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The Lippmann-Schwinger Equation and

Formal Scattering Theory†

1. Introduction

In earlier lectures we studied the scattering of spinless particles by central force potentials. Such

problems are tractable because the Schrödinger equation is separable in spherical coordinates, and

we were able to reduce everything we wanted to know to the properties of radial wave functions.

But those are a rather restricted class of problems.

In these notes we apply Green’s functions and Green’s operators to scattering problems. Al-

though we mainly treat potential scattering in three dimensions, in fact the techniques we develop

have a much broader applicability. We shall see that Green’s functions lead to powerful operator

methods for treating scattering problems that allow us to derive both exact results and approxima-

tion methods in scattering theory. These can be generalized in a variety of ways, for example, to

relativistic and field theoretic problems.

We begin by deriving the Lippmann-Schwinger equation, a formulation of the scattering problem

in terms of an integral equation that is central to all further developments. An asymptotic analysis

of this equation leads to an exact relation between the scattering amplitude and the properties of the

wave field at small radii (where the potential is active). This is ultimately the basis of several exact

results involving the scattering amplitude. The Lippmann-Schwinger equation also easily leads to a

simple approximation scheme, the Born series, as well as to an intuitive and quantitative criterion

for the conditions of validity of the Born approximation. Then we develop some of the properties of

the exact Green’s operator for the system, and show how all results of interest in scattering theory

can be expressed in terms of it. Then we discuss the transition operator, in terms of which the

exact scattering amplitude can be expressed, which allows a neat determination of the effects of

various symmetries (parity, time reversal, etc) on the scattering amplitude. Finally we discuss the

orthonormality relations satisfied by the scattering states.

This material is background on the S-matrix, which we will not discuss in these notes, but

which is a central object of investigation in advanced treatments of scattering theory, especially in

relativistic quantum mechanics.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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2. The Lippmann-Schwinger Equation

We consider potential scattering of a spinless particle in three dimensions. We write the

Schrödinger equation in the form (36.10),

(E −H0)ψ(x) = V (x)ψ(x), (1)

where E > 0 since we are interested in scattering solutions. The potential V (x) is not necessarily

rotationally invariant, but we do assume it falls off sufficiently rapidly as r → ∞. We will be more

quantitative about this condition below. We treat the right-hand side of Eq. (1) as a driving or

source term, so the general solution can be written

ψ(x) = φ(x) +

∫

d3x′G0(x,x
′, E)V (x′)ψ(x′), (2)

where φ(x) is a solution of the homogeneous equation, that is, (E − H0)φ(x) = 0, and G0 is an

energy-dependent Green’s function for the free-particle Hamiltonian H0. (As in Notes 36, the 0-

subscript means “free particle.”) The homogeneous solution φ(x) is a free-particle wave function of

energy E. With different choices for φ and G0, we get different solutions ψ of Eq. (1).

Because we are interested physically in scattered waves that are radiated outward from the

scatterer, we take G0 to be the outgoing free-particle Green’s function, G0+, given by Eq. (36.89).

We will examine the boundary conditions on the scattered wave more carefully in a moment. As for

the homogeneous solution φ(x), we take it to be a plane wave with wave vector k,

φk(x) = 〈x|k〉 = eik·x

(2π)3/2
, (3)

and we interpret it as the incident wave. We just write |k〉 for the plane wave of wave vector k in

ket language. As discussed earlier, the scattered wave is the difference between the exact solution

and the incident wave, a free particle solution. Our plane waves are normalized so that

〈k|k′〉 = δ3(k− k′). (4)

With this choice of Green’s function and incident wave, Eq. (2) becomes

ψ(x) = φk(x) +

∫

d3x′G0+(x,x
′, E)V (x′)ψ(x′). (5)

This is the Lippmann-Schwinger equation. It is not so much a solution of the original Schrödinger

equation (1) as a reformulation of it in terms of an integral equation, since the unknown wave field

ψ(x) occurs both on the left-hand side and under the integral on the right-hand side.

The Lippmann-Schwinger equation (5) contains both an energy eigenvalue E and a wave vector

k. These are related by the free-particle expression,

E =
h̄2k2

2m
, (6)
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in spite of the fact that φk(x) is not a solution of the exact Schrödinger equation (at least not where

V (x) 6= 0). This is because φk(x) is a solution of the homogeneous equation (E − H0)φk = 0,

whose energy parameter is the same as the energy eigenvalue of the exact Schrödinger equation

(1). More physically, the experimenter is free to launch particles at the target with any value of

momentum, but the energy and momentum are related by the free particle relation since the particles

are free where they are launched, in the asymptotic region. Moreover, the energy of the particles

in the beam is the same as the energy eigenvalue of the corresponding solution of the Schrödinger

equation. This is plausible physically because a uniform beam of particles directed against a target

produces after a while a steady state, statistically speaking, in which a definite number of particles

per unit time are scattered into any given element of solid angle. It is plausible that this steady state

should correspond to a solution ψ(x) of the Schrödinger equation with energy E, since measuring

the energy of the particles in the asymptotic region produces the value E.

This physical picture suggests (correctly, as it turns out) that the Lippmann-Schwinger equation

has a unique solution ψ(x) for a given wave vector k (which determines E). That is, for a given

E, there is a unique solution satisfying the given boundary conditions (which consist of the given

incident wave of wave vector k, plus the fact that the scattered waves are purely outgoing). This

is in contrast to the original Schrödinger equation, the differential equation (1), which has many

solutions for a given energy E. This is clear physically, since the experimenter is free to direct the

beam against the target from any incident direction, thereby generating different states of the same

energy. We will write ψk(x) to emphasize the k-dependence of the solution. With this slight change

of notation, the Lippmann-Schwinger equation becomes

ψk(x) = φk(x) +

∫

d3x′G0+(x,x
′, E)V (x′)ψk(x

′), (7)

or, in ket form,

|ψk〉 = |k〉+ Ĝ0+(E)V |ψk〉, (8)

where it is understood that E and k are related by the free-particle relation (6). As usual, the ket

form has the advantages of compactness and generality. Finally, substituting the form of the free

particle outgoing Green’s function (36.89) into Eq. (7), we have the explicit integral equation,

ψk(x) = φk(x)−
1

4π

2m

h̄2

∫

d3x′ e
ik|x−x

′|

|x− x′| V (x′)ψk(x
′). (9)

The Lippmann-Schwinger equation is a fundamental result, as important for scattering theory

as the Schrödinger equation is for the rest of quantum mechanics. As we shall see, it opens the door

to many exact results in scattering theory as well as various approximation methods.

There are obviously many variations on this derivation. For example, the incident wave need

not be a plane wave. For another example, the unperturbed Hamiltonian might include part of the

potential, presumably a part such that H0 can be solved, while V contains the rest of the potential.

For example, in proton-proton scattering we might take H0 to include the (long-ranged) Coulomb
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potential of the two protons, while V would contain the short-ranged nuclear potential. In this case,

φ would be a Coulomb solution of positive energy.

3. The Scattering Amplitude

The Lippmann-Schwinger equation in the form (9) represents the scattered wave as a super-

position of outgoing spherical waves, radiating from each point of space x′ where V (x′) 6= 0. The

integration over x′ in Eq. (9) represents this superposition. In general, the different spherical waves

are not in phase with one another, and their interference gives rise to the angular dependence of the

scattered wave.

k

z

x

y

r′

r

r̂

k′

V (r)

Fig. 1. An incident plane wave with wave vector k is launched against a localized potential. Observation point x is in
the asymptotic region, while x′ is a variable of integration that runs over the region where V (x′) 6= 0. Wave vector k′

has the same magnitude as the incident wave vector k, but points in the direction of the observation point.

Let us assume for the moment that the potential rigorously vanishes outside some radius R,

and let us consider the case in which x in Eq. (9) is well outside this radius, r ≫ R. We interpret

x as an “observation point” (see Fig. 1). Then the variable of integration x′ in Eq. (9) is limited

by r′ < R, and we have r′ ≪ r over the entire range of integration. Therefore we may expand the

integrand in powers of r′/r. We are only interested in the dominant term as r → ∞, but different

parts of the integrand must be expanded to different orders in r′/r. For example, in the exponent

eik|x−x
′| we have

|x− x′| ≈ r − x · x′

r
= r − r̂ · x′, (10)

where r̂ is a unit vector from the scatterer to the distant observation point. Now we define a scattered

wave vector,

k′ = kr̂, (11)
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which has the same magnitude as the incident wave vector k (because the scattering is elastic), and

which also points from the scatterer to the observer. Then

k|x− x′| = kr − k′ · x′. (12)

The first term kr is large as r → ∞, while the next term is independent of r. We stop at this order

of the expansion, because the following term is down by a factor of r′/r, so it goes to zero as r → ∞.

As for the denominator in Eq. (9), we expand it to lowest order,

1

|x− x′| ≈
1

r
, (13)

since the next term goes to zero faster than 1/r as r → ∞.

Altogether, when x is in the asymptotic region the Lippmann-Schwinger becomes

ψk(x) = φk(x)−
1

4π

2m

h̄2
eikr

r

∫

d3x′ e−ik′·x′

V (x′)ψk(x
′), (14)

dropping correction terms that go to zero faster than 1/r as r → ∞. The integral is now independent

of the magnitude of x, but depends on its direction through k′. The scattered wave has the form of

eikr/r times a function of the scattering angle, that is, the asymptotic wave field can be written as

ψk(x) =
1

(2π)3/2

[

eik·x +
eikr

r
f(k,k′)

]

, (15)

where f(k,k′) is the scattering amplitude. We previously argued on somewhat intuitive grounds

that the asymptotic form of the wave field must have this form, and we proved that it does so in the

case of central force scattering. Now we have proved it for scattering from a potential of any shape.

We assumed above that the potential rigorously vanishes outside some radius. If this is not

true, it can still be shown that the asymptotic form (14) is correct, as long as the potential V (x)

goes to zero faster than 1/r as r → ∞. As a practical matter, this covers all potentials of interest

except the Coulomb potential.

We have previously written the scattering amplitude as f(θ, φ), referring to the spherical coor-

dinates of some coordinate system, but now we are writing it in the coordinate-independent form

f(k,k′), specifying both the incident and scattered vectors. The notation is slightly misleading,

since f is not an independent function of both vectors, whose magnitudes are required to be equal.

By comparing Eqs. (14) and (15), we can read off an expression for the scattering amplitude,

f(k,k′) = − (2π)3/2

4π

2m

h̄2

∫

d3x′ e−ik′·x′

V (x′)ψk(x
′) = −4π2m

h̄2
〈k′|V |ψk〉, (16)

where we use Eq. (4). This is an exact expression for the scattering amplitude, a property of the wave

field in the asymptotic region, in terms of an integral involving the wave field in the region where the

potential is nonzero. Thus it provides a connection between the region at large radii and the region at

small radii. Equation (16) cannot be used immediately to calculate the scattering amplitude unless

we know the values of the exact solution ψk(x) at small radii, but it is important for deriving general

relations concerning the scattering amplitude as well as for developing approximation methods.
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4. The Incoming Solutions

What would have happened if we had used the incoming Green’s function G0− in the integral

equation (2)? The solution ψ would still be unique for given wave vector k of the wave φk, but it

would not be the same solution we have been discussing. Instead, it would consist of waves streaming

inward from infinity toward the scatterer, which would combine with plane wave φk to form an exact

solution of the Schrödinger equation with energy E. These solutions would obviously be impossible

to set up experimentally, but they are perfectly good solutions of the Schrödinger equation from a

mathematical standpoint, and, as it turns out, they are also useful in scattering theory. When it

is necessary to distinguish the two types of solutions, we will write them ψ
(±)
k

(x), where the sign

indicates the type of Green’s function used (+ = outgoing, − = incoming). If we omit the sign, the

outgoing solution will be assumed. These two types of solutions satisfy the Lippmann-Schwinger

equations,

ψ
(±)
k

(x) = φk(x) +

∫

d3x′G0±(x,x
′, E)V (x′)ψ

(±)
k

(x′), (17)

or, in ket language,

|ψ(±)
k

〉 = |k〉+ Ĝ0±(E)V |ψ(±)
k

〉. (18)

5. An Integral Equation for Bound States

It is also possible to formulate an integral equation for the bound states. When E < 0, there

can be no homogeneous solution as in Eq. (2), because no free particle solution φ for E < 0 has

the right behavior at infinity. Therefore there is only the inhomogeneous term. Furthermore, both

Green’s functions G0± are equal for E < 0, as shown in Eq. (36.89), and indeed, there is only one

Green’s function with the right behavior at infinity. Thus we obtain the following integral equation

for the bound states:

ψ(x) = − 1

4π

2m

h̄2

∫

d3x′ e
−κ|x−x

′|

|x− x′| V (x′)ψ(x′), (19)

which can be satisfied only for discrete values of E = −h̄2κ2/2m.

6. The Born Series

Let us write the Lippmann-Schwinger equation (8) in the form

|k〉 = [1−G0+(E)V ]|ψk〉, (20)

which makes it clear that if we could invert the operator on the right-hand side, we could solve

explicitly for the solution |ψk〉. (We henceforth drop the hat on the Green’s operator, it being fairly

clear when an operator is being referred to and when a function.) We denote the required inverse

by

Ω+(E) = [1−G0+(E)V ]−1, (21)
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where Ω+(E) is called the Møller scattering operator. It is an operator that (for the given energy

E) maps the incident plane wave |k〉 into the associated, exact scattering solution |ψk〉,

|ψk〉 = Ω+(E)|k〉. (22)

Similarly, we define an incoming version of this operator,

Ω−(E) = [1−G0−(E)V ]−1, (23)

which is useful for finding incoming solutions,

|ψ(−)
k

〉 = Ω−(E)|k〉. (24)

More generally, we can define an operator Ω(z), depending on a complexified energy,

Ω(z) = [1−G0(z)V ]−1, (25)

so that

Ω±(E) = lim
ǫ→0

Ω(E ± iǫ). (26)

(This is not quite standard notation. Most references on scattering theory define a Møller wave

operator, call it Ω̃±, that is independent of energy. The two operators have the same effect when

acting on plane waves, however: Ω̃±|k〉 = Ω±(E)|k〉, where E is related to k by the free particle

relation.)

A simple approach to obtaining a useful expression for Ω(z) is to treat V as small and expand

the inverse operator in a power series. This gives

Ω(z) =
1

1−G0(z)V
= 1 +G0(z)V +G0(z)V G0(z)V + . . . , (27)

or, by Eq. (26),

Ω±(E) = 1 +G0±(E)V +G0±(E)V G0±(E)V + . . . . (28)

When this series is applied to the Lippmann-Schwinger equation in the form (20), it gives

|ψk〉 = |k〉+G0+(E)V |k〉+G0+(E)V G0+(E)V |k〉+ . . . . (29)

This is called the Born series for the scattering solution |ψk〉. When it is truncated at n-th order

in the potential V , we speak of the n-th Born approximation. Similarly, the expansion (28) can be

substituted into the expression (16) for the scattering amplitude, yielding

f(k,k′) = −4π2m

h̄2

[

〈k′|V |k〉+ 〈k′|V G0+(E)V |k〉+ 〈k′|V G0+(E)V G0+(E)V |k〉 + . . .
]

, (30)

which is the Born series for the scattering amplitude. Again, if we truncate at n-th order, we obtain

the n-th Born approximation to the scattering amplitude.
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The Born series can also be obtained by a method of successive approximations. If we take the

Lippmann-Schwinger equation in the form (8) and substitute the left-hand side into the right-hand

side, we obtain

|ψk〉 = |k〉+G0+(E)V |k〉+G0+(E)V G0+(E)V |ψk〉, (31)

an exact equation in which the unknown wave function |ψk〉 has been pushed into a second order

term in V . By substituting Eq. (8) into Eq. (31) again, the term containing |ψk〉 can be pushed to

third order, etc. This procedure also generates the terms of the Born series, but with an explicit

remainder term.

We shall examine the conditions of validity of the Born approximation in a moment, but for

now we just remark that the series does not necessarily converge, and the Born expansion is only

useful in some problems. Obviously it will work best when V is small in some sense.

The first Born approximation to the scattering amplitude is

f(k,k′) = −4π2m

h̄2
〈k′|V |k〉 = −

√
2πm

h̄2
Ṽ (k′ − k), (32)

where Ṽ is the Fourier transform of the potential V using the convention (33.78), and where k′ − k

(times h̄) is the momentum transfer in the scattering. On taking the square of the scattering

amplitude, we obtain the cross section in the first Born approximation,

dσ

dΩ
=

2πm2

h̄4
|Ṽ (k′ − k)|2, (33)

which agrees with our earlier result (33.80) from time-dependent perturbation theory. Although the

scattering amplitude in the first Born approximation only depends on the difference between the

incident and scattered momenta, this is not true in higher Born approximations, as one may easily

see.

The first Born approximation gives the same result as first-order, time-dependent perturbation

theory because there is a close relationship between the Dyson series (in the time domain) and the

Born series (in the energy domain). Both are straightforward power series expansions in powers of

the potential V . The Born series, however, makes it easier to analyze the conditions of validity of

the approximation, a subject to which we now turn.

7. Conditions of Validity of the Born Approximation

Let us write the Lippmann-Schwinger equation and the first Born approximation for the scat-

tering solution |ψk〉 side-by-side to compare them:

|ψk〉 = |k〉+G0+(E)V |ψk〉,

|ψk〉 ≈ |k〉+G0+(E)V |k〉.
(34)

This shows that the scattered wave as computed by the first Born approximation is a good approx-

imation to the exact scattered wave, everywhere in space, if the exact solution is approximately
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given by the incident wave at small radii where the potential is substantially nonzero. This leads to

the intuitive conditions of validity of the first Born approximation: the approximation is good if the

potential does not distort the incident plane wave too much in the neighborhood of the potential

itself. This in turn shows that the Born approximation is good if the potential is weak or if the

incident energy is high (since in that case the incident particles blast through the potential without

being deflected very much).

To be more quantitative, we follow Gottfried, Quantum Mechanics and introduce the dimen-

sionless quantity,

C =
φk(x) − ψk(x)

φk(x)
, (35)

which we want to be small in the region where V (x) is largest. The quantity C depends on x, but

we evaluate it at x = 0, for a (hopefully) typical point inside the scatterer. Then C depends only on

k. Using the Lippmann-Schwinger equation and evaluating the integral transform at x = 0, we get

C =
m

2πh̄2

∫

d3x′ e
ikr′

r′
V (x′)ψk(x

′)× (2π)3/2. (36)

Since this is only an estimate, we replace ψk(x) with φk(x),

C =
m

2πh̄2

∫

d3x
eikr

r
V (x)eik·x, (37)

dropping the primes on the dummy variable of integration. If V (x) = V (r) is central force, then we

can do the angular integration, obtaining

C =
2m

h̄2k

∫ ∞

0

dr eikr sin krV (r). (38)

The quantity C should satisfy |C| ≪ 1 if the Born approximation is a good one. Our argument

leading to this criterion is not air-tight, but the criterion is useful nonetheless.

Consider, for example, the Yukawa potential,

V (r) = A
e−r/a

r
, (39)

where in comparison to Eq. (33.116) we have set κ = 1/a so that a is the effective range of the

potential. Then the integral (38) can be done, yielding

C =
imAa

h̄2
ln(1− 2ika)

ka
. (40)

This has the limits,

C =
mAa

h̄2
×







2, ka≪ 1,

i
lnka

ka
, ka≫ 1.

(41)

Small ka means that the incident wave length is much larger than the range of the potential; recall

that in this case we have predominantly s-wave scattering. In this case, the validity of the Born
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approximation is equivalent to the requirement that the Yukawa potential (if attractive) should be

so weak that it does not support any bound states. Large ka means that the wavelength is small

compared to the range of the potential. Notice that |C| → ∞ in the limit a → ∞, which takes the

Yukawa potential to the Coulomb potential. The conditions of validity of the Born approximation

are not met for any k for Coulomb scattering, as remarked earlier (see Sec. 33.20).

8. The Exact Green’s Function

So far in our applications of Green’s functions to scattering theory we have only used the

unperturbed Green’s function, G0±. But it turns out that many of the interesting quantities in

scattering theory can be expressed in terms of the exact Green’s function or operator for the system.

Let us recall the definitions of the resolvent operators,

G0(z) =
1

z −H0
, G(z) =

1

z −H
, (42)

which are well defined as long as z is not equal to any eigenvalue of the corresponding Hamiltonian

(either discrete or continuous). The Green’s operators for real energy E are defined by setting

z = E ± iǫ and taking ǫ → 0, when that limit exists (which it does as long as E is not equal to

any discrete, bound state eigenvalue). It was remarked in Notes 36 that the exact resolvent G(z)

contains all the physical information we might be interested in about the given system, including

the scattering solutions and amplitudes. We will now show how this comes about.

There are a number of useful relations connecting the exact resolvent and the unperturbed one

that follow by just playing around with the definitions (42). For example, for any z not on the real

axis, where the inverses of z −H0 and z −H are defined and unique, we have

z −H0 = z −H + V =











(

1 + V
1

z −H

)

(z −H) = [1 + V G(z)](z −H),

(z −H)
(

1 +
1

z −H
V
)

= (z −H)[1 +G(z)V ],

(43)

where the two versions differ by factoring z−H out to the right or to the left. Now multiplying the

first identity from the right and the second from the left by G(z), we obtain

(z −H0)G(z) = 1 + V G(z), (44a)

G(z)(z −H0) = 1 +G(z)V. (44b)

Finally, we multiply the first equation from the left and the second from the right by G0(z), to

obtain

G(z) = G0(z) +G0(z)V G(z), (45a)

G(z) = G0(z) +G(z)V G0(z). (45b)

These are two identities connecting the exact and unperturbed resolvents in which only the order of

the factors in the last term is different.
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Equations (45) can be regarded as Lippmann-Schwinger equations for the exact Green’s func-

tion. To see this, we first set z = E + iǫ and take ǫ → 0 to get the outgoing Green’s operators.

Next we sandwich both equations between 〈x| and |x′〉 to convert them into the language of Green’s

functions instead of operators. Finally, we consider the unknown, exact Green’s function G+ as

being analogous to the unknown, exact wave function ψk(x) in the Lippmann-Schwinger equation,

while the (known) unperturbed Green’s function G0+ is taken to be analogous to the incident plane

wave φk. For example, this procedure applied to Eq. (45a) gives

G+(x,x
′, E) = G0+(x,x

′, E) +

∫

d3x′′G0+(x,x
′′, E)V (x′′)G+(x

′′,x′, E), (46)

which should be compared to Eq. (7). In this case the effective Lippmann-Schwinger equation defines

the dependence of G+(x,x
′, E) on the field point x. The analogous procedure applied to Eq. (45b)

gives a Lippmann-Schwinger equation that defines the dependence of G+(x,x
′, E) on the source

point x′.

Now we rearrange Eq. (45a) as we did with Eq. (30),

[1−G0(z)V ]G(z) = G0(z), (47)

which shows that

G(z) = Ω(z)G0(z), (48)

where Ω(z) is the Møller wave operator defined by Eq. (27). We see that knowledge of Ω(z) not only

allows us to convert the incident plane wave φk into the exact scattering solution ψk (see Eq. (22)),

but it also allows us to convert the unperturbed resolvent into the exact resolvent. Equation (48) also

makes it easy to expand the exact resolvent in a Born series, expressed in terms of the unperturbed

resolvent,

G(z) = G0(z) +G0(z)V G0(z) +G0(z)V G0(z)V G0(z) + . . . . (49)

Another interesting relation follows by solving Eq. (48) for Ω(z) and then using Eq. (44b),

Ω(z) = G(z)(z −H0) = 1 +G(z)V. (50)

In other words, from the definition (25) of Ω(z), we have

[1−G0(z)V ][1 +G(z)V ] = 1. (51)

We see that the inverse of 1 − G0(z)V , needed to solve the Lippmann-Schwinger equation, can be

expressed in terms of the exact resolvent. Thus the exact scattering solution can be written,

|ψk〉 = [1 +G+(E)V ]|k〉, (52)

again showing how knowledge of the exact Green’s function allows us to determine exact scattering

solutions.
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9. The Transition Operator

Let us return to Eq. (16) for the scattering amplitude f(k,k′) and substitute Eq. (52) into it.

We write the result as

f(k,k′) = −4π2m

h̄2
〈k′|T (E)|k〉, (53)

where T (E), the transition operator, is defined by

T (E) = V + V G+(E)V. (54)

Equation (53) is a somewhat more symmetrical representation of the scattering amplitude than

Eq. (16), because we have plane wave states on both sides of the matrix element. The transition

operator incorporates all the complexities of the scattering process, and Eq. (53) is exact. Notice

that if T (E) is replaced by the potential V , we obtain the first Born approximation to the scattering

amplitude. The transition operator is not Hermitian, but rather satisfies

T (E)† = V + V G−(E)V, (55)

where we use the fact that

[G+(E)]† =
[

lim
ǫ→0

1

E + iǫ−H

]†

=
[

lim
ǫ→0

1

E − iǫ−H

]

= G−(E). (56)

The transition operator, or T -operator for short, is useful for exploring the effects of symmetry

on the scattering amplitude. This is an important question experimentally, when the fundamental

symmetries that are obeyed or broken by some interaction are under investigation.

=

=

=k

k

k

k′

k′

k′

−k

k

−k

k′

−k′

−k′

(a)

(b)

(c)

Fig. 2. Effects of various symmetries on the scattering amplitude: (a), parity; (b), time-reversal; (c), parity and
time-reversal.

We begin with parity π (see Notes 20). The action of parity on plane wave states is given

by π|k〉 = | − k〉. Suppose that the Hamiltonian commutes with parity, so that [π,H ] = 0 and
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[π, V ] = 0. Then π commutes with any function of H , so that

[π,G(z)] =
[

π,
1

z −H

]

= 0. (57)

From this and Eq. (54) it follows that [π, T (E)] = 0. Then we have

〈k′|T (E)|k〉 = 〈k′|π†πT (E)π†π|k〉 = 〈−k′|T (E)|−k〉, (58)

or,

f(k′,k) = f(−k′,−k). (59)

This is illustrated as case (a) in Fig. 2.

Next let us consider time-reversal (see Notes 21). The action of time-reversal on the (spinless)

plane wave states is given by Θ|k〉 = | − k〉, since the wave function eik·x is transformed into its

complex conjugate e−ik·x [see Eq. (21.49)]. Suppose that Θ commutes with the Hamiltonian H , and

therefore with V , [Θ, H ] = [Θ, V ] = 0. This does not mean that Θ commutes with G+(E), for we

have

ΘG0+(E)Θ† = Θ
(

lim
ǫ→0

1

E + iǫ−H

)

Θ† = lim
ǫ→0

1

E − iǫ−H
= G0−(E), (60)

since the antiunitary Θ turns E + iǫ into E − iǫ. (More pictorially, we can say that reversing the

direction of time turns the outgoing Green’s operator into the incoming Green’s operator.) Now

Eqs. (54), (55), and (60) imply

ΘT (E)Θ† = T (E)†. (61)

Now let us examine the effect of time-reversal invariance on the matrix elements of the T -operator.

We have

〈k′|T (E)|k〉 = 〈k′|
(

Θ†ΘT (E)Θ†Θ|k〉
)

= 〈k′|
(

Θ†T (E)†| − k〉
)

= [〈−k′|T (E)†|−k〉]∗ = 〈−k|T (E)|−k′〉, (62)

where the parentheses are used to indicate that the time-reversal operators act to the right, and

where in the third equality we have reversed the direction in which Θ† is acting, and used Eq. (21.26).

Thus, time reversal invariance implies that the scattering amplitude satisfies

f(k,k′) = f(−k′,−k). (63)

This property is called microreversibility, and it is illustrated in case (b) in Fig. 1.

Finally, if both parity and time-reversal are symmetries of the Hamiltonian, then we have

f(k,k′) = f(k′,k). (64)

This property is called detailed balance, and it is illustrated in case (c) in Fig. 1.
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10. Orthonormality of the Scattering Solutions

We shall now derive the orthonormality relations for the exact scattering states |ψk〉. These

relations are not easy to derive directly from the Schrödinger equation or from the integral equa-

tion (7), but they can be easily obtained with the help of our various identities involving Green’s

operators. We begin by using Eq. (52) to transform the scalar product of two exact scattering states,

〈ψk′ |ψk〉 = 〈ψk′ |k〉+ 〈ψk′ |G+(E)V |k〉, (65)

where E = h̄2k2/2m. The second term of this equation can be written,

〈ψk′ |G+(E)V |k〉 = lim
ǫ→0

〈ψk′ | 1

E + iǫ−H
V |k〉 = lim

ǫ→0

1

E + iǫ− E′
〈ψk′ |V |k〉, (66)

where we have allowed H to act to the left on 〈ψ′
k
|, which brings out the eigenvalue E′ = h̄2k′2/2m.

As for the first term on the right in Eq. (65), we first write down the Hermitian conjugate of the

Lippmann-Schwinger equation (8), with E and k replaced by E′ and k′,

〈ψk′ | = 〈k′|+ 〈ψk′ |V G0−(E
′), (67)

where we have used Eq. (56). Then we have

〈ψk′ |k〉 = 〈k′|k〉+ 〈ψk′ |V G0−(E
′)|k〉 = δ3(k− k′) + lim

ǫ→0
〈ψk′ |V 1

E′ − iǫ−H0
|k〉

= δ3(k− k′) + lim
ǫ→0

1

E′ − iǫ− E
〈ψk′ |V |k〉, (68)

where we have allowed H0 to act to the right on |k〉, which brings out the eigenvalue E = h̄2k2/2m.

Now combining Eqs. (66) and (68), we obtain

〈ψk′ |ψk〉 = δ3(k− k′), (69)

a simple result.

Although the exact scattering states |ψk〉 are orthonormal, they are not complete in general,

because of bound states. All bound states of the Hamiltonian H are orthogonal to all scattering

states,

〈nα|ψk〉 = 0, (70)

because they are eigenfunctions of the Hamiltonian H with different (positive and negative) energies.

The completeness relation relation is

∑

nα

|nα〉〈nα| +
∫

d3k |ψk〉〈ψk| = 1. (71)

This can be proved by a contour integration that inverts the definition of the Green’s operators. We

will not go into details here.
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Problems

1. This problem is a variation on Sakurai, Modern Quantum Mechanics, problem 7.1.

(a) Find the free-particle Green’s function in one dimension,

G0+(x, x
′;E) = lim

ǫ→0
〈x| 1

E + iǫ−H0
|x′〉, (72)

where

H0 =
p2

2m
. (73)

Do this for both E > 0 and E < 0, as in the 3-dimensional case discussed in Notes 36. Also find

G0−(x, x
′;E). Show explicitly that they satisfy

(

E +
h̄2

2m

d2

dx2

)

G0±(x, x
′;E) = δ(x− x′). (74)

You may find it useful to note that

d|x|
dx

= 2Θ(x)− 1, (75)

and
dΘ(x)

dx
= δ(x). (76)

The Heaviside step function Θ(x) is defined by Eq. (36.18).

(b) Write down a 1-dimensional version of the Lippmann-Schwinger equation for an exact scattering

solution ψ(x) associated with an incoming (from the left) free particle state φ(x) = eikx/
√
2π. The

exact solution ψ(x) satisfies the Schrödinger equation in a potential V (x), which you can consider

to be localized. Consider asymptotic forms (large |x|) and find expressions for the transmission and

reflection amplitudes t and r which are analogous to Eq. (32) in three dimensions. These amplitudes

are defined by

ψ(x) =
1√
2π

[eikx + re−ikx], (x→ −∞),

ψ(x) =
1√
2π
teikx, (x→ +∞). (77)

(c) Consider the potential,

V (x) = λδ(x). (78)

This potential can be seen as the limit of a rectangular barrier (for λ > 0) with width a and height

V0 = λ/a as a→ 0. The attractive case λ < 0 is similar.

Solve the Lippmann-Schwinger equation directly, and write out explicit forms for the wave

function ψ(x) for x < 0 and x > 0. To help the reader, please use the abbreviation,

D =
mλ

h̄2k
, (79)
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as much as possible. Note that D is dimensionless. Compute t and r in terms of D and show

explicitly that |t|2 + |r|2 = 1.

(d) The operator equation,

G+(E) = G0+(E) +G0+(E)V G+(E), (80)

was proved in lecture. It is a kind of Lippmann-Schwinger equation for the exact Green’s function.

Write this out as an integral equation for the exact Green’s function, assume the potential is given

by Eq. (78), and solve for G+(x, x
′;E). Consider the case λ < 0. Show that this Green’s function

has one pole on the negative energy axis, located at the energy of the one (and only) bound state.

Show that the residue of this pole is the projection operator onto the eigenspace of this bound state.

2. This is Sakurai, Modern Quantum Mechanics, revised edition, problem 7.2. A particle is scattered

from a central force potential V (r). Show that

σ ≈ m2

πh̄4

∫

d3x d3x′ V (r)V (r′)
sin2 k|x− x′|
k2(x− x′)2

, (81)

in each of the following ways:

(a) By integrating the differential cross section computed using the first Born approximation.

(b) By applying the optical theorem to the forward scattering amplitude in the second Born ap-

proximation. Note that f(0) is real if the first Born approximation is used.

3. Consider N static spherically symmetric scattering centers placed on a straight line such that the

n-th scatterer is at point (n − 1)a, for n = 1, . . . , N . A particle with incident momentum h̄k such

that k · a = 0 is scattered from the array. Assuming the validity of the Born approximation, show

that the elastic differential cross section is of the form,

dσ

dΩ
= |F (α)|2 dσ0

dΩ
, (82)

where dσ0/dΩ is the differential cross section for scattering by a single scatterer, where α is the

angle between a and k′. Find the form factor F (α).


