example, in

the case of the deuteron, which is approximately a central force problem involving a proton and a

neutron, there is one bound state for ℓ = 0, and none at all for any higher values of ℓ. (However,

spin-dependent forces are important in the case of the deuteron, and the system is not purely a

central force problem.)

Assuming there are bound states, let us denote their discrete eigenvalues by Enℓ, where n just

sequences the levels for a given value of ℓ, using some scheme. Thus, the energy depends on two

quantum numbers, n and ℓ, but not on m. Similarly, the radial wave functions R(r) or f(r) depend

on the same two quantum numbers, so we shall write Rnℓ(r) or fnℓ(r) to emphasize this. The total

wave function is

ψnℓm(r, θ, φ) = Rnℓ(r)Yℓm(θ, φ). (15)

The radial Schrödinger equation shares some features with the usual one-dimensional Schröding-

er equation, for example, if f(r) vanishes anywhere on the interval 0 ≤ r <∞ then the eigenfunctions

are nondegenerate. See Sec. 6.2. But for realistic potentials f(r) goes as rℓ+1 as r → 0 (see Sec. 5),

so f(0) = 0 and the radial eigenfunctions are nondegenerate, in both the bound and unbound cases.

Of course the bound eigenfunctions also go to zero as r → ∞. We see that the discrete eigenvalues

Enℓ are distinct, that is, nondegenerate, for a given value of ℓ. The nondegeneracy we are referring

to here concerns the eigenvalues and eigenfunctions of the radial Schrödinger equation for a given

value of ℓ, regarded as a one-dimensional wave equation.

When we consider the three-dimensional Schrödinger equation, however, and include the angular

quantum numbers, then degeneracies appear. That is, the energies Enℓ are at least (2ℓ + 1)-fold

degenerate because they do not depend on m. Physically this is due to the fact that the energy of

the system does not depend on the orientation. The quantum number m indicates the projection of

the angular momentum L onto the z-axis. But if we rotate our system (or the axes), this projection

changes. Therefore the energy eigenvalues cannot depend on m.

There could be further degeneracies, however. It is possible that some Enℓ could be equal for

different values of ℓ, in which case the degeneracy would be higher than (2ℓ + 1). For a randomly



6 Notes 16: Central Force Motion

chosen potential V (r), this is not very likely, since the different radial wave equations for different

values of ℓ have spectra that are effectively independent of each other. Generically, the degeneracies

are just 2ℓ+ 1 for each Enℓ, no more than what is predicted by rotational invariance alone.

For some potentials, however, there are systematic degeneracies among different Enℓ for different

values of n and ℓ. This applies to the Coulomb potential V (r) = −k/r and the harmonic oscillator

potential V (r) = kr2. The harmonic oscillator we are referring to is the three-dimensional, isotropic

harmonic oscillator. There are no other examples in three-dimensional central force motion. In

both cases, the extra degeneracy is due to some extra symmetry that goes beyond ordinary SO(3)

(rotational) invariance. For the Coulomb potential, the symmetry group is SO(4), while for the three-

dimensional, isotropic harmonic oscillator, it is SU(3). In the case of hydrogen, the extra degeneracy

applies only in the electrostatic, spinless, nonrelativistic model, in which the energy levels En are

proportional to −1/2n2, where n is the principal quantum numbers. The extra degeneracy appears

in the fact that these levels are independent of ℓ. As we add extra physical effects, coming closer to

a realistic description of hydrogen, we will see the extra degeneracy gradually disappear. When all

physical effects are included, hydrogen, too, has only the (2j + 1)-fold degeneracy expected on the

basis of rotational invariance.

5. Behavior of the Radial Eigenfunctions Near r = 0

The behavior of the radial wave function for small r is often important in applications. Let us

assume the potential is either well behaved at the origin or that if it diverges it does so no faster

than 1/r. This covers the important case of the Coulomb potential. Let us also assume that the

wave function R(r) goes as rk for some power k near r = 0, something we will write as R(r) ∼ rk.

This means that R(r) = ark for some constant a 6= 0 plus other terms that go to zero more rapidly

than rk as r → 0, or, equivalently,

lim
r→0

R(r)

ark
= 1. (16)

Then for small r we have

− h̄2

2m

1

r2
d

dr

(

r2
dR(r)

dr

)

= −a h̄
2

2m
k(k + 1)rk−2, (17)

and
h̄2ℓ(ℓ+ 1)

2mr2
R(r) = a

h̄2

2m
ℓ(ℓ+ 1)rk−2. (18)

As for the term V (r)R(r), it behaves at worst as rk−1 as r → 0, so it is negligible compared to the

terms (17) and (18) as r → 0. The same is true for the term ER(r), which behaves as rk as r → 0.

The dominant terms in the radial Schrödinger equation at small r come from the kinetic energy

alone (including the centrifugal potential). Since these terms have to cancel, we have

k(k + 1) = ℓ(ℓ+ 1). (19)
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This has two solutions,

k = ℓ and k = −ℓ− 1. (20)

The solution k = −ℓ− 1 is not acceptable when ℓ ≥ 1, because then |R(r)|2 would have a noninte-

grable singularity at r = 0, that is, the wave function would not be normalizable and there would

be an infinite amount of probability in a small neighborhood of r = 0. As for the case ℓ = 0, this

would result in ψ(r) = a/r near r = 0, which would not satisfy the Schrödinger equation at r = 0

because

∇2
(1

r

)

= −4πδ(x). (21)

That is, the kinetic energy in the 3-dimensional Schrödinger equation would contain a δ-function,

and for the Schrödinger equation to be satisfied, that δ-function would have to be cancelled by

another δ-function in the potential energy.

R(r)

r

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

Fig. 2. The radial wave function R(r) behaves as rℓ near r = 0. It lies down ever more flat against the r-axis as ℓ
increases. This is only the leading behavior of R(r) for small r; as r increases, correction terms become important.

Thus, the only possible solution of Eq. (19) is k = ℓ, and we see that the radial wave function

has the behavior

R(r) ∼ rℓ (22)

near r = 0. The leading behavior depends only on the angular momentum quantum number ℓ. This

is a simple rule that is often important in practice. It means that the radial wave function R(r) lies

down more and more flat near r = 0 as ℓ increases (see Fig. 2), and that the probability of finding

the particle in some small neighborhood of r = 0 goes to zero exponentially as ℓ increases. This

applies, for example, to the probability of finding an atomic electron inside the nucleus.
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6. Free Particle

Let us now take the case of the free particle, V (r) = 0. In this case there is no question of the

mass of the object that creates the force field, since there is no force. The free particle Hamiltonian

is symmetric under both translations and rotations, so a complete set of commuting observables can

be chosen in more than one way. If we choose (px, py, pz) as the complete set, then the simultaneous

eigenstate is

ψ(x) = eik·x, (23)

a plane wave with p = h̄k. The energy is given in terms of the momentum eigenvalues by

E =
p2

2m
. (24)

The spectrum is continuous with E ≥ 0.

If we choose (H,L2, Lz) as the complete set, then we must solve the radial Schrödinger equation

with V = 0. This is easier in version one, Eq. (7). Expressing the energy in terms of a wave number

k by

E =
h̄2k2

2m
, (25)

and writing ρ = kr for a dimensionless radial variable, the radial Schrödinger equation becomes

1

ρ2
d

dρ

(

ρ2
dR

dρ

)

+
[

1− ℓ(ℓ+ 1)

ρ2

]

R = 0. (26)

This is the standard differential equation for the spherical Bessel functions. These come in two

types, denoted jℓ(ρ) and yℓ(ρ) (see Abramowitz and Stegun, Chapter 10).

ρ

jℓ(ρ)

j0(ρ)

j1(ρ)

j2(ρ)

j3(ρ)

0 5 10 15

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Spherical Bessel functions jℓ(ρ) for different values
of ℓ.
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y0(ρ)

y1(ρ)

y2(ρ)

y3(ρ)

yℓ(ρ)

ρ

Fig. 4. Spherical Bessel functions yℓ(ρ) for different val-
ues of ℓ.
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The functions jℓ(r) are regular at the origin and so are physically acceptable solutions for the

free particle. Some examples are plotted in Fig. 3, which clearly shows the behavior R(r) ∼ rℓ near

r = 0. The functions yℓ(ρ) diverge at the origin and so are not acceptable free particle solutions if

the particle is able to reach the origin. They are plotted in Fig. 4. On the other hand, the y-type

spherical Bessel functions are useful in scattering theory where at large distances from the origin the

particle becomes free, and it is desired to represent an arbitrary solution of the Schrödinger equation

in that region. Since there is no attempt to extend those solutions all the way down to r = 0, the

y-type solutions are acceptable (and necessary) in that case.

7. Limiting Forms of the Spherical Bessel Functions

Many problems involving special functions can be solved knowing only the limiting forms for

large and small values of the arguments. In the case of the spherical Bessel functions, the limiting

forms at small ρ are

jℓ(ρ) ≈
ρℓ

1 · 3 · 5 . . . (2ℓ+ 1)
, (27)

yℓ(ρ) ≈ −1 · 3 · 5 . . . (2ℓ− 1)

ρℓ+1
. (28)

See Abramowitz and Stegun, Eqs. (10.1.2) and (10.1.3). As for jℓ(ρ), we see the small r rule (22),

to within a constant (which we couldn’t have guessed anyway because it is conventional). As for

yℓ(ρ), we see the solution k = −ℓ− 1 of Eq. (19) that we rejected earlier as nonphysical.

The limiting forms at large ρ (actually, ρ≫ ℓ) are

jℓ(ρ) ≈
1

ρ
cos

[

ρ− (ℓ+ 1)
π

2

]

=
1

ρ
sin

(

ρ− ℓπ

2

)

, (29)

yℓ(ρ) ≈
1

ρ
sin

[

ρ− (ℓ + 1)
π

2

]

= −1

ρ
cos

(

ρ− ℓπ

2

)

. (30)

See Abramowitz and Stegun, Eqs. (10.1.1), (9.2.1) and (9.2.2). These are useful in scattering theory.

8. WKB Theory and Spherical Bessel Functions

The limiting forms at large ρ can be obtained by treating the radial Schrödinger equation (in

version two) by one-dimensional WKB theory, apart from normalization. We discuss this briefly

without going into details because WKB theory provides an easy way to understand all the qualita-

tive features of the functions jℓ(ρ) and yℓ(ρ), as seen in Figs. 3 and 4.

It turns out that the accuracy of the WKB approximation for radial wave equations is improved

if the quantity ℓ(ℓ + 1) is replaced by (ℓ + 1

2
)2. This is called the Langer modification, and it has

to do with the singularity in the centrifugal potential at r = 0. That is, for the purposes of WKB

theory, we work with the effective radial potential,

U(r) =
h̄2(ℓ+ 1

2
)2

2mr2
+ V (r). (31)
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The centrifugal potential cannot be turned off and is present even for a free particle (except when

ℓ = 0). Thus the effective potential depends on ℓ, and we have different turning points etc depending

on ℓ. In the case of the free particle (V = 0) the turning point r0 is the solution of

E =
h̄2k2

2m
= U(r0) =

h̄2(ℓ + 1

2
)2

2mr20
, (32)

or,

kr0 = ρ0 = ℓ+ 1

2
. (33)

The turning point moves out as ℓ increases, something that can also be seen from Fig. 5.

It might seem strange that a free particle should have a turning point at all. The only reason it

does is the centrifugal potential, which, as mentioned, is really a part of the kinetic energy. Figure 6,

which shows a classical orbit of a free particle of some energy E = p2/2m and angular momentum L,

helps explain the situation. The orbit is a straight line which must pass at some minimum distance

from the origin. In the figure, the orbit lies in the x-y plane. The minimum distance is rmin = L/p.

The family of all possible classical orbits of the given E and L is a set of straight lines tangent to

the sphere r = rmin. In quantum mechanics, the minimum radius becomes the radial turning point

r0 = (ℓ + 1

2
)h̄/p = (ℓ+ 1

2
)/k.

U(r)

r

E

ℓ1 ℓ2 ℓ3

Fig. 5. The radial turning point for a free particle moves
out as ℓ increases.

y

x

rmin

Fig. 6. The minimum distance of approach to the origin
of a classical free particle of momentum p and angular
momentum L is rmin = L/p.

For ℓ > 0 the exact spherical Bessel functions jℓ(ρ), which are 0 at ρ = 0, rise up to a first

maximum somewhat after the point ρ = ℓ+ 1

2
, and then oscillate beyond that. From the standpoint

of WKB theory, we have a classically forbidden region to the left of the turning point ρ = ℓ + 1

2
,

an Airy-function type of behavior in the neighborhood of the turning point (see Fig. 7.8), and a

classically allowed region to the right, exactly as we would expect on the basis of Fig. 5. The case

ℓ = 0 is an exception, since in that case the centrifugal potential vanishes and there is no turning

point.
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The functions yℓ(ρ) can also be understood from the standpoint of WKB theory; these are the

functions that diverge exponentially as we move into the classically forbidden region (that is, as we

move to the left of the turning point at ρ = ℓ+ 1

2
), and have the behavior of the Bi function in the

neighborhood of the turning point (see Fig. 7.9).

It will be left as an exercise to work out the details of the WKB approximations to the spherical

Bessel functions. The WKB solutions turn out to be more accurate than Eqs. (29) and (30) when

ρ is not too much larger than ℓ+ 1

2
, but go over to them in the limit ρ≫ ℓ+ 1

2
.

9. Two-Body Central Force Motion

We return to the discussion of Sec. 2. If the source of the force field is not infinitely massive,

then a coordinate system attached to it is not an inertial frame and we must take into account

the dynamics of the force center itself. That is, we must deal with a two-body problem, which we

describe in an arbitrary (“lab”) inertial frame. We let x1 and x2 be the coordinates of the two

particles with respect to this frame, with masses m1 and m2, respectively. We assume the force is

described by a potential

V = V (|x1 − x2|), (34)

which depends only on the distance between the particles. The Hamiltonian is the sum of the kinetic

and potential energies,

H =
p21
2m1

+
p22
2m2

+ V (|x1 − x2|), (35)

where p1 and p2 are the momenta of the two particles.

We assume the particles are spinless or else we ignore spin. We write Ψ(x1,x2) for the config-

uration space wave function, upon which the operators pk act as differential operators,

pk = −ih̄ ∂

∂xk
= −ih̄∇k, k = 1, 2. (36)

Translation operators T (a) act on the wave function according to

(

T (a)Ψ
)

(x1,x2) = Ψ(x1 − a,x2 − a), (37)

a two-particle, three dimensional generalization of Eq. (4.23). The generator of translations is the

total momentum,

P = p1 + p2. (38)

The Hamiltonian commutes with all translations because the distance between the particles is not

changed when both particles are displaced by the same amount. Therefore H also commutes with

the total momentum,

[H,P] = 0. (39)

The Hamiltonian is also invariant under rotations. Rotation operators act upon Ψ according to

(

U(R)Ψ
)

(x1,x2) = Ψ(R−1x1,R
−1x2), (40)
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as explained in Sec. 15.9. The angular momentum of the system (the generator of rotations) is

L = L1 + L2, (41)

where

Lk = xk×pk, k = 1, 2, (42)

that is, it is the sum of the angular momenta of the two particles. The Hamiltonian (35) commutes

with all rotations and hence with the total angular momentum L,

[H,L] = 0. (43)

To solve the Schrödinger equation HΨ = EΨ for Hamiltonian (35) we introduce a change of

coordinates,

R =
m1x1 +m2x2

M
, (44)

r = x2 − x1, (45)

where

M = m1 +m2 (46)

is the total mass of the system, so that R is the position of the center of mass and r is the relative

position vector between the particles. We write Ψ(R, r) = Ψ(x1,x2) for the wave function trans-

formed to the new coordinates. We also define momenta “conjugate” to R and r as the differential

operators,

P = −ih̄ ∂

∂R
, p = −ih̄ ∂

∂r
, (47)

when acting on wave functions Ψ(R, r). By the chain rule, we can express the momenta p1 and p2

of the particles in the lab frame in terms of P and p,

p1 = −ih̄ ∂

∂x1

= −ih̄
( ∂R

∂x1

· ∂

∂R
+

∂r

∂x1

· ∂
∂r

)

= −ih̄
(m1

M

∂

∂R
− ∂

∂r

)

, (48)

p2 = −ih̄ ∂

∂x2

= −ih̄
( ∂R

∂x2

· ∂

∂R
+

∂r

∂x2

· ∂
∂r

)

= −ih̄
(m2

M

∂

∂R
+

∂

∂r

)

, (49)

or,

p1 =
m1

M
P− p, (50)

p2 =
m2

M
P+ p. (51)

Solving these for P and p, we find

P = p1 + p2, (52)

p =
m1p2 −m2p1

M
, (53)
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and we see that P defined by Eq. (47) is the total linear momentum of the system (the generator

of translations), as in Eq. (38). The transformation (x1,p1;x2,p2) → (R,P; r,p) specified by

Eqs. (44), (45), (52) and (53) is an example of a “canonical transformation,” that is, one which

preserves the canonical commutation relations. That is, we have

[Ri, Pj ] = [ri, pj ] = ih̄ δij , [Ri, rj ] = [Ri, pj ] = [Pi, rj ] = [Pi, pj ] = 0, (54)

where ri and Ri refer to the components of r and R, respectively. We see that any function of

(R,P) commutes with any function of (r,p).

Transforming the Hamiltonian (35) to the new coordinates is straightforward. As for the po-

tential, it becomes V (|x1 − x2|) = V (|r|) = V (r), where r = |r| is the distance between the two

particles. Also transforming the kinetic energy, we find the Hamiltonian as a sum of a center-of-mass

term and a relative term,

H = HCM +Hrel, (55)

where

HCM =
P 2

2M
, (56)

and

Hrel =
p2

2µ
+ V (r). (57)

Here µ is the reduced mass, defined by

1

µ
=

1

m1

+
1

m2

. (58)

The reduced mass µ is the harmonic mean of the masses m1 and m2. If one of the two particles

is much more massive than the other (for example, in hydrogen where the proton is roughly 2000

times more massive than the electron), then the reduced mass is closer to the mass of the lighter of

the two particles (for example, the electron, in the case of hydrogen). At the other extreme, if the

two masses are equal, m1 = m2 = m, then µ = m/2.

The Hamiltonian HCM is a free particle Hamiltonian, containing physically the kinetic energy

of the center of mass, while Hrel is physically the kinetic energy about the center of mass plus the

potential energy. The two Hamiltonians HCM and Hrel commute with each other,

[HCM, Hrel] = 0, (59)

because they are functions of different degrees of freedom, and they also commute with the total

Hamiltonian H . Thus, HCM and Hrel possess a simultaneous eigenbasis, which is also an eigenbasis

of the total Hamiltonian H .

This simultaneous eigenbasis consists of functions of the form,

Ψ(R, r) = Φ(R)ψ(r), (60)
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a product of a center-of-mass wave function Φ times a relative wave function ψ. Each of these are

eigenfunctions of their respective Hamiltonians,

HCMΦ = ECMΦ, (61)

Hrelψ = Erelψ, (62)

where the eigenvalue E of the total Hamiltonian H is given by

E = ECM + Erel. (63)

The center-of-mass equation (61) is easy to solve since HCM is just a free particle Hamiltonian.

For example, if we choose the three components of P as a complete set of commuting observables

for the center-of-mass motion, we have eigenfunctions

Φ(R) = eiP·R/h̄, (64)

that is, plane wave with momentum P (being somewhat sloppy about the distinction between the

operator P and its eigenvalues). Of course we may also solve this free particle equation in spherical

coordinates.

The relative wave equation (62) has the form of a pseudo-one-body problem of the kind consid-

ered earlier in these notes, but with a reinterpretation of the variables. Now r is the relative position

vector between the two particles, and p is defined by Eq. (53). Also, the mass m used earlier in these

notes must be identified with the reduced mass µ. In the limit m1 → ∞ while holding m2 fixed,

we recover the earlier results in which we had an infinitely massive force center. It is worthwhile

keeping in mind, however, that in real problems the position and momentum operators for relative

motion in a two-body problem such as hydrogen are really functions of the positions and momenta

of both particles.

As a final remark, we transform the total angular momentum of the system L, expressed in

terms of the coordinates of the two particles in Eqs. (41) and (42), over to the new coordinates. We

find

L = LCM + Lrel, (65)

where

LCM = R×P, Lrel = r×p. (66)

The Hamiltonian HCM commutes with LCM, and Hrel commutes with Lrel. In other language, the

total Hamiltonian H commutes not only with overall rotations of the system, but with rotations of

the center of mass and with rotations about the center of mass separately.

10. The Rigid Rotor

As an example of central force motion we consider the rigid rotor. We have already considered

the rigid rotor in a plane (see Sec. 7.12), but now we consider it in three dimensions. The rotor
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consists of two masses m1 and m2 connected by a massless, rigid rod of length r0, as in Fig. 7. This

is an example of central force motion because the constraint r = r0 can be thought of as due to a

sharply confining potential V (r) centered on r = r0.

r0

m1

m2

CM

Fig. 7. A rigid rotor in which the two masses m1 and m2 are separated by a fixed distance r0. The center of mass is
closer to the more massive end.

First we look at the classical mechanics. The moment of inertia about the center of mass is

I = µr20 . (67)

The energy is

E =
L2

2I
=

L2

2µr20
. (68)

It is the same as the centrifugal potential, which is logical since the centrifugal potential is really

the angular part of the kinetic energy, which is all there is for a rigid rotor.

The classical configuration, apart from the center-of-mass degrees of freedom, is just the ori-

entation of the rotor, specified by angles (θ, φ). This suggests that the wave function in quantum

mechanics should be ψ(θ, φ) (with no r-dependence). As for the quantum Hamiltonian, we guess

that it should be

H =
L2

2I
, (69)

the obvious operator corresponding to the classical energy (68).

This makes it easy to solve the Schrödinger equation, Hψ = Eψ. The energy eigenvalues are

Eℓ =
ℓ(ℓ+ 1)h̄2

2I
=
ℓ(ℓ+ 1)h̄2

2µr20
, (70)

and the eigenfunctions are

ψℓm(θ, φ) = Yℓm(θ, φ). (71)

The energies do not depend on the magnetic quantum number m, and are (2ℓ+ 1)-fold degenerate.
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11. Diatomic Molecules

Rigid rotors are an idealization that does not exist in nature, but diatomic molecules exist and

have many similar features. Consider, for example, carbon monoxide (CO). The atomic masses are

mC ≈ 12mH , mO ≈ 16mH , where mH is the mass of the hydrogen atom, with mH ≈ 1800m,

where m is the mass of the electron. We denote the reduced mass of the carbon-oxygen system by

M (rather than µ as above, since we wish to contrast the large massM with the small electron mass

m). Numerically,

M = reduced mass ≈ 7mH ≈ 104m, (72)

very roughly. This leads to some small parameters that we will see in the analysis of the molecule,

m

M
≈ 10−4,

√

m

M
≈ 10−2,

(m

M

)1/4

≈ 10−1, (73)

where very rough values are given. These values apply very roughly to most common diatomic

molecules.

A diatomic molecule can be regarded as a central force problem involving two bodies (the

atoms), each treated as a particle. Of course the particles in question are composite, made up of

nuclei and electrons, but in a certain approximation they may be treated as independent units,

that is, particles in their own right. The more elaborate theory that justifies this is called the

Born-Oppenheimer approximation.

r

V (r)

r0

V0

Fig. 8. Typical potential in a diatomic molecule. The equilibrium radius is r0, the well depth is V0.

The potential of interaction of two atoms in a diatomic molecule is sketched in Fig. 8. The

potential is strongly repulsive at short distances, because as the two atoms are brought together

their electron clouds overlap and by the Pauli principle the electrons are forced into higher energy

states. It is the same principle at work as when a degenerate electron gas is compressed; the short

range repulsion of two atoms can be thought of as due to the pressure of a degenerate electron gas. At

large distances the force is mostly electrostatic, and is attractive. Each atom causes the other atom

to polarize, creating an attractive dipole-dipole interaction. In between these two effects compete



Notes 16: Central Force Motion 17

with one another, creating a potential well. The potential is characterized by two parameters,

the well depth V0 and the equilibrium radius r0 (that is, r0 is the distance to the minimum of

the potential, which classically would be an equilibrium radius). For CO the actual values are

V0 = 11 eV, r0 = 1.1 Å.

There is no simple analytical form for V (r), so we will rely on order-of-magnitude estimates

that follow from dimensional analysis. The basic fact we rely on is that the force between the atoms

is determined by the dynamics of the electron clouds. There are only three fundamental constants

that enter into the electron dynamics: m, e and h̄. The speed of light c is not on the list because the

interaction is electrostatic and the electron motion is nonrelativistic. It is important to note that

the nuclear masses do not enter into the potential. One might wonder whether some dimensionless

parameters are important, such as the number of electrons in the atom, or, equivalently, the nuclear

charges (6 for C and 8 for O). The answer is that these numbers are not as important as one might

expect, because the atomic interactions, at the distances we are interested in, are mediated mostly by

the valence electrons. Inside the typical radius of the valence electrons is the atomic core, consisting

of electrons that shield and nearly neutralize the positive charge from the nucleus.

From e, m and h̄ it is possible to construct a unique distance, energy, time, etc. These are

displayed in Table 1. These are the same values of distance, energy, etc, that appear in the hydrogen

atom, and for the same reason: the only physical constants we have to work with are e, m and h̄.

For example, a0 is the Bohr radius and K0 is twice the ionization potential of hydrogen (2×13.6 eV).

Notice in particular v0: it is the velocity of the electron in the ground state of hydrogen. Although

fast, it is still nonrelativisitic (v0 < 1% c). As claimed, the electrons are nonrelativistic.

Dimension Definition Value

distance a0 = h̄2/me2 0.5 Å

energy K0 = e2/a0 = me4/h̄2 27 eV

velocity v0 = e2/h̄ αc ≈ c/137

frequency ω0 = me4/h̄3 = K0/h̄ 1/T0

time T0 = h̄3/me4 = 1/ω0 2.4× 10−17 sec

Table 1. Characteristic distance, time, etc for electron dynamics in an atom.

Returning to the CO potential V (r) in Fig. 8, the well depth V0 should be of the same order

of magnitude as K0; in fact, it is about 40%. Also, r0 should be of the same order of magnitude as

a0; in fact, it is a little more than twice as big. For an order-of-magnitude estimate, the agreement

is not bad.

The radial Schrödinger equation in our potential is

− h̄2

2M

d2f

dr2
+
[ℓ(ℓ+ 1)h̄2

2Mr2
+ V (r)

]

f(r) = Ef(r). (74)
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At first we take ℓ = 0, so we have a one-dimensional Schrödinger equation with potential V (r).

Since there is a well we expect bound states, which physically are the quantized vibrations of the

molecule. We can approximate the potential near the bottom of the well by a harmonic oscillator

potential, that is, we can write

V (r) ≈ −V0 +
M

2
ω2
v(r − r0)

2, (75)

where ωv is the frequency of small vibrations. Figure 8 shows that as the energy is raised much

above the bottom of the well the parabolic approximation ceases to be a good one, but if there are

many bound states then we can expect the low-lying ones to be described at least roughly by the

harmonic approximation. In a moment we will estimate the number of bound states.

We can estimate the parameter ωv in Eq. (75) by supposing that when r − r0 ∼ r0 ∼ a0, then

the potential is near dissociation, that is, V (r) is near zero. Dropping factors of 1/2 etc, this gives

Mω2
v(r − r0)

2 ∼Mω2
va

2
0 ∼ V0 ∼ K0, (76)

or,

ωv =

√

K0

Ma20
=

√

m

M
ω0, (77)

where ω0 is given by Table 1. As long as the harmonic approximation is valid, the vibrational energy

levels are (n+ 1

2
)h̄ωv, where n = 0, 1, . . . is the vibrational quantum number.

The vibrational frequency of the molecule is down by a factor of the square root of the mass ratio,

roughly 10−2 according to Eq. (73), in comparison to the typical frequency of the electronic motion

ω0. Frequency ω0 is also (as an order of magnitude) the frequency of a photon emitted or absorbed

in a transition between electronic states, while the energy difference between two neighboring levels

of the vibrational harmonic oscillator is h̄ωv, that is, the emitted or absorbed photon has frequency

ωv. Thus, vibrational transitions involve photons of energy roughly 100 times smaller than electronic

transitions. Electronic transitions are typically in the visible to ultraviolet range of frequencies, while

vibrational transitions are in the near to mid infrared.

We can estimate the number of bound vibrational states by taking the ratio,

Nvib =
V0
h̄ωv

∼ K0

h̄ωv
=

√

M

m
∼ 100. (78)

This is roughly the value for many diatomic molecules.

In the vibrational ground state the wave function is a Gaussian of width aho (where “ho” means

“harmonic oscillator”), which according to Eq. (8.12) is given by

aho =

√

h̄

Mωv
=

(m

M

)1/4

a0 ≈ 0.1 a0. (79)

In the ground state the wave function occupies roughly 10% of the bond length. The molecule does

behave like a rigid rotor at least approximately, because the interatomic separation lies in a narrow

range near r0.
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To account for the case ℓ 6= 0, we must include the centrifugal potential. But since the wave

function occupies only a small part of the r-axis near r = r0, the centrifugal potential is nearly

constant over the extent of the wave function and we can just replace r by r0 in the centrifugal

potential:

ℓ(ℓ+ 1)h̄2

2Mr2
→ ℓ(ℓ+ 1)h̄2

2Mr20
=
ℓ(ℓ+ 1)h̄2

2I
, (80)

where I is the moment of inertia in the equilibrium position. We see the appearance of the energies

of the rigid rotor, derived in an intuitive way in Sec. 10. The replacement (80) will become less

accurate as n increases (because the vibrational wave function is more spread out), or as ℓ increases

(because the centrifugal potential becomes more rapidly varying in r).

With the replacements (75) and (80), the radial Schrödinger equation becomes

− h̄2

2M

d2f

dr2
+
[ℓ(ℓ+ 1)h̄2

2I
− V0 +

M

2
ω2
v(r − r0)

2
]

f(r) = Ef(r). (81)

This is a harmonic oscillator with shifted origin and a constant term (−V0 plus the centrifugal

potential) added. The energy eigenvalues are immediate:

Enℓ = −V0 +
(

n+
1

2

)

h̄ωv +
ℓ(ℓ+ 1)h̄2

2I
. (82)

This is only valid for small n and ℓ, but it does give an easy and roughly accurate picture of the

rotational and vibrational spectrum of the molecule. Notice that the energies have the general form

predicted for central force potential in Sec. 4, that is, they depend on both n and ℓ.

Let’s examine the spacing between rotational energy levels in order to estimate the energy of

the photon emitted or absorbed in a rotational transition. We define ∆Erot as the spacing between

the ℓ = 0 and ℓ = 1 levels, or,

∆Erot =
h̄2

2I
∼ h̄2

Ma20
=
m

M
K0 ∼ 10−4K0. (83)

This is roughly 100 times smaller than ∆Evib = h̄ωv, and roughly 10,000 times smaller than the

energy of an electronic transition. The photons emitted or absorbed in rotational transitions typically

lie in the far infrared to microwave range.

The molecule has three different energy scales: that of K0, involved in electronic transitions, or

equivalently, the energy of dissociation of the molecule (breaking the bond); the vibrational energy

h̄ωv, roughly the square root of the mass ratio times smaller; and the energy of rotational transitions,

roughly the square root of the mass ratio times smaller still.

Greenhouse gases absorb infrared radiation from the earth by making vibrational transitions in

molecules. These are not usually diatomic molecules, because the stretching vibrations of molecular

bonds typically have too high a frequency. In addition, the main molecular species in the atmosphere,

N2 and O2, are homonuclear diatomics without a permanent electric dipole moment. Instead, the

greenhouse culprits are mainly CO2 and H2O, triatomics that have bending and twisting modes of

lower frequency.
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Problems

1. Consider central force motion in two dimensions. The wave function is ψ(x, y) = ψ(ρ, φ), where

(ρ, φ) are plane polar coordinates specified by

x = ρ cosφ, y = ρ sinφ. (84)

(a) Find the most general function ψ(ρ, φ) that is an eigenfunction of Lz. Express it in terms of

a radial wave function R(ρ), along the lines of what is done in the notes for the three-dimensional

case. What is the spectrum of Lz?

(b) Consider a central force Hamiltonian in two dimensions,

H =
p2

2m0

+ V (ρ), (85)

where p = (px, py). In this problem m0 is the mass of the particle, while m is the quantum number

of Lz. Show that this Hamiltonian commutes with Lz. Therefore simultaneous eigenfunctions of H

and Lz exist.

By expressing the Laplacian in polar coordinates and using the result of part (a), find a radial

wave equation for R(ρ) that will determine energy eigenfunctions and eigenvalues.

(c) Define a modified radial wave function by

f(ρ) = ρaR(ρ), (86)

where a is a power to be determined. Determine a by requiring that the modified radial wave

equation should look like the one-dimensional Schrödinger equation, apart from the range of the

variable ρ and the presence of the centrifugal potential.

(d) Consider the case of the free particle. Express the radial eigenfunctions R(ρ) in terms of ordinary

Bessel functions, Jν(x), and in terms of the energy and the quantum number of Lz. You will have

to look up the differential equation for ordinary Bessel functions.

(e) For any potential that is not too badly behaved near the origin, find the dependence of the

radial eigenfunction R(ρ) near ρ = 0. Verify that the free particle solutions of part (d) satisfy this

condition.

2. A good physicist has a feel for orders of magnitude of various physical quantities. Let’s look at

some real numbers for the carbon monoxide molecule (CO). We’ll see if it is effective as a greenhouse

gas, scattering infrared photons either by making vibrational or rotational transitions.

(a) The potential well is illustrated in Fig. 8, with V0 = 11 eV, r0 = 1.1 Å. Approximate the

potential near the bottom of the well by Eq. (75), with some vibrational frequency ωv. By assuming
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that V (r) = 0 (dissociation) when r − r0 = r0, solve Eq. (75) numerically for ωv. Compare to the

experimental value, which is ν = 6.5 × 1013Hz. Note that ω = 2πν. How well does the order-of-

magnitude estimate (77) work? See Table 1 for ω0.

(b) What is the probability that the CO molecule is in the n = 1 vibrational state at 300 Kelvins?

A typical infrared photon trying to escape the earth’s atmosphere has an energy of 300K. There is

not much CO in the atmosphere (good thing, since it’s poisonous), but if there were, would it be

efficient at absorbing or scattering photons by making vibrational transitions? Such absorption or

scattering would impede the escape of heat from the earth, creating a greenhouse effect.

(c) A CO molecules makes a transition from the ℓ = 1 to the ℓ = 0 rotational state. What is

the frequency (in Hertz) of the photon emitted? Compare to the vibrational frequency in part (a),

and note the rough estimates made in Sec. 11. What is the most probable value of ℓ in CO gas at

300K? Absorption or scattering of photons by rotational transitions is most probable when ∆ℓ = 1,

and falls off rapidly for higher values of ∆ℓ. Is CO at 300K effective at scattering typical infrared

photons at 300K, by making rotational transitions?

3. Consider the helium atom in a lab frame. The positions of the nucleus, electron 1 and electron 2

are xn, xe1 and xe2 respectively. The mass of the nucleus is M and that of the electron is m. Thus

the laboratory Hamiltonian is

H =
p2
n

2M
+

p2
e1

2m
+

p2
e2

2m
+ V (xn,xe1,xe2). (87)

We will only be interested in the kinetic energy in this problem.

Let R be the center of mass position and let

r1 = xe1 − xn,

r2 = xe2 − xn,
(88)

so that r1 and r2 are the positions of the two electrons relative to the nucleus. Also define new

momentum operators,

P = −ih̄ ∂

∂R
, p1 = −ih̄ ∂

∂r1
, p2 = −ih̄ ∂

∂r2
. (89)

Express the kinetic energy as a function of these new momentum operators. You will obtain a term

proportional to p1 · p2. This is called a “mass polarization” term.

The usual simple-minded treatment of helium treats the nucleus as infinitely heavy. In this

approach there are no mass polarization terms. Explain why its a good approximation to neglect

those terms (thus, the usual approach is ok).


