
Copyright c© 2020 by Robert G. Littlejohn

Physics 221A

Fall 2020

Appendix C

Gaussian Integrals†

1. The Main Results

The most common Gaussian integral encountered in practice is

∫ +∞

−∞

dx e−ax2

=

√
π√
a
, (1)

where a is real and a > 0. The integral does not exist (it diverges) if a ≤ 0.

Another common form is when the exponent is purely imaginary. In this case we have

∫ +∞

−∞

dx eicx
2

= eisπ/4
√
π

√

|c|
, (2)

where c is real and c 6= 0, and where s = sgn c = ±1. The integral does not exist (it diverges) if

c = 0. Notice that Eq. (2) is a special case of Eq. (1) if a is allowed to be complex, if we set a = −ic,

and if
√
a =

√
−ic is interpreted according to

√
−ic =

{

e−iπ/4
√

|c|, c > 0,

eiπ/4
√

|c|, c < 0.
(3)

If we allow a in Eq. (1) to be an arbitrary complex number, then the integral converges ex-

ponentially if Re a > 0. If Re a < 0 then the integrand diverges exponentially and the integral is

not defined. The case Re a = 0 is the marginal case. If Rea = 0 and Im a 6= 0, then the integrand

oscillates with a sequence of positive and negative lobes with decreasing area as x increases, so the

integral converges. Finally, if Re a = 0 and Im a = 0 (that is, a = 0), then the integral does not

converge. In summary, the integral converges everywhere to the right of the imaginary axis in the

complex a-plane, and on the imaginary axis except at a = 0.

If a is a complex number such that the integral (1) converges, then the answer is still given by

Eq. (1), as long as
√
a is interpreted in the following sense. We write

a = |a|eiφ, (4)

where −π/2 ≤ φ ≤ π/2, and we define

√
a = eiφ/2

√

|a|. (5)

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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This means that of the two square roots of a, we take the one with the positive real part.

Another common form is one with a linear term in the exponent,

∫ ∞

−∞

dx e−ax2+bx =

√
π√
a
eb

2/4a. (6)

The existence of this integral depends on the value of a in the same way as the simpler integral

(1), because for large x the quadratic term in the exponent dominates. That is, a can be any

complex number to the right of the imaginary axis, or on the imaginary axis, except for a = 0. The

convergence of the integral is independent of b, which can be any complex number. The quantity
√
a on the right hand side of Eq. (6) is interpreted as in Eq. (5).

2. The Proof

This is the standard proof, see, for example, E. B. Wilson, Advanced Calculus.

First take the case where a is real and a > 0. By a change of variable
√
a x = x′ the answer can

be expressed in terms of

I =

∫ ∞

−∞

dx e−x2

=

∫ ∞

−∞

dy e−y2

, (7)

where we have dropped the prime on x in the first integral. Squaring this we have

I2 =

∫

dx dy e−(x2+y2) =

∫ ∞

0

ρ dρ

∫ 2π

0

dθ e−ρ2

, (8)

where we have switched to polar coordinates in the second integral. This integral is easily done,

yielding I2 = π. Taking the square root and transforming back to the original variable of integration

reproduces Eq. (1). The method is a special trick that is worth knowing because the result is so

important.

To prove Eq. (1) in the case that a is complex (but in the allowed region described in Sec. 1)

we do a change of variable,

t =
√
a x, (9)

where
√
a is defined in Eq. (5). The contour of integration in the original integral runs along

the real axis in the complex x-plane, so after the change of variable the contour is arg t = φ/2,

arg t = φ/2 + π in the complex t-plane. However this contour can be deformed to run along the

real t-axis, whereupon the integral is reduced to the form of Eq. (1) with a = 1. This is really an

example of the method of steepest descent, an approximation method for integrals which however

in this case is exact.

To prove the integral (6) we complete the square and shift origin to reproduce the form (1).
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3. Multidimensional Gaussian Integrals

A common form of a multidimensional Gaussian integral is
∫

dnx exp(−xT ·A · x+ bT · x) = πn/2

√
detA

exp
(bT ·A−1 · b

4

)

, (10)

where x is a a real n-vector and the range of integration is all of Rn, where A is a real, n × n

symmetric, positive definite matrix, where b is an n-vector, where T means transpose, where x and

b are seen as column vectors and xT and bT as row vectors, and where the dot indicates contractions

or matrix multiplication. The vector b is allowed to be complex.

The case where the matrix A in Eq. (10) is purely imaginary is also common. In this case we

have
∫

dnx exp(ixT · C · x+ bT · x) = eiνπ/4
πn/2

√

| detC|
exp

(

i
bT · C−1 · b

4

)

. (11)

Here C is a real, n× n symmetric matrix with detC 6= 0; ν is an integer,

ν = ν+ − ν−, (12)

where ν± is the number of positive or negative eigenvalues of C; and otherwise the notation is as in

Eq. (10).

The case where A in Eq. (10) is a complex symmetric matrix is more complicated but encoun-

tered less frequently, so we shall not consider it.

Equation (10) is proved by performing an orthogonal transformation,

x = R · y, (13)

where y is another real n-vector and R is an orthogonal matrix such that

RTAR = Λ, (14)

where Λ is diagonal. Then dnx = dny, and the new integral breaks up into the product of one-

dimensional integrals of the form (1). Equation (11) is proved similarly, except the resulting one-

dimensional integrals have the form (2).

4. Moment Integrals

We present some one-dimensional integrals giving moments of Gaussian. The integral for the

first moment is
∫

dxxe−ax2+bx =
b

2a

√
π√
a
eb

2/4a, (15)

while the second moment is
∫

dxx2e−ax2+bx =
( 1

2a
+

b2

4a2

)

√
π√
a
eb

2/4a. (16)

These may be obtained by differentiating Eq. (6) with respect to a or b.


