
Physics 221B

Spring 2017

Homework 27

Due Wednesday, May 3, 2017

Note: I am making this homework due on the Wednesday after the regular time in order to

give you more time to do it. I will hold office hour on Wednesday, May 3 at 11am. However,

you must turn this homework in on time—no free late for this one, nor any week late at

50% credit. I’m doing this because I want to get the solutions out on that same Wednesday

so you can have them to study for the exams, which start the following week.

Reading assignment: Please read the notes posted for the week of lectures of April 18–20.

1. Positrons were first observed by Anderson in 1932 in cosmic ray tracks in a cloud cham-

ber. The experimental apparatus consisted of a series of parallel plates of lead (a high Z

material), separated by air gaps. The gamma rays were produced when high energy muons

(the principal component of cosmic rays at the earth’s surface) passed close to a nucleus.

These gamma rays, in turn, when passing close to another nucleus further below, produced

electron-positron pairs.

When we discussed Mott scattering in class, we adopted a model in which the second

quantized electron-positron field interacts with an external potential Φ(x) (such as Φ =

Ze/r produced by a nucleus), which is treated as a given c-number field. In this model, the

interaction Hamiltonian is

H1 =

∫
d3x : Jµ(x)Aµ(x) :, (1)

where Jµ is the electron field operator,

Jµ(x) = −eψ̄(x)γµψ(x), (2)

and where

Aµ = Aµ
ext = (Φ, 0). (3)

If we wish to allow the emission and absorption of photons (real or virtual), we must

include the quantized electromagnetic field. Therefore we write

Aµ = Aµ
qu +Aµ

ext, (4)

where Aµ
qu is the transverse, quantized field operator in the Coulomb gauge, Aµ

qu = (0,A).

Here A is given by Eq. 40.20. (But use natural units for this problem, h̄ = c = 1.) We
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must also include the instantaneous Coulomb interaction in the Hamiltonian,

H1,Coul =
1

2

∫
d3x d3x′ : ρ(x)ρ(x

′) :

|x− x′|
, (5)

where

ρ(x) = −eψ(x)†ψ(x). (6)

Thus, the overall interaction Hamiltonian is

H1 = H1,ext +H1,qu +H1,Coul. (7)

(a) Consider a process in which a photon passes close to a nucleus, and an electron-positron

pair is produced. (This process cannot happen in free space because of energy-momentum

conservation.) Let (ps) be the 4-momentum and spin of the outgoing electron, let (p′s′)

be the 4-momentum and spin of the outgoing positron, let λ = (k, ǫ) be the mode of the

incident photon. Also write

pµ = (E,p),

p′µ = (E′,p′),

kµ = (ω,k). (8)

Use second order perturbation theory, in which the amplitude connecting an initial state

|i〉 and a final state |n〉 is

M = 〈n|H1|i〉+
∑
k

〈n|H1|k〉〈k|H1|i〉

Ei −Ek
(10)

[see Eq. (42.16)]. Find and draw all Feynman diagrams which contribute to this process at

lowest order in α = e2. Count the external potential Φ as containing one power of e (since

we are thinking of Φ = Ze/r). Indicate the interaction with the nucleus by an X drawn

next to an electron or positron line, as we did with Mott scattering.

(b) Pick out two Feynman diagrams which differ from one another only in the time ordering

of the creation of the outgoing electron and positron. Work out in detail the contribution

to M from each of these Feynman diagrams, and write down your answers. Express your

answer in terms of the Fourier transform of the potential, as we did with Mott scattering,

Φ̃(q) =
1

(2π)3/2

∫
d3x e−iq·x Φ(x). (11)
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Define all symbols you use (unless they are obvious, like e). In Mott scattering, as well as

in nonrelativistic scattering in the first Born approximation, the cross section depends on

the 3-momentum transfer. What similar quantity does it depend on in this case?

(c) Combine the two terms, and express the result in terms of the Feynman electron prop-

agator,

DF (p) =
6p+m

p2 −m2
. (12)

Unfortunately, to carry this problem farther involves too much calculation for a home-

work problem, but the steps remaining to obtain the cross section are straightforward.


