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2.1 Covariant Form of the Dirac Equation

- It is necessary that the Dirac equation and the continuity equa-
tion upon which its physical interpretation rests be covariant under
Lorentz transformations. Let us first review what is meant by
a Lorentz transformation.! Two observers O and O’ who are in
different inertial reference frames will deseribe the same physical
event with the different space-time coordinates. The rule which
relates the coordinates z+ with which observer O describes the event
to the coordinates (z#)’ used by observer 0’ to describe the same
event is given by the Lorentz transformation between the two sets of
coordinates:

3
@) = ), aar = ar,ar @.1) |
n=0 .
It is a linear homogeneous transformation, and the coefficients a’,
depend only upon the relative velocities and spatial orientations of
the two reference frames of O and O’. The basic invariant of the
Lorentz transformation is the proper time interval

ds* = g,, dz# dz” = dx» dz, (2.2)

This is derived from the physical observation that the velocity of light
in vacuo is the same in all Lorentz frames. Equations (2.1) and (2.2)
lead to the relation on the transformation coefficients

a,’a*; = &', (2.3)

Equations (2.1) and (2.3) serve as defining relations for both
proper and improper Lorentz transformations. In the former case the
determinant of the transformation coefficients satisfies the relation

det [a] = +1

Proper Lorentz transformations can be built up by an infinite succes-
sion of infinitesimal transformations. They include transformations
to coordinates in relative motion along any spatial direction as well as.
ordinary three-dimensional rotations. The improper Lorentz trans-
formations are the discrete transformations of space inversion and
of time inversion. They cannot be built up from a succession of
infinitesimal ones. Their transformation coefficients satisfy the

'W. Pauli, “Theory of Relativity,” Pergamon Press, New York, 1958.

““The Principle of Relativity,” collected papers of H. A. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, Dover Publications, Inc., New York, 1923 reissue.
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relation
det |a| = —1
in both cases.

Our task is to construct a correspondence relating a given set
of observations of a Dirac particle made by observers O and 0’ in their
respective reference frames. In other words, we seek a transformation
law relating the wave functions ¢{(x) and ¢'(z’) used by observers O
and (', respectively. This transformation law is a rule which allows
0’ to compute ¢'(z') if given ¥(x). According to the requirement of
Lorentz covariance, this transformation law must lead to wave func-
tions which are solutions of Dirac equations of the same form in the
primed as well as unprimed reference frame. This form invariance
of the Dirac equation expresses the Lorentz invariance of the under-
lying energy-momentum connection

— 2
pup* = mé

upon which the considerations of Chap. 1 were based.
In discussing covariance it is desirable to express the Dirac equa-
tion in a four-dimensional notation which preserves the symmetry

between ¢t and z*. To this end we multiply (1.13) by 8/¢ and intro-
duce the notation

v =8 v = Boy 1=1,23
This gives

d d

. d 0
zﬁ(7°@+7‘@+72@+736—ﬁ)¢—mw=0 (2.4)

The new matrices y* provide an elegant restatement of the
commutation relations (1.16)

Thyr 4yt = 2g01 (2.5)

where 1 is the 4 X 4 unit matrix and hereafter will not be explicitly
indicated. It is clear from their definition that the 4% are anti-

hermitian, with () = —1, and that y° is hermitian. In the repre-
v sentation (1.17) they have the form
, i 0 o o |1 0
el o I PR 26
It is convenient to introduce the Feynman dagger, or slash, notation:

A=vA4,=g,Ar = 4" — - A
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and in particular

Equation (2.4) then abbreviates to

(thY — me)y =0 2.7

. o 0
or, with p* = 7 37,
(p— me)y =0 (2.8)

Addition of the electromagnetic interaction according to the
“minimal”’ substitution (1.25) gives

(st

This in no way influences considerations of covariance, because

both p* and A*, and hence their difference, are four-vectors.

Proof of Covarianece

In order to establish Lorentz covariance of the Dirac equation,
we must satisfy two requirements. The first is that there must be an
explicit prescription which allows observer ', given the ¢(z) of
observer, O, to compute the ¢’(z’) which describes to O’ the same
physical state. Second, according to the relativity principle, ¢'(z’)
will be a solution of an equation which takes the form of (2.7) in the
primed system '

(#9520 — me) wi) = 0

The # satisfy the anticommutation relations (2.5); therefore 70t = °
and ¥ = —4 as required for a hermitian hamiltonian. As may be
shown by a lengthy algebraic proof,! all such 4 X 4 matrices §* are
equivalent up to a unitary transformation U:

Fu = Uty U Ut =yt

!See R. H. Good, Jr., Rev. Mod. Phys., 27, 187 (1955), especially Sec. III,
p- 190. , _ , .

doo4/012
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and so we drop the distinction between ¥+ and v* and write
(p" — me)y/(z') = 0 (2.9)

with p = ihiy*

oz+

We ask that the transformation between ¢ and ¢’ be linear,
since both the Dirac equation and the Lorentz transformation (2.1) of
the coordinates are themselves linear. We introduce it in the form

V(@) = ¥(az) = S(a)¢(z) = S(a)¢(a~z") (2.10)

where S(a) is a 4 X 4 matrix which operates upon the four-component
column vector Y(z). It depends upon the relative velocities and
spatial orientations of O and 0’. 8§ must have an inverse, so that if O
knows ¢'(z") which O’ uses to describe his observations of a given
physical state, he may construct his own wave function ¢ (x)

¥(z) = S~} (z') = S~(a)¥ (ax) (2.11)
We could equally well write, using (2.10),
¥(z) = S(a=")¢ (ax)
which provides the identification
S(a~Y) = Sa)

The main problem is to find S. It must satisfy (2.10) and (2.11).
If S exists, observer 0’, given ¢¥(z) by O, may construct ¢'(z') using
(2.10).

By reexpressing the Dirac equation (2.7) of O in terms of ¢/(z")
with the aid of (2.11), O’ could then check whether ¢/(2’) satisfies
his own equation (2.9). He would find after left-multiplication by

S{a)
[iﬁS(a)-y*‘S—l(a) é%? — mc] V) =0

- Using (2.1) to write

the primed equation is found to be

[z’hS (a)y*S—Ya)ar, - mc] v (') =0

ozx”’

This is form-invariant, that is, identical with (2.9), provided an S can

doos5/012
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be found which has the property

S(@)yS~'(a)a’, = v’
or equivalently
a’yy* = S (a)vy*S(a) (2.12)

Equation (2.12) is the fundamental relation determining S. In seek-
ing S we are seeking a solution to (2.12). Once we show that (2.12)
has a solution and find it, the covariance of the Dirac equation is
established. By way of terminology, a wave function transforming
according to (2.10) and (2.12) is a four-component Lorentz spinor.
We anticipate that S will present novel features not found in tensor
caleulus, since bilinear forms in ¥ such as the probability current (1.20)
are expected to form four-vectors.

We first construct S for an infinitesimal proper Lorentz trans-
formation

@' = ¢% + Aw’, (2.13a)
with Aw™ = — Aw*® (2.13b)
according to Eq. (2.3) for an invariant proper time interval. Each

of the six independent nonvanishing Acw# generates an infinitesimal
Lorentz transformation,

Aw' = A8

for a transformation to a coordinate system moving with a velocity
¢ AB along the z direction,

Awl; = — Aw? = Ap

for a rotation through an angle Ay about the 2 axis, and so forth.
Expanding S in powers of Aw™ and keeping only the linear term
in the infinitesimal generators, we write

S=1-— Z"a,,, Ao and  S1=14 Z"a,, A**  (2.14)

with Tuy = —0uy

by (2.13b). Each of the six coefficients ou 18 8 4 X 4 matrix, as are
the transformation S and the unit matrix 1. Inserting (2.13) and
(2.14) into (2.12) and keeping first-order terms in Aw*®, we find

7
Aw?yy* = — i (Aw)""('r’craa - 0'.:6'}")

doos /012
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Lorents covariance of the Dirac equation 21

From the antisymmetry of the generators Aw** there follows

2ig%avs — @’8Ya] = [¥",0ug] (2.15)

The problem of establishing proper Lorentz covariance of the
Dirae equation is now reduced to that of finding six matrices .4
which satisfy (2.15). The simplest guess to make is an antisymmetric
product of two matrices, and directly we find, using (2.5), that

!
Ty = 3 [’YM;TV] (2-16)

is the desired matrix. According to (2.14), 8 for an infinitesimal
Lorentz transformation is given by

S =1+ é Braye] B = 1 — 2o, A 2.17)

We now complete our task by constructing the finite proper

transformations by a succession of infinitesimal ones. First, to build
up (2.1) from (2.13), we write

Aw”, = Aw(l,)", (2.18)

where Aw is the infinitesimal parameter, or “angle of rotation” about
an axis in the direction labeled n, and 7., is the 4 X 4 (in space-time)
matrix of coefficients for a unit Lorentz rotation sbout this axis.
v and u label row and column respectively. Thus for a transformation
to a primed system in motion along the z axis with an infinitesimal
velocity ¢ Aw = ¢ A8

r, = (2.19)

DO =O
OO D=
SO OO
o oo

~

so that
I =Ty= —J9 = 410 =

Using the algebraic property of 7 *,, that

I* = and I? =47

COO =
QO O
e i e Y e B e
SOoOoOC

we can write the finite transformation for uniform relative z-axis

s

——
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motion as
o T LAY LA\ L e
I DRETY
—_ (ewl)vpxp :
= (cosh wl + sinh wI)’,z*
= (1 — I? 4 I*cosh & + I sinh w)”,2*
For the individual components this gives
% coshw —sinhw 0 O |fz°
z' | | — sinh w coshw 0 O] !
| 0 0 1 0]]=z (2.20)
¥ 0 0 0 1]|a°
or
z¥ = (cosh w)(z® — tanh w 1)
z' = (cosh w)(z! — tanh w z°
L = iz A )- (2.21)
¥ = gt
where tanh w = B and coshw = 1

Vo

relate the Lorentz rotation angle w with the relative velocity ¢8.

This result can be generalized o include motion along any direc-
tion or spatial rotation about any axis. The six matrices I’, gener-
ating the six independent Lorentz rotations are the four-dimensional
generalizations of the three-dimensional space rotations familiar in
the nonrelativistic theory.

Turning now to the construction of a finite spinor transformation
S, we have from (2.14) and (2.18)

@) = S¥@) = lim (1-220,1) v
V' (z —.OIP:C—-NI_EI‘I‘, iy ol T
= exp (— 11' wa,‘pI‘,‘,’) v(z) (2.22)
Specializing again to the transformation (2.19) we have
V(@) = e imuny(q) (2.23)

where 2’ and z are related by (2.21).
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Similarly, for a rotation through an angle ¢ about the z axis,
It = —J*% = —1and

‘I,’(x’) = 3(“2)%'“’1[1(&:) (224)

12 |98 0
’ [0 o 3]
in the representation (1.17), with

1 0
7T [0 —1]

the Pauli 2 X 2 matrix. We recognize the similarity of (2.24) with the
form of rotation of a two-component Pauli spinor

where

o' (2} = eI () © (2.25)

The covariant “angle” variables w** in (2.18) are associated with the
Lorentz transformation in the same sense that the rotation angle and
direction in @ are for the three-dimensional rotation. The appearance
of half-angles in (2.24), as in (2.25), is an expression of the double-
valuedness of the spinor law of rotation; it takes a rotation of 4
radians to return ¢(z) to its original value. Because of this, physical
observables in the Dirac theory must be bilinear, or an even power in
¥(x). |

For spatial rotations, S = S is unitary, since the o;; are hermitian,
and

St = e-eting = g—Gineio; = St

This is not true for transformations fo a moving coordinate system
8 = §;. TFor instance, for the transformation (2.23)

S, = e—GiDeny = g—wia = 8 = g7t
However, S: does have the property
8z' = veSLve

found by expanding S in a power series. Since [yo,0%] = 0, this can
be generalized to include rotations

871 = yoStyo - (2.26)

The continuity 'equation is also covariant. The probability
current (1.21) and (1.22), in the notation of (2.4), is

#(@) = ot (@)y v (z)

doos 012
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and under (2.1) transforms to
(@) = Wy (@)
= o' (@)SMyorS¥(2)
= ! (x) 7S 1y"SY(x)
= ca* 1 (x)yoy'¥(z)

= ar,5"(z) 2.27)

Evidently j*(z) is a Lorentz four-vector and the continuity equation

() _
dx+ 0

is invariant. Also, the probability density 7°(x) = ¢p(z) transforms as
the time component of a conserved four-vector. This is the desired
result noted in See. 1.3 for an invariant probability.

Because the combination ¢'ye in (2.27) occurs so often, it is
dignified by a new notation

v(r) = ¢¥Tvo (2.28)

where ¢(z) is known as the adjoint spinor. Its Lorentz transformation
property is given by
¥'(z) = $(z)S? (2.29)

Space Reflection

We now expand our outlook to take into account the existence of
the improper Lorentz transformation of space reflection

X = —x =t

Again covariance requires a solution of (2.12), but in this case
we cannot build it up from the infinitesimal transformations. How-
ever, it is easy enough to solve (2.12) directly. The transformation
matrix is

1 0 0 0
0 -1 0 0 )
a% =1, 0 —1 0 = g% (2.30)
0 0 0 —1
Denoting S = P for the coordinate reflection, (2.12) becomes
P-ly*P = g»y* (2.31)

which is satisfied by :
P = e'eyy (2.32)

do1o/012
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The phase factor is of no physical interest here and may be narrowed
down to the four choices +1, +7¢ if we require that four reflections
return the spinor to itself in analogy with a rotation through 4=
radians. P in (2.32) evidently is unitary, P! = P!, and satisfies
(2.26) as well. Equation (2.32) tells us that

vV (2') = ¢ (—x,t) = eoyp(x,0) (2.33)

In the nonrelativistic limit ¢ approaches an eigenstate of P,
and by (1.24) and (2.6) the positive- and negative-energy states at rest
have opposite eigenvalues, or inirinsic parities.

The discussion of the other improper transformations, such as
time reversal, is more involved; it is given in Chap. 5.

2.4 Bilinear Covariants

By forming products of the vy matrices it is possible to construct
16 linearly independent 4 X 4 matrices T'zg which appear often in
applications of the Dirac theory. These are

rs =1 T, = v, T, = 0w
TP = fyOyly2yd = yy = b T2 = vy, (2.34)

By using the anticommutation relations (2.5) the I'* are readily
established to be linearly independent by the following argument:

1. For each T'», (I'")% = +1.
2. For each I'" except I'S, there exists a I' such that

I‘nI‘m — _I‘m]_"n
From this it follows that the trace of I'* vanishes:

+ TrI'» = Tr I'*(’'*)? = — Tr I'"I'"I'* = — TrI'*(I')2 = 0
3. Given I' and I'®, a 7 b, there exists a I'* # I'S such that
A | sr® = [n
s This follows by direct‘inspection of the 1s.
3 4. Suppose there exist numbers a. such that

_ E an ' =0

Then multiply by I'» = I'S and take the trace; using (3), we find
an = 0. If ' = TI'S, we find a, = 0, and all coefficients vanish.
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This establishes the linear independence of the I'*. It follows
that any 4 X 4 matrix can be written in terms of the |
We may now write down the Lorentz transformation properties

of the bilinear forms ¥(z)I"¢¥(x) constructed from the 16 I', We need
only the observation that

Y5 + vyt = 0 (2.35)
and therefore ,
[‘Ys,d',n] =0
or
[S,ve] = 0 (2.36)

for all proper Lorentz transformations. As a special case of (2.35)

Pys = —vsP . (2.37)
Carrying out caleulations similar to (2.27) we find:

V(@)W (@) = d(x)¥(z)

a scalar
V'@ )y (@) = $(@)SysS¥(z) = det |a|d(z)vs ()
a pseudoscalar
V(@)Y (@) = am () vy (z)
a vector

V(@ )vsy¥' (z') = det |ala”d(z)vsyd(z)

a pseudovector

a*aagf (x)o Py (z)

a second-rank tensor (2.38)

V' (@)omy’ (2)

i

Problems

1. Verify (2.26),
2. Verify the transformation laws given in (2.38).

"‘3 Given a free-partiele spinor u(p), construct u(p + @) for gy — 0, with p-g — 0

in terms of u(p) by making a Lorentz transformation.
4. Show that there exist four 4 X 4 matrices T* such that
ReTig =0
{Ty, T} = 2Gur
|_

eir,.a—i‘ —m] Wz =0

that is, the Dirac equation is real.
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