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Helium and Helium-like Atomst

1. Introduction

In these notes we treat helium and helium-like atoms, which are systems consisting of one
nucleus and two electrons. If the nuclear charge is Z = 2, then we are dealing with ordinary helium,
while Z = 3 is the Li* ion, Z = 4 is the Be™™ ion, etc. In recent years there has been some interest
in helium-like uranium, the ion U%*, with Z = 92, for tests of quantum electrodynamics. A case
not to be overlooked is Z = 1, a system consisting of a hydrogen nucleus plus two electrons. This
system certainly has unbound states, for example, the states in electron-hydrogen scattering. It is
not obvious that it possesses bound states, however, since it is not clear that one proton is capable
of binding two electrons. In fact, a bound state of this system does exist, the H™ ion, which can
be thought of as an electron bound to an otherwise neutral hydrogen atom. The second electron
is rather weakly bound, as we shall see. The ion H™ plays an important role in applications, for
example, in energy transport in stellar atmospheres. It is also used in proton accelerators to defeat
Liouville’s theorem in the process of filling up accelerating rings. In the following discussion of
helium-like atoms we focus mostly on the bound states, but some attention is also given to the

unbound states.

2. The Basic Hamiltonian

In these notes we work in atomic units, e = m = h = 1. We place the nucleus of charge Z at
the origin of our system of coordinates and we let x; and x5 be the positions of the two electrons.
Then the basic Hamiltonian describing the helium-like system is

H=—74+—2=2—-—— — 4+ —| (1)
2
where 11 = [x1], 72 = |x2|, and 12 = |x2 — x1].
This Hamiltonian incorporates all the nonrelativistic, electrostatic effects in helium, but it omits

a number of small effects and makes some approximations. The approximation in the use of the

Hamiltonian (1) is numerically quite good, but there is some interesting physics in the neglected

1 Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221 .html.
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terms and consideration of them leads to an improved understanding of some of the steps we take

in solving the approximate system.

First, the frame attached to the nucleus is not really an inertial frame, since the nucleus is pulled
by the electric forces from the electrons and accelerates somewhat in response. The accelerated
nucleus then has an effect back on the electrons, so that the overall effect is to couple the dynamics
of the electrons. However, since the mass of the nucleus is large in comparison to the mass of the
electron, the corrections, which are known as “mass polarization” terms, are small. See Prob. 16.4,
where it is shown that the coupling is proportional to p; - p2. Similar corrections result from
ignoring the small difference between the true electron mass and the reduced mass of the electron
and the nucleus. Both these corrections are of order of the electron to nucleus mass ratio, which is

approximately 10~% in helium.

Second, there are a variety of fine structure terms which, as in hydrogen, can be thought of as
relativistic corrections. These are all of order a? or (Za)?, and are roughly of order 1073 to 10~* in
helium. (But as in hydrogen, fine structure effects grow with Z, and are more important in heavier
atoms.) In addition to the relativistic kinetic energy correction, the Darwin term and the spin-orbit
term, all of which are present in hydrogen, there are also terms representing the interaction of one
electron with the magnetic field produced by the orbital motion of the other electron (spin-other-
orbit terms), or produced by the magnetic moment of the other electron (spin-spin terms). There

are also terms taking into account retardation in the communication between the two electrons.

Third, there are interactions with the quantized electromagnetic field, generalizations of the

Lamb shift in hydrogen.

Finally, there may be hyperfine interactions between the electron and the multipole moments

of the nucleus (but not in ordinary helium, since the a-particle has spin 0).

With the neglect of all these small terms, the basic helium-like Hamiltonian (1) is a purely
spatial operator, and does not involve the spin. Thus, it is similar in its level of approximation
to the electrostatic model of hydrogen. Due to the requirements of the symmetrization postulate,
however, spin plays a significant role in the structure of helium, much more so than in hydrogen at

a similar level of approximation.

3. Wave Functions and Hilbert Spaces

As explained in Sec. 18.3, the Hilbert space of a single electron can be written £ = Eqrb, ® Espin,
where a basis in £y, is the set of position eigenkets {|x)} and a basis is Egpin is the set of eigenkets
{|sm)} of the operators S? and S., where s = % and m = £5. The quantum number s is constant
and can be suppressed if it is understood, so sometimes we write simply |m) for the spin eigenkets.
A basis in the total Hilbert space is the product basis {|xm)} where |xm) = |x)|m). A wave

function in the orbital Hilbert space Eqp is ¥(x) = (x|t¢)), while one in the total Hilbert space & is
P (x) = (xm[y).
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In a system with two electrons the total Hilbert space is the product of two copies of the orbital

and spin Hilbert spaces for the two electrons,

Eot=EN @ W) 92 @£ (2)

spin orb spin’

where the numbers in parentheses are the labels of the two electrons. This is the “nominal” Hilbert
space discussed in Notes 28, that is, it consists of the wave functions that we would have if there
were no symmetrization postulate. A basis in ot is the product of the bases in the constituent
spaces,

|X1m1>(1)|x2m2>(2) = |X1x2m1m2>. (3)

If we rearrange the factors we can write the total two-electron Hilbert space as

gtot = gorb 02y gspina (4)
where

Eorty = Egi, © E03), (50)

gSPiﬂ = gb(pln)n ® gb(fn)n (5b)

The factorization (4) is useful for the study of helium and many other systems with two identical
particles. A basis in &y, is the set {|x1x2)}, while there are two obvious bases in Epin, the uncoupled

and coupled,
{lmimz)}  or  {|SMs)}, (6)

as explained in Sec. 28.8. Here S = 0 is the singlet state and S = 1 indicates the set of triplet states.

Equation (4) means that an arbitrary wave function in &t is a linear combination of products
of wave functions in £y, and those in Epin. In the special case that a wave function in &y consists
of a single product of this type, we can speak of the “spatial part” and “spin part” of the wave
function. Such language is very common in discussions of helium and other two- or multi-particle
systems, but it is important to realize that it only applies to wave functions of a special type. The
reason such wave functions are relevant in the case of helium has to do with the exchange operators

that commute with the Hamiltonian (1).

4. Exchange Operators

The Hamiltonian (1) commutes with three exchange operators that we now define, in terms of

their action on the basis kets |x;xamima) in Eiot. These are

EP5°[x1xomams) = |xoX1mima), (7

—~
oo
~— ~—

B xixamima) = |x1x2mami),

e
N

E12|X1x2m1m2> = |x2x1m2m1>. (

We will denote the eigenvalues of these three operators by 95, e and ey, respectively.
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The Hamiltonian (1) commutes with E{3P because it is a purely orbital operator that is sym-

metrical in the exchange of the two electrons. It commutes with E55™ because it is a purely orbital
operator that commutes with any spin operator. And in view of Eq. (10), the Hamiltonian (1) also
commutes with F1s.

But the Hamiltonian (1) is only an approximation to the true Hamiltonian for helium. If we
include the fine structure terms, which as in hydrogen couple the spin and orbital degrees of freedom,
then the resulting Hamiltonian no longer commutes with E$3P or Eigin separately.

It still commutes with E15, however, regardless of how many physical effects we include or how
many correction terms we add, because the two electrons are identical. All physical Hamiltoni-
ans that describe two electrons commute with Eio; if this were not true, it would be possible to
distinguish the electrons.

The properties of these exchange operators follow immediately from their definitions. The
operators are all Hermitian and unitary, their square is 1 (the identity operator), and their eigenvalues

are +1, as in Eqs. (28.3) and (28.4). They also satisfy
E» = Ef}"ER™, (10)

and
[ESSP, BSS™] = 0. (11)

Thus ESLP and Ej5™ possess a simultaneous eigenbasis. Since Fj» is a function of E%" and Ej5™, any

simultaneous eigenspaces of E9%P and E75™ is automatically an eigenspace of Eja, with eigenvalue

€12 = e‘l’gbeigin. (12)

Since the set of operators (H, E9P, Eigin) are mutually commuting, they possess a simultaneous

eigenbasis. Here H is the Hamiltonian (1). Equivalently, we can organize the eigenstates of H so
that they are also eigenstates of E5® and E55™,

To construct such eigenstates we start with Eigin. Let us use a capital ¥ to refer to states in

Eor and a lower case 1) for states in . Then an eigenstate of Eigin is the product

W) = [¢)[SMs), (13)

for any |¢) € Eorb, since
EE"|0) = os|0), (14)
where the eigenvalue 5™ = o is defined by Eq. (28.45). The most general eigenstate of E55™ is a
linear combination of such states (13) with the same value of S.
Next, we make |¥) an eigenstate of H by requiring that the spatial part [¢)) of |¥) be an

eigenfunction of H, regarded as a purely orbital operator. That is, we must solve

Hly) = E[y), (15)
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or, in wave function language
Hip(x1,%x2) = Ep(x1,%2), (16)

a purely orbital eigenvalue-eigenfunction problem. This is the hard part, something we shall devote

some attention to in these notes.

Then, to obtain an eigenfuction also of E{P, we note that if 1(x;,X2) is a solution of Eq. (16),

then so is ¥(x2,x1), with the same energy. Thus we can form the wave functions

%[w(xl,xﬁ + (%2, x1)], (17)
which, if they do not vanish, are eigenstates of E93P with eigenvalue e§5° = +1 (the same =+ that
appears in Eq. (17)).

Finally, in view of Eq. (12), only those states that are symmetric under spatial exchange and
antisymmetric under spin exchange, or vice versa, are antisymmetric under total exchange Fi2, as
required by the symmetrization postulate. The physical subspace of the nominal Hilbert space is
the direct sum of the subspace with e5” = +1 and 5™ = —1, and the one with e} = —1 and
eht = 1.

The situation regarding spatial and spin exchange symmetries is summarized in Table 1, which
also indicates some standard nomenclature. As in Table 28.1, “para” refers to a wave function that
is spatially symmetric, and “ortho” to one that is spatially antisymmetric under exchange. At one
time helium was thought to consist of two different species, parahelium and orthohelium, since the
spectrum of helium indicates two classes of energy levels with no (or only very weak) transitions
between them. Table 1 is almost exactly the same as Table 28.1, the main difference being that
in the case of the hydrogen molecule, it was possible to write down an explicit form for the spatial
part of the energy eigenfunctions, Eq. (28.33), since we had a central force Hamiltonian, whereas
in helium it is much more difficult to solve the spatial eigenfunction equation (15). (And in the

hydrogen molecule we had two identical protons, whereas in helium we have two identical electrons.)

e mname 5"  e; S degen  name
+1 para -1 -1 0 1 singlet
-1 ortho +1 -1 1 3 triplet

Table 1. Linkage of spatial and spin exchange symmetry in helium and terminology.

In summary, we have derived the rule about helium eigenfunctions that most students learn in
first courses on quantum mechanics, namely, that these eigenfunctions are products of spatial wave
functions times spin wave functions with opposite symmetry under exchange. We saw the same rule

previously in connection with the hydrogen molecule.
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However, the true nature of this rule should be understood. First, the operators E9P and

ES™ do not have the same fundamental significance as the overall exchange operator Fja. In
particular, there is no symmetrization postulate for E9P or ES5™. Next, the factorization of the
energy eigenfunctions into symmetric spatial parts and antisymmetric spin parts, or vice versa, arises
because H commutes with E¥3P and Efgin and because commuting operators possess simultaneous
eigenstates. If we had included the small fine structure corrections in the Hamiltonian (1), however,
then we would find that H no longer commutes with E9" or E55™ separately, although of course it
would still commute with F15. Thus, the usual rule about the factorization of the wave functions only
applies to the nonrelativistic, electrostatic approximation to the helium atom. This is in contrast to

the symmetrization postulate itself, which is rigorously correct.

5. Good Quantum Numbers

Sometimes an operator that commutes with the Hamiltonian is called a “good quantum num-
ber.” The terminology is old and it confuses an operator with its quantum number, but it is in
common use.

The helium Hamiltonian (1) is not exactly solvable nor even close to any exactly solvable system
(at least for small Z), so it is rather difficult to obtain good approximations to its eigenstates and
eigenvalues. In cases like this it is especially important to pay attention to the exact symmetries
of the Hamiltonian, that is, the operators that commute with it (the “good quantum numbers”).
Commuting operators possess simultaneous eigenbases, and, since symmetry operators are usually
easier to diagonalize than Hamiltonians, it is usually a good idea to diagonalize them first. This
means that we need only search in the eigenspaces of the symmetry operators for the eigenstates of
the Hamiltonian, a significantly easier task than searching in the whole Hilbert space. For example,
if we must diagonalize a matrix to find the energy eigenstates and eigenvalues, it is best to use a
symmetry-adapted basis (one that is already an eigenbasis of the symmetry operators). Even if
we do not attempt to find the eigenstates of the Hamiltonian explicitly, we can at least say that
those eigenstates are labelled by symmetry labels, namely, the quantum numbers of the symmetry
operators. This is a common situation for example in particle physics or nuclear physics, where
no one knows how to calculate the masses of the baryons or the energies of nuclear states very
accurately, but these states are rigorously characterized by their quantum numbers (spin, parity,
etc.)

For the helium Hamiltonian (1) we have already begun this process, by noting that H commutes
with B3P and ES5™ and by finding the simultaneous eigenbases of these two operators. This served
the dual purpose of narrowing the spaces in which we need to search for energy eigenstates, and of
satisfying the symmetrization postulate (by requiring e;o = —1).

But there are other symmetries of the Hamiltonian (1). Most notably, since H is a scalar
operator, it commutes with rotations. In fact, since it is a purely spatial operator, it commutes with
both spatial and spin rotations independently, and thus with L = L; + Ls and S = S; + Ss. It
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does not, however, commute with spatial rotations of particle 1 or of particle 2 separately, because
the term 1/r12 in the Hamiltonian is only invariant when we rotate the positions of both particles
simultaneously. That is, H does not commute with L; or Ly separately. The Hamiltonian does
commute with S; and Sy separately, however, in fact, it commutes with any function of spin. But
as we have seen, the total spin S = S; + S, is more convenient to work with than the individual

spins because it is physical and commutes with E55™ and because the coupled basis is an eigenbasis

of Eigin.
The Hamiltonian (1) also commutes with parity m, a purely spatial operator that acts on the

basis kets of the entire Hilbert space £ by
T|x1xXomima) = | — X1, —Xa2, M1, M2). (18)

Parity flips the spatial coordinates of the particles but has no effect on spin (at least in nonrelativistic
quantum mechanics). We will not make much use of parity in the case of helium, but it is more

important in multielectron atoms.

Operator | EQ>  ES™ Eis » L. 8% &S,
Qu. Num. e‘fgb eigin e = —1 L My, S Mg

Table 2. Operators that commute with the approximate helium Hamiltonian (1) and their corresponding quantum
numbers. The symmetrization postulate forces ejo = —1.

A list of operators that H commutes with along with their quantum numbers is shown in Table 2.
Moreover these operators commute with each other. Thus, without knowing anything else about the
eigenstates of H, we can say that they are characterized by the quantum numbers of the operators in
the table. However, several of the quantum numbers are superfluous. For example, e is forced to be

—1 by the symmetrization postulate, so egi? and e;5™ are opposite one another and not independent.

In fact, by Eq. (28.44) knowledge of S implies knowledge of eblgi“ and therefore knowledge of eSLP.
Thus an independent set of quantum numbers is (LM SMg). Within a simultaneous eigenspace
of the symmetry operators with the given quantum numbers, we can in principle diagonalize the
Hamiltonian, and label the energy eigenstates within that subspace by a sequencing number N.
Thus, the energy eigenstates can be denoted |NLMSMg). As for the energy eigenvalues, they are

independent of M and Mg because of the rotational invariance of the Hamiltonian, so we can write
H|NLMpSMg) = Enrs|NLMSMg). (19)

The energies Enrs are (2L 4 1)(2S + 1)-fold degenerate, because of the freedom in the magnetic
quantum numbers.
You might suspect that the energies En s should also be independent of the total spin S, since

the Hamiltonian (1) is a purely spatial operator. That would be true if there were no symmetrization
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postulate, but in that case the quantum number €$5” would not be superfluous, and, since e$" is a

spatial operator itself, the energies would depend on its eigenvalue. In fact, this is precisely what
happens in real helium where the symmetrization postulate is operative, it is just that the quantum
number e$%P is not explicitly stated since it is determined by the value of S. In other words, in real
helium, the spin state specified by S determines the exchange symmetry of the spin part of the wave
function which determines the exchange symmetry of the spatial part of the wave function which
does affect the energy. Thus, the energy does depend on S, in spite of the fact that H is a purely

spatial operator.

In fact, the dependence of the energy on S is typically large, that is, of the order of a Coulomb
(electrostatic) energy, much larger than the (magnetic) energies associated with the explicitly spin-
dependent terms that we have neglected in Hamiltonian (1). This is because wave functions that are
symmetric or antisymmetric under spatial exchange have very different distributions of probability
in three-dimensional space, and therefore correspond to quite different Coulomb energies. We will
see this explicitly below when we analyze helium by perturbation theory. A similar phenomenon
occurs in ferromagnetism, where the energies involved in flipping spins (the magnetization of the
material) are much larger than can be accounted for by the magnetic interaction of arrays of magnetic
dipoles. This discrepancy in energy scales was known before quantum mechanics had matured, and
was regarded as a mystery. The true explanation was given by Heisenberg: when you flip spins,
you change the symmetry of the spin part of the wave function, which by the symmetrization
postulate forces changes in the spatial part of the wave function, which changes the Coulomb energy
of the charge configuration. Ferromagnets are more complicated because there is a large number of

particles, but the basic idea is the same as in helium.

In Table 2 we have listed all the obvious symmetries (except parity) of the basic helium Hamilto-
nian (1). Are there any more (not so obvious) symmetries? Sometimes a system does have additional
symmetries in addition to the obvious ones. Notably this happens in the case of hydrogen, which
has an SO(4) symmetry (only the SO(3) symmetry under spatial rotations is obvious). This extra
symmetry is responsible for the extra degeneracy of hydrogen, in comparison to other central force
problems. As we say, hydrogen has “hidden” symmetry. Another example with hidden symmetry is
the multidimensional, isotropic harmonic oscillator. Apart from these two examples, however, there
are very few systems in the real world with extra or hidden symmetry (it depends partly on your
definition of “hidden,” but you should not expect such symmetry in most problems). In particular,

helium has no extra symmetry beyond what we have listed.

The standard spectroscopic notation for the level Enpg is N2t L, where L is replaced by
one of the code letters, S, P, D, F, etc., for L = 0,1,2,3, etc. As we did in our discussion of the
hydrogen molecule in Sec. 28.8, we use capital letters are used to represent the quantum numbers of
the collective system (in this case, the whole atom), and reserve lower case letters for the quantum
numbers of a single particle (in this case, an electron). For example, the state 22 P is the state with
N =2,S=1and L = 1. This is really a manifold of (2L 4+ 1)(25+1) = 3 x 3 = 9 degenerate states.
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6. Ionization Potentials

So far we have succeeding in labeling the energy levels of helium-like atoms by their good quan-
tum numbers and determining their degeneracies, in the approximation given by Eq. (1), without
knowing much about the system apart from its symmetries. We now look at some experimental and

other facts about such atoms.

First we present some ionization potentials. The ionization potential of an atom is the energy
needed to remove one electron from the atom, assumed to be in its ground state, to infinity. If an
atom has several electrons, there are successive ionization potentials, as more and more electrons
are removed. The final state consists of a nucleus plus the electrons, all of which are at rest and at

an infinite distance from one other.

It is a matter of convention in most areas of physics to decide where on the energy axis £ =0
lies, since only energy differences are physically meaningful. (This is true as long as gravitational
effects are neglected. But in general relativity, the mass corresponding to energy by m = E/c? has
a gravitational effect, so the absolute measure of energy is physically significant.) But it is common
in electrostatics to define the state of zero potential energy to be the one in which all charges are at
an infinite separation from one another. This is what we have done with the potential energy in the
Hamiltonian (1). If the kinetic energies also vanish, then we have a state of zero total energy. With
this convention for the state E = 0, the sum of all the ionization potentials of the atom (with a
minus sign) is the ground state energy of the atom. (Notice that we have not separated the protons
in the nucleus or transported them to infinity. We are using a convention that is convenient in

atomic physics, but perhaps not nuclear physics.)

0 Hett + 2~ 0 HY + 2e~
1 continuum -0.25— continuum
-2 Het + e~ -05 H+e
—— Ey=-0.528.
—— Ey=-2904
-3 -0.75
Fig. 1. Important energies of helium obtained from ion-  Fig. 2. Same as Fig. 1, but for H~. The energy scale is

ization potentials. Energies are measured in atomic units. down by a factor of 1/4 compared to helium.
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In the case of helium, the ionization potentials are

He — Het + e~ —0.904 a.u.,
(20)
He™ — He™ 4+ ¢~ —2.0 a.u.
The first ionization potential may be compared to that of hydrogen, which is 0.5 a.u. In fact, helium
has the highest ionization potential of any neutral atom. See Fig. 31.1. The second ionization
potential is easy to understand, since the He' ion is a hydrogen-like atom, whose ground state
energy is —Z%/2 = —2 a.u. To calculate the first ionization potential, however, is a nontrivial
problem. In the case of H™, the ionization potentials are
H  —H+e —0.028 a.u.,
(21)
H—H"+e —0.5a.u.
In H™ the extra electron is only weakly bound to the neutral H atom.
Figures 1 and 2 illustrate the information obtained from the ionization potentials. The energy
E = 0 is the state of complete dissociation. The ground state energy of helium is £ = —2.904 a.u.,
while the state in which one electron has been removed to infinity has energy £ = —2 a.u. Once

this electron has been removed, it may be given any positive kinetic energy, so there is a continuous

spectrum above F = —2 a.u. In H™, the ground state energy is £ = —0.528 a.u. and the continuum
begins at £ = —0.5 a.u., the ground state energy of a neutral hydrogen atom.
Parahelium Orthohelium
(S=0) (S=1)
-2.0
FT_— 4l — 4P —— 4'D By —— 48P —— 43D
B 3lg —— 3P —— 3'D g —— 3P —— 33D
-21 —
1
" . 2P — 93p
L — 25
L — 238
22 —
29 — - 115
-3.0

Fig. 3. Bound states of helium with quantum numbers. Energies are measured in atomic units. Notice the gap in the
energy scale between the ground state and the excited states.
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7. The Bound States

From Fig. 1 it is clear that the bound states of helium must lie between Ey = —2.904 a.u.
and F = —2 a.u. These bound states and their quantum numbers are displayed in Fig. 3 with an
expanded energy scale. The energy levels in the figure are the eigenvalues of the Hamiltonian (1),
which are not exactly the same as the experimental values due to the neglect of small terms in that
Hamiltonian. The difference, however, is too small to see on the scale of the diagram (in fact, at

higher resolution, many of these levels will be seen to have a fine structure splitting).

The levels in Fig. 3 cannot be regarded as purely experimental data, even at a scale where fine
structure is ignored and the Hamiltonian (1) is a good approximation, because spectroscopic data
only gives differences between energy levels, not their absolute values. It takes some disentangling of
the experimental data to produce energy levels. In addition, the levels in Fig. 3 have been assigned
quantum numbers, which requires some theoretical input. In effect, we have skipped ahead to the
answer (the spectrum of helium) in presenting Fig. 3. This may be the best way to understand

helium on a first pass.

In Fig. 3, the para states (spatially symmetric, spin singlet) are on the left, and the ortho
states (spatially antisymmetric, spin triplet) are on the right. Each vertical column contains the
energy levels for a given value of L and S, the good quantum numbers of the Hamiltonian (1). Only
columns out to L = 2 (D-states) are shown in the figure, but in actual helium L ranges from 0 to
0. The levels in a given column are sequenced in ascending order by N, with certain conventions
for the starting value of N. In each column there is an infinite number of levels that accumulate
just below the continuum limit, much as in hydrogen. The energy levels in a given column are the
eigenvalues of the Hamiltonian (1), restricted to a simultaneous eigenspace of the operators L?, S2,
L, and S, (it being understood that we are within the antisymmetric eigenspace of the exchange

operator E12).

Notice the following qualitative features of the energy level diagram for helium. First, the
ground state is a singlet state (11.5), which is considerably below the excited states (notice the gap
in the energy scale). The excited states look roughly the same on the para and ortho sides, but there
is no 139 state (no state on the ortho side that seems to correspond to the 1S state). Second, for a
fixed value of N and S, the energies are an increasing function of L (the “staircase effect”) (at least
this is true for N = 2 and most other values of N). This is the same effect we saw in alkali atoms.
Third, for fixed N and L, the ortho states are lower in energy than the para states (thus, if a 139
state existed, we would expect it to be below the actual ground state 11.5). Later we will provide a

theoretical explanation for some of these features.

In the case of H™, the ground state is the only bound state, and it has the quantum numbers

11S (same as the ground state of helium).
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8. Perturbation Analysis. The Unperturbed System

We now turn to the problem of finding the spatial eigenfunctions of the Hamiltonian (1), which

is a purely orbital operator. Denoting such an eigenfunction by 1(x1,x2), we wish to solve
HU)(Xl,XQ) = E’(/}(Xl,XQ). (22)
In addition, we wish these eigenfunctions to be even or odd under orbital exchange,

P (x1,%X2) = H4(x1,X2), (23)

where the +1 is e$3P, the eigenvalue of E{P. As explained above, e$5” = +1 are called para states, and

e9? = —1 are called ortho states. We know it is possible to construct simultaneous eigenfunctions
of Hy and E$i" because they commute. Once we have found these eigenfunctions, it will be easy
to multiply them by spin states (singlet or triplet) of the opposite exchange symmetry to obtain an
overall eigenfunction of the Hamiltonian, including spin, that satisfies the symmetrization postulate.
This part is relatively easy; the hard part will be solving Eq. (22) as a purely orbital problem.

An obvious strategy for finding the eigenfunctions of the Hamiltonian (1) is to use perturbation
theory, in which the inter-electron Coulomb potential 1/r15 is taken as a perturbation. That is, we
write H = Hy + H1, where

m-(g-2)+(4-2) et
JrA— (24b)
T12

We have grouped the terms in Hy to emphasize that Hy is the sum of two hydrogen-like Hamiltonians,
one for each electron, moving in the field of a nuclear charge Z. This decomposition of H into Hy
and H; is not very favorable for perturbation theory in the case of small Z, since the inter-electron
potential is comparable to the electron-nucleus potentials. The comparison is especially unfavorable
for H™ (the case Z = 1). It gets better for larger Z. We do the perturbation analysis anyway, since

it is relatively straightforward and there are not many choices.

712

nucleus

Fig. 4. Coordinates for the nucleus and two electrons in space.
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It is obvious from Fig. 4 what the effect of the perturbation 1/r12 is. When it is switched off,
the two electrons no longer repel one another and settle in somewhat closer to the nucleus than
they would otherwise. The wave functions for the two electrons can be thought of as two clouds
that overlap in the neighborhood of the nucleus. Conversely, when we turn the perturbation on, the
electron clouds expand somewhat so the electrons can get away from one another. They also tend
to stay on opposite sides of the nucleus, for the same reason.

As usual in perturbation theory, we must understand the unperturbed system first, its eigen-
functions, degeneracies, and symmetries. Since Hy is a sum of two hydrogen-like Hamiltonians, the
(two-particle) eigenfunctions of Hy are products of single particle eigenfunctions of the hydrogen-like
Hamiltonians in the field of nuclear charge Z. We call these single-particle eigenfunctions orbitals.
They are central force eigenfunctions, and since we are only concerned with the spatial part here,
they are characterized by the usual central force quantum numbers (nfm). Notice that we are using
lower case letters for the quantum numbers of a single electron. The single particle hydrogen-like
energy is —Z2/2n?. We denote these orbitals in ket language by |ném). Then the two-particle

eigenfunctions of Hy are products of these, which we denote by
|n1€1m1>(1)|n2€2m2>(2) = |n1€1m1 n2£2m2>, (25)

where the numbers in parentheses indicate which of the two electrons (1 or 2) is referred to, and
where the right hand side is a shorthand notation for these states. These states depend on six

quantum numbers. They are eigenfunctions of Hy,

Ho|n1timi naloms) = B, [n1€imy nolams), (26)

where the (0) on the energy indicates that it is the energy in zeroth order of perturbation theory.

This zeroth order energy is a sum of the two hydrogen-like energies,

AN 1
B, = -5 (5 + =) 27
ninz 2 n% + TL% ? ( )

and it depends only on the two principal quantum numbers n; and ns.

The states (25) are eigenstates of Hy, but not in general of E{3P. However it is easy to construct

eigenfunctions of EPP simply by symmetrizing or antisymmetrizing under exchange. There are
two cases. In Case I, the two sets of single particle quantum numbers are equal (all of them),

(n1f1my) = (nalamsg) = (ndm), and we write simply
|[ném ném) (28)

for these states. In this case the states are already even under orbital exchange, so they are para
states (eS5” = +1). There are no ortho states in Case I.

In Case II, one or more of the two sets of quantum numbers are different, (n1€ymy) # (nafams).
In this case we can easily write down normalized eigenstates of EQLP,

1
—(|n1€1m1 nalams) + [nalams n1€1m1>), (29)
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where the eigenvalue is e$i® = +1. In this case we have both para and ortho states. The energy

does not change when we carry out this symmetrization or antisymmetrization because both terms
have 