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Appendix E

Introduction to Tensor Analysis†

1. Introduction

These notes contain an introduction to tensor analysis as it is commonly used in physics, but

mostly limited to the needs of this course. The presentation is based on how various quantities trans-

form under coordinate transformations, and is fairly standard. It is also somewhat old-fashioned,

but it has the advantage of at least creating a mental image of how measurements are actually made

in physics. It also provides a good background if one wishes to learn more about the more modern

and more abstract approaches to tensors.

Quantities of physical interest are often expressed in terms of tensors. When physical laws

are expressed in this manner, they often become covariant, that is, they have the same form in all

coordinate systems. For example, we may say that an equation is or is not covariant. In tensor

analysis the word “covariant” is also used in a different sense, to characterize a type of vector or

an index on a tensor, as explained below. Covariant equations are preferred for the formulations of

fundamental physical laws, because the form-invariance implies a separation between the objective

reality (the invariant form of the equations) and the constructions introduced by the observer to

make measurements (the coordinate system).

2. Spaces and Coordinates

In these notes we will be mainly concerned with two spaces: ordinary, three-dimensional, physi-

cal space, and four-dimensional space-time. We usually think of physical space as a Euclidean space

extending to infinity in all directions, and model it mathematically as R3 with a Euclidean metric.

In reality physical space is not exactly Euclidean, and whether it extends to infinity is a cosmological

question (it seems that it probably does, but looking deeper into space involves looking backwards

in time, and we can only see a finite part of space). As for space-time, in special relativity we usually

think of it as extending to infinity in all four directions (including time), and model it as R
4 with

the Minkowski metric. As with three-dimensional, physical space, the cosmological reality is more

complicated, but in both cases the models (R3 and R
4 with their respective metrics) are adequate for

problems of limited space and time extent, which applies to all problems considered in this course.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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Nevertheless, we will be slightly more general at the beginning of these notes, and think of more

general kinds of spaces. These include, for example, the configuration spaces and phase spaces of

mechanical systems (see Sec. B.3 and B.18) and many others. We do this because the curvilinear

coordinates that are necessary on general spaces are sometimes used also on vector spaces such as

R
3 and R

4, and because the general context is useful conceptually.

Consider a space of some kind in a physical problem (this corresponds to what in mathematics

is called a differentiable manifold). A coordinate system on a space is a way of uniquely labeling the

points of the space by means of coordinates, that is, n-tuples of numbers. The number of coordinates

required is the dimensionality of the space. If the space has the structure of a vector space, then

the simplest coordinate systems are rectilinear, in which the coordinate axes are stright lines. Such

spaces include ordinary three-dimensional, physical space (in the usual model), and space-time (in

special relativity). In both these examples, the space possesses a metric (Euclidean or Minkowski), so

it is possible to choose the coordinate axes to be orthogonal (in the Euclidean or Minkowski sense).

The resulting coordinate systems (orthonormal, Euclidean coordinates or coordinates associated

with a Lorentz frame) are the usual choices.

But on a vector space it is also possible to use skew coordinates, that is, rectilinear coordinates

that are not orthonormal. In some cases the space has no metric so orthonormality is not defined.

Even if the space is a vector space, we may choose to use coordinates that are not rectilinear, for

example, the spherical coordinates (r, θ, φ) in three-dimensional, physical space. Such coordinates

are called “curvilinear,” because the coordinate lines are not straight. (The coordinate lines are

obtained by varying one of the coordinates, while holding all the others fixed.) But if the space is

not a vector space (for example, the surface of a sphere), then rectlinear coordinates do not exist,

and all coordinates are curvilinear.

In the general case, we will denote a system of coordinates by {xi, i = 1, . . . , n}, or xi for

short, where n is the dimensionality of the space. It is customary to use a superscript to label

the coordinates. It is assumed that the coordinates provide a one-to-one labeling of the points of

the space, that is, a set of coordinate values uniquely identifies a point and vice versa. In general

this is only possible over some region of the space, and some corresponding region of coordinate

values. That is, some spaces (mathematically, manifolds), require more than one coordinate patch

(mathematically, a chart) to cover them. The different coordinates need not have the same physical

dimensions, for example, in spherical coordinates (r, θ, φ), the radius r has dimensions of distance,

while the other two coordinates, θ and φ, are dimensionless.

We will be interested in how various quantities transform under a change of coordinates. In

physical applications a coordinate system represents how we measure a physical system and express

those measurements as numbers, but otherwise the coordinate system is a construct introduced by

the observer, one that is not intrinsic to the system itself. For example, the measurement of the

velocity vector produces three numbers, which are referred to a set of coordinate axes, but the

system does not know about the coordinates we have chosen. Therefore, to understand the intrinsic
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physical properties of the system, we study how the results of our measurments change when the

coordinate system is changed.

Let {x′ i, i = 1, . . . , n}, or x′ i for short, be a new coordinate system, in addition to xi. Since it

also labels points in a one-to-one manner, the coordinates xi and x′ i are invertible functions of one

another, xi = xi(x′), x′ i = x′ i(x). [An equation like x′ i = x′ i(x) means x′ i = x′ i(x1, . . . , xn) for

i = 1, . . . , n.] This means that the Jacobian matrices,

∂x′ i

∂xj
and

∂xi

∂x′ j
(1)

exist, are nonsingular, and are inverses of each other,

∂x′ i

∂xj

∂xj

∂x′ k
= δik. (2)

Here we use the summation convention (see Sec. 3). For example, the two coordinate systems on

physical space, (x, y, z) and (r, θ, φ), are related by the equations,

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

(3)

or their inverses,

φ = tan−1(y/x),

θ = tan−1(
√

x2 + y2/z),

r =
√

x2 + y2 + z2.

(4)

Notice that spherical coordinates (r, θ, φ) do not provide a one-to-one labeling of points at the

north pole (r > 0, θ = 0), since the angle φ can take on any value. At such singular points of a

coordinate system one of the Jacobian matrices (1) is singular, and the other does not exist. In the

following discussion we assume that we are away from such singular points. Notice that a singularity

of a coordinate system is not the same as a singularity of the space; a sphere has no singularity at

the north pole, where it looks the same as anywhere else.

3. The Summation Convention

In Eq. (2) we use the summation convention, often attributed to Einstein, in which there is an

implied summation over repeated indices. It is particularly useful in tensor analysis. Equation (2)

could be written more explicitly as
n
∑

j=1

∂x′ i

∂xj

∂xj

∂x′ k
= δik, (5)

since the index j is repeated on the left-hand side of Eq. (2) but the indices i and k are not. If there

are indices that occur more than twice, or indices that occur only once but are summed over, or
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indices that occur twice that are not summed over, then the summation convention cannot be used.

Many books state that the summation convention will be used unless explictly stated otherwise.

This is close to how the summation convention is used in these notes.

When the summation convention is used, repeated indices are dummies, and can be replaced

by any other index that is not used elsewhere, without changing the result. For example, we could

replace j by n in Eq. (2) without changing the result. We cannot, however, replace j by k in Eq. (2),

because k is an index that is already being used.

4. Scalars

A scalar is quantity that has the same value in all coordinate systems. If S(x) and S′(x′) are

the values of a scalar field in two coordinate systems, then

S(x) = S′(x′), (6)

where xi = xi(x′) is understood (xi and x′ i refer to the same point). This statement (and others

like it below) imply a physical or mathematical rule whereby S can be determined or measured or

computed in different coordinate systems. For example, one may think of the temperature in a room;

the thermometer reading depends on the position of the thermometer, but not on the coordinates

used to describe that position.

5. Contravariant Vectors

A contravariant vector {Ai, i = 1, . . . , n}, or Ai for short, is a set of n quantities that transform

according to the rule,

A′ i =
∂x′ i

∂xj
Aj , (7)

where Ai and A′ i are the quantities measured or computed in the two coordinate systems xi and

x′ i. An upper (superscript) position is conventional for contravariant vectors. The most important

example of a contravariant vector is a set of infinitesimal coordinate displacements dxi connecting

two nearby points. These transform by the chain rule, which is the same as the contravariant

transformation law,

dx′ i =
∂x′ i

∂xj
dxj . (8)

If we divide this by dt we obtain a velocity vector, which also transforms as a contravariant vector,

dx′ i

dt
=

∂x′ i

∂xj

dxj

dt
, or v′ i =

∂x′ i

∂xj
vj . (9)

In this equation we have assumed that dt is the same in both coordinate systems; this is the usual

assumption in nonrelativistic mechanics, but in relativity dt depends on the coordinates, too, and

the velocity does not transform as a vector.
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As an example, the contravariant components of the velocity of a particle in spherical coordinates

are vi = (ṙ, θ̇, φ̇). These are not to be confused with the usual components of the velocity with respect

to the orthonormal frame, (r̂, θ̂, φ̂),

vr = r̂ · v = ṙ,

vθ = θ̂ · v = r θ̇,

vφ = φ̂ · v = r sin θ φ̇,

(10)

which are often used in problems in mechanics. Equation (10) is equivalent to Eq. (D.27c).

Although we put an upper index on the coordinates, for example, xi, these do not form a

contravariant vector, at least not in general, curvilinear coordinates. That is because coordinate

transformations are nonlinear in general, as exemplified by Eq. (3) or (4). For the special case of

rectilinear coordinates see Sec. 13.

6. Covariant Vectors

A covariant vector {Bi, i = 1, . . . , n}, or Bi for short, is a set of n quantities that transform

according to the rule,

B′

i =
∂xj

∂x′ i
Bj . (11)

Notice that it is the inverse Jacobian that is used to transform a covariant vector, in comparision

to a contravariant vector (actually, the inverse transpose, see below). A lower (subscript) index is

standard notation for a covariant vector.

The most important example of a covariant vector is the gradient of a scalar, that is, if S is a

scalar, then

Bi =
∂S

∂xi
(12)

transforms as a covariant vector. This follows from the chain rule,

∂S

∂x′ i
=

∂xj

∂x′ i

∂S

∂xj
. (13)

For example, the covariant components of a scalar S in spherical coordinates are

(∂S

∂r
,
∂S

∂θ
,
∂S

∂φ

)

. (14)

These are not to be confused with the components of the gradient referred to the orthonormal frame

(r̂, θ̂, φ̂),

Ar = r̂ · ∇S =
∂S

∂r
, (15a)

Aθ = θ̂ · ∇S =
1

r

∂S

∂θ
, (15b)

Aφ = φ̂ · ∇S =
1

r sin θ

∂S

∂φ
, (15c)
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where A = ∇S. This equation is equivalent to Eq. (D.20).

Notice that in Eq. (12) we differentiate with respect to xi (with an upper index), and obtain

something (Bi) with a lower index. This is a general rule: when we differentiate with respect to

something with indices, the positions of the indices are reversed in expressing the result.

7. Tensors

A tensor is an object with multiple indices, each of which takes on the values 1, . . . , n, some

contravariant and some covariant, which transforms with the appropriate transformation law in each

index. The rank of the tensor is the number of indices. For example, the third rank tensor T i
j
k

transforms according to

T ′ ℓ
m

n =
∂x′ ℓ

∂xi

∂xj

∂x′m

∂x′n

∂xk
T i

j
k, (16)

where the first index is contravariant, the second covariant, and the third contravariant. Sometimes

we use dots as place holders, for example, T i
.
.
j
k
. , to keep track of the order of the indices when some

are contravariant and some covariant. A tensor with some contravariant and some covariant indices

is said to be a mixed tensor.

The product of any two tensors is a tensor, for example, AiF
j
k is a third-rank tensor.

A contravariant or covariant vector is considered a tensor of rank 1, while a scalar is considered

a tensor of rank 0.

8. The Kronecker Delta

The Kronecker delta δij is a mixed tensor. That is, suppose we define n2 quantities δij in all

coordinate systems to be 1 if i = j and 0 otherwise. Then these quantities are related by the mixed

transformation law,

δ′ ij =
∂x′ i

∂xk

∂xℓ

∂x′ j
δkℓ =

∂x′ i

∂xk

∂xk

∂x′ j
= δij, (17)

which follows from Eq. (2). But this only works if we define the Kronecker delta with mixed indices.

If we attempt to define an object such as δij or δij as having the value 1 if i = j and 0 if i 6= j,

requiring these values in all coordinate systems, then the resulting object does not transform as a

tensor (either a purely covariant or purely contravariant tensor of rank 2). But see however Sec. 14,

for the special case of orthonormal coordinates on a Euclidean space, where δij does transform as a

tensor.

When writing the Kronecker delta as a mixed tensor, δij , we do not bother to place one index

before the other (or to use dots as place holders), since the tensor is symmetric in i and j.
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9. Scalar Products and Contractions

The scalar product of a contravariant times a covariant vector is defined by

AiBi = A′ iB′

i = A ·B. (18)

It is a simple exercise to show that it transforms as a scalar.

The scalar product can be generalized. In any tensor or product of tensors, a sum on one

contravariant and one covariant index always produces a new tensor whose rank is two less than

that of the original tensor. For example, we might have

AiBi, M i
i, T i

i
j , M i

jA
j , etc. (19)

Such a sum is called a contraction of indices. Notice that the scalar product of a contravariant

vector and a covariant vector is a special case, as is taking the trace of a mixed tensor (thought of

as a matrix), or multiplying a matrix (thought of as a mixed tensor) times a vector (thought of as

a contravariant vector).

But a sum on two contravariant or two covariant indices, for example,

T i
j
i, Fii, AiAi, etc. (20)

is not a tensor. Things like this do occur, but only when we are stepping outside the bounds of usual

tensor analysis. The point is that an object like (20) cannot have a meaning that is independent of

coordinate system. Thus we have the rule, that in any covariant expression (taking the same form

in all coordinate systems), any contractions of indices must take place between one contravariant

and one covariant index.

10. The Jacobian

Let us write

J i
j =

∂x′ i

∂xj
(21)

for the Jacobian matrix connecting two coordinate systems. It is not a tensor since it is not defined

in all coordinate systems, rather it is an object that connects two specific coordinate systems.

Nevertheless it is convenient to use upper and lower indices on the Jacobian to conform with the

rules for index contraction. The Jacobian J i
j is the one that occurs in the transformation law for

contravariant indices. The Jacobian that occurs in the covariant law is the inverse transpose of this

one,

(J−1t)i
j =

∂xj

∂x′ i
. (22)

The Jacobian is an illustration of the fact that not everything with indices on it is a tensor.
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11. The Metric Tensor

Many spaces possess ametric tensor, which specifies the distance between pairs of nearby points.

Let two points have coordinates xi and xi + dxi in some coordinate system. Then the square of the

distance between them is given by

ds2 = gij dx
idxj . (23)

This defines the metric tensor gij . It follows from this definition that gij transforms as a second

rank, covariant tensor. The metric tensor is symmetric, gij = gji. If ds
2 ≥ 0 for all dxi, with ds2 = 0

if and only if dxi = 0, then the metric is positive definite. But relativity uses an indefinite metric

(the Minkowski metric).

An expression of the form (23) is called the line element in the given coordinate system. The line

element in various coordinate systems in three-dimensional, Euclidean space is given by Eqs. (D.26).

Those equations can be used to read off the components of the metric tensor in the various coordinate

systems.

If the metric is positive definite, then gij , regarded as a matrix of numbers, is invertible. Nor-

mally the metric tensor is invertible even when it is not positive definite, for example, in relativity

theory. Its inverse is defined to be the metric tensor gij (with contravariant, rather than covariant,

indices). That is, gij is defined by

gij g
jk = δki . (24)

This equation specifies gij in all coordinate systems. Given that gij transforms as a second rank,

covariant tensor, it is easy to show that gij transforms as a second rank, contravariant tensor.

12. Raising and Lowering Indices

If Ai is a contravariant vector, then by contracting with gij we can create a covariant vector

gijA
j . This is customarily denoted Ai (with the same symbol A, just a lower index):

Ai = gijA
j . (25)

This is called lowering an index. In physical or geometrical applications, Ai and Ai are often thought

of as two different representations of the same object (for example, a velocity vi or vi), even though

the numerical values of the components are different. Similarly, we can lower any contravariant

index in any tensor, for example,

Tij
k = giℓ T

ℓ
j
k, (26)

where the first index has been lowered.

Similarly, if Bi is a covariant vector, then by contracting with gij we can create a contravariant

vector gijBj . This is customarily denoted Bi (with the same symbol B, just an upper index):

Bi = gijBj . (27)



Appendix E: Tensor Analysis 9

This is called raising an index. Similarly, we can raise any covariant index in any tensor, for example,

T ijk = gjℓ T i
ℓ
k, (28)

where the middle index has been raised. By raising or lowering indices, any tensor can be written

with any index in either an upper or lower position.

Once the index on a contravariant vector Ai has been lowered, we can form the scalar product

with another contravariant vector:

AigijB
j = AjB

j = A ·B. (29)

In this way we define the scalar product of two contravariant vectors. Similarly, we can form the

scalar product of two covariant vectors:

Ai g
ijBj = AjBj = A · B. (30)

The scalar product of two contravariant vectors or two covariant vectors is not defined unless we

have a metric; but the scalar product of a contravariant times a covariant vector is always defined

(it does not require a metric).

If we have an contraction between a contravariant and covariant index, we can raise the covariant

index with the metric and lower the contravariant index, without changing the result. For example,

M i
j A

j = M ij Aj . (31)

13. Vector Spaces With Rectilinear Coordinates

The development up to this point has applied to general, curvilinear coordinate systems. But

the case of vector spaces, upon which we use rectlinear coordinates, is common in practice. We

now restrict to this case, where there are some simplifications. At first we do not assume that the

coordinates are orthonormal, that is, we allow them to be skew.

Such coordinate systems on such spaces are related by linear transformations. This means that

the Jacobian matrix is a constant matrix,

x′ i = J i
j x

j , J i
j =

∂x′ i

∂xj
= const. (32)

In rectilinear coordinate systems, the coordinates xi themselves (not just their differentials dxi)

transform as a contravariant vector.

In rectilinear coordinates, the coordinate derivative (or gradient) of a tensor field is another

tensor field. For example, consider a contravariant vector field Ai, and define

Bi
j =

∂Ai

∂xj
. (33)
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This defines quantities Bi
j in all coordinate systems. Then it is easy to show that Bi

j transforms as

a tensor (a mixed tensor, in this case). The proof requires that the Jacobian matrix be a constant,

so it only holds for rectilinear coordinate systems.

The gradient or coordinate derivative introduces one extra covariant index into a tensor, thus

raising the rank by one. We may say that the gradient operator ∂/∂xi transforms as a covariant

vector. Notice that the superscript below in a partial derivative such as in Eq. (33) acts like a

subscript above. Sometimes we write

∂i =
∂

∂xi
, (34)

for example, Eq. (33) can be written

Bi
j = ∂jA

i. (35)

Another way to write this is to use the “comma notation” for derivatives, for example,

F ij
,j = ∂jF

ij =
∂F ij

∂xj
. (36)

The operator ∂i can be thought of as the gradient operator, which can be applied to any tensor

(not just scalars). The divergence is the gradient ∂i followed by a contraction on the index i, for

example,
∂Ai

∂xi
= ∂iA

i = Ai
,i. (37)

The divergence can be applied to any tensor with at least one contravariant index. As defined here,

the divergence produces a tensor of rank one less than the original tensor, but this rule only works

in rectilinear coordinates, where the derivatives of the Jacobian matrix vanish. A special case is the

divergence of a vector field, which is a scalar.

The curl in the usual sense is only meaningful in three-dimensional space, where it requires the

properties of the Levi-Civita symbol (see Sec. 15).

14. Three-Dimensional, Euclidean Space

We usually think of physical space as the Euclidean vector space R3. On this space there exists

a rectilinear coordinate system in which the components of the metric are

gij =





1 0 0
0 1 0
0 0 1



 , (38)

that is, gij = δij . Such coordinates are orthonormal coordinates. This form of the metric is preserved

under orthogonal linear transformations, that is, transformations of the form

x′ i = Ri
j x

j (39)

in which R (the Jacobian matrix) is orthogonal, RtR = I. All systems of orthonormal coordinates

are connected by orthogonal transformations.
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If we restrict consideration to orthonormal coordinates and orthogonal transformations, then

the rules of tensor analysis simplify. This is because for an orthogonal matrix, R−1t = R, so the

transformation law for contravariant and covariant indices is identical. Moreover, since the compo-

nents of the metric tensor form the identity matrix, raising or lowering an index does not change the

values of the components. Thus, there is no point in keeping track of the difference between con-

travariant and covariant indices, and we might as well use subscripts uniformly everywhere. Then we

can write x′

i = Rij xj , contractions like AiAi = A ·A are meaningful, the purely covariant Kronecker

delta δij transforms as a tensor, etc.

The orthogonality condition RtR = I implies detR = ±1. Orthogonal transformations with

detR = +1 are called proper, and those with detR = −1 are called improper. A proper orthogonal

transformation perserves the sense of the axes (right-handed or left-handed), while an improper one

reverses the sense. See Notes 11 for more on orthogonal transformations and rotations.

15. The Levi-Civita Symbol in Three Dimensions

The Levi-Civita symbol (or permutation symbol) is a tensor-like object that can be defined

on a space of any number of dimensions. We will consider the Levi-Civita symbol first in three-

dimensional, Euclidean space where it is used to construct the cross product and the curl, and where

its properties lead to a number of useful identities in vector algebra and vector calculus. We assume

the use of orthonormal coordinates, and write lower indices throughout.

The Levi-Civita symbol in three dimensions is defined by

ǫijk =







1, if (ijk) is an even permutation of (123);
−1, if (ijk) is an odd permutation of (123);
0, otherwise.

(40)

It has 33 = 27 components, of which only 6 are nonzero. It follows directly from this definition that

ǫijk changes sign if any two of its indices are exchanged,

ǫijk = ǫjki = ǫkij = −ǫjik = −ǫikj = −ǫkji. (41)

The Levi-Civita symbol is convenient for expressing cross products and curls in tensor notation.

Some relations involving the cross product are

(A×B)i = ǫijk AjBk, (42)

and

A · (B×C) =

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

= ǫijk AiBjCk. (43)

Equation (42) can be taken as the definition of the cross product. Likewise, the curl can be expressed

or defined in terms of the Levi-Civita symbol,

(∇×B)i = ǫijk
∂Bk

∂xj

= ǫijk ∂jBk. (44)
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This looks just like Eq. (42), with ∇ interpreted as the “vector” with components ∂i.

Equation (43) shows a relationship between the Levi-Civita symbol and the determinant of a

matrix. Let Mij be a 3× 3 matrix. Then other relations are

detM = ǫijk M1iM2jM3k =
1

6
ǫijk ǫℓmnMiℓMjmMkn, (45)

and

ǫijk MiℓMjmMkn = (detM) ǫℓmn. (46)

Variations on these equations are obtained by replacing M by its transpose and noting that detM =

detM t.

We are calling ǫijk a “symbol” because it does not transform as a tensor, in general. To see

this, consider two orthonormal coordinate systems xi and x′

i, connected by x′

i = Rij xj , where R is

orthogonal. Then according to Eq. (46), we have

ǫ′ijk = RiℓRjmRkn ǫℓmn = (detR) ǫijk. (47)

Since detR = ±1, we see that ǫijk transforms as a tensor under proper orthogonal transformations,

but not improper ones.

This is an illustration of the fact that some things are tensors (that is, transform as tensors)

only under a restricted class of coordinate transformations. The Levi-Civita symbol ǫijk is a tensor

only under proper orthogonal transformations; δij is a tensor under all orthogonal transformations;

and the mixed Kronecker delta, δij, is a tensor under general coordinate transformations.

On three-dimensional space we often distinguish polar or true vectors from axial or pseudo-

vectors. A polar vector transforms as a vector under all orthogonal transformations, proper and

improper, while an axial vector changes sign under improper orthogonal transformations. Axial

vectors may be created by taking the cross product of two polar vectors or curl of a polar vector; the

transformation properties of the Levi-Civita symbol then cause a change in sign under an improper

orthogonal transformation.

16. The Levi-Civita Symbol and Vector Identities

The definitions (42) and (44) of the cross product and curl can be used to prove vector identities

such as

A · (B×C) = B · (C×A) = C · (A×B) (48)

and

∇ · (A×B) = B · (∇×A)−A · (∇×B), (49)

which contain a single cross product or curl.

Any combination of an even number of Levi-Civita symbols (or an even number of cross products

and curls) can be reduced to dot products with the following system of identities. Similarly, any

combination of an odd number of Levi-Civita symbols (or an odd number of cross products and
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curls) can be reduced to a single Levi-Civita symbol (or a single cross product or a curl) plus dot

products. The first is the most general:

ǫijk ǫℓmn =

∣

∣

∣

∣

∣

∣

δiℓ δim δin
δjℓ δjm δjn
δkℓ δkm δkn

∣

∣

∣

∣

∣

∣

. (50)

Notice that the indices (ijk) label the rows, while (ℓmn) label the columns. If this is contracted on

i and l, we obtain

ǫijk ǫimn =

∣

∣

∣

∣

δjm δjn
δkm δkn

∣

∣

∣

∣

= δjm δkn − δjn δkm. (51)

By contracting Eq. (51) in j and m we obtain

ǫijk ǫijn = 2 δkn. (52)

Finally, contracting on k and n we obtain

ǫijk ǫijk = 6. (53)

The identity (51) is the one used most often, for boiling down two cross products that have one

index in common. For example, it can be used to derive

A×(B×C) = B(A ·C)−C(A ·B) (54)

(the “back minus cab” identity), and

A×(∇×B) = (∇B) ·A−A · ∇B. (55)

In this identity we use a notation in which∇B is interpreted as a matrix, see Sec. 17. Other identities

with two cross products or curls include

∇×(A×B) = B · ∇A+A(∇ ·B)−A · ∇B−B(∇ ·A), (56)

∇×(∇×A) = ∇(∇ ·A)−∇2A, (57)

∇ · (A×B) = B · (∇×A)−A · (∇×B), (58)

and

(A×B) · (C×D) =

∣

∣

∣

∣

A ·C A ·D
B ·C B ·D

∣

∣

∣

∣

. (59)

The identity (51) can also be used to convert expressions involving antisymmetric matrices or

tensors in three-dimensions into the language of vectors. Let Aij = −Aji be an antisymmetric, 3×3

tensor. It has 3 independent components that we can associate with a 3-vector A, as follows:

Aij =





0 A3 −A2

−A3 0 A1

A2 −A1 0



 = ǫijk Ak. (60)
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The inverse of this is

Aij =
1

2
ǫijk Ak. (61)

Using thes identities, the multiplication of an antisymmetric matrix times a vector can be reexpressed

in terms of a cross product. That is, if

Xi = Aij Yj (62)

then

X = Y×A. (63)

Similarly, if A and B are two vectors, then

AiBj −AjBi = ǫijk (A×B)k, (64)

and
∂Bj

∂xi

−
∂Bi

∂xj

= ǫijk (∇×B)k. (65)

17. Notation for ∇B as a Matrix

In Eq. (55), the term (∇B) ·A can be interpreted as the vector resulting from multiplying the

matrix ∇B times the vector A, where ∇B has the components

(∇B)ij = ∂iBj =
∂Bj

∂xi

. (66)

The parentheses in (∇B) ·A are used to indicate that the ∇ acts only on B, and to distinguish this

expression from ∇(B ·A), the gradient of a scalar.

If we multiply the vector A on the other side of the matrix ∇B, we get

A · ∇B, (67)

which is fairly standard notation for the directional derivative of a vector, although some books

would write (A · ∇)B to make it clear that the A is contracted with the ∇.

On the other hand, the notation (∇B) ·A is nonstandad, and is not used outside these notes,

as far as I know. Many books write

A×(∇×B) +B · ∇A (68)

for this quantity, making use of the identity (55). In our notation the gradient of a dot product can

be expanded,

∇(A ·B) = (∇A) ·B+ (∇B) ·A. (69)
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18. Lorentz Transformations

We turn now to tensor analysis in special relativity. In special relativity we conceive of space-

time as the space R
4, with coordinates

xµ =

(

ct
x

)

. (70)

where µ = 0, 1, 2, 3. Here we follow the common custom of using Greek indices for relativity theory.

The factor of c on the first coordinate x0 = ct makes all four coordinates have dimensions of distance

(and there are dimensional simplifications if we choose units such that c = 1).

The physical meaning of these coordinates is the following. The spatial origin of the coordinates

x = y = z = 0 coincides with an observer or physical system upon which no forces act (an unaccel-

erated observer). The time coordinate is measured by a clock carried by this observer. Clocks at

different locations are synchronized by a certain procedure. The spatial coordinates are distances

measured relative to a set of mutually orthogonal, spatial axes, which we assume are right-handed.

It is assumed that free particle orbits are straight lines with constant velocity with respect to this

system of coordinates. This excludes rotating spatial axes. This coordinate system constitutes what

is called a Lorentz frame.

Different unaccelerated observers and/or different choices of spatial axes constitute different

Lorentz frames. For simplicity we only consider the case that the space-time origins (x = y =

z = ct = 0) of the Lorentz frames coincide. Then any two systems of coordinates xµ and x′µ,

corresponding to two Lorentz frames, are related by a linear transformation,

x′µ = Λµ
ν x

ν , (71)

where Λµ
ν is constant (independent of space or time). This transformation (or the matrix Λµ

ν)

is called a Lorentz transformation. The form of the matrix Λµ
ν can be determined from a set of

assumptions (the constancy of the speed of light, arguments of homogeneity and isotropy, etc). Then

Λµ
ν turns out to depend on a set of parameters (the velocity connecting the two Lorentz frames and

the Euler angles of a rotation connecting the spatial axes).

19. The Minkowski Metric

Lorentz transformations derived in this way have an important property, that the square interval

between two events,

c2 ∆t2 −∆x2 −∆y2 −∆z2, (72)

is an invariant. Here ∆xµ = xµ
2
− xµ

1
, where xµ

1
and xµ

2
are the coordinates of the two events. That

is, all observers, using their own Lorentz frames and corresponding coordinate systems, agree on the

value of the quantity (72). Although we call this quantity a “square interval,” numerically it can

have any sign, positive, negative or zero. Intervals for which this quantity is positive, negative or

zero are called time-like, space-like or light-like, respectively.
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If the two events are infinitesimally close then we can replace ∆xµ by dxµ for the infinitesimal

coordinate increments, and write

gµν dx
µdxν (73)

for the invariant quantity, where

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (74)

Since the quantity (72) is the same in all Lorentz frames, we take gµν to have the same values (74) in

all Lorentz frames. Then it turns out that gµν transforms as a tensor under Lorentz transformations.

For the invariance of the square interval implies

gµν dx
′µdx′ ν = gαβ dx

αdxβ , (75)

where xµ and x′µ are connected by the Lorentz transformation (71). But by the chain rule we have

dx′µ =
∂x′µ

∂xα
dxα, (76)

so Eq. (75) becomes

gµν
∂x′µ

∂xα

∂x′ ν

∂xβ
dxαdxβ = gαβ dx

αdxβ . (77)

But since dxα is arbitrary, this implies

g′αβ = gµν
∂x′µ

∂xα

∂x′ ν

∂xβ
= gαβ , (78)

where g′αβ is the value determined by the transformation law for covariant tensors. It agrees with

the value assigned by Eq. (74). Notice incidentally that the Jacobian matrix is the same as the

matrix defining the Lorentz transformation,

∂x′µ

∂xν
= Λµ

ν . (79)

Let us write

ds2 = gµν dx
µdxν (80)

for the invariant quantity (73). This has the same mathematical form as Eq. (23), the square of the

distance between two nearby points on a manifold. For this reason we call gµν the metric tensor

in special relativity, or the Minkowski metric to be more specific. However, if ds is the distance

in the usual sense between two points, then ds2 ≥ 0, but we have seen that the invariant (80) can

have any sign. This is obviously because the spatial and time coordinates enter with opposite signs

in Eq. (72). This should not be surprising; after all, space is physically different from time. What

is surprising is that space-time has a metric at all. In a sense, the fact that it does is the great

discovery of special relativity.
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Given the covariant metric tensor (74), we can compute the contravariant metric tensor as the

inverse matrix. It is

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (81)

That is, the components of the contravariant metric tensor are the same, numerically speaking, as

the components of the covariant metric tensor. This is similar to the situation on a Euclidean vector

space in orthonormal coordinates, where gij = gij = δij . However, unlike the case of a Euclidean

vector space, the Minkowski metric is not the identity matrix. Therefore the contravariant and

covariant components of a vector or tensor are not numerically equal, and one must maintain the

distinction between contravariant and covariant components. Switching between the two, in the case

of a contravariant or covariant vector, amounts to simply changing the sign of the spatial parts of a

vector.

20. The Sign of the Metric, and a Notational Problem

If the quantity (72) is an invariant, then so is its negative. There is no physical significance

to the choice of the overall sign of this quantity; the only thing that matters is the opposite signs

with which the spatial and time coordinates enter. In these Notes we will use the metric given by

Eq. (74), but many books would define gµν with an opposite sign. Our sign convention follows that

of Jackson, Classical Electrodynamics, 3rd edition, and is commonly used in the physics literature

on special relativity. Unfortunately, it gives rise to some notational difficulties.

As pointed out in Sec. 14, in three-dimensional, Euclidean space with orthonormal coordinates,

there is no need to maintain the distinction between contravariant and covariant indices, and we

normally just use lower indices everywhere, for example, in expressing the components pi of the

usual momentum vector p. But p is also the spatial part of the contravariant 4-momentum vector

pµ in special relativity, that is,

pµ =

(

E/c
p

)

, (82)

where the 4-vector is shown as a column vector. Thus the covariant form of the 4-momentum is

pµ =

(

E/c
−p

)

. (83)

Now setting µ = i = 1, 2, 3 in this to select the spatial components of pµ, and using the usual custom

in 3-dimensional space for expressing the components of the momentum p, we obtain pi = −pi. A

similar problem arises with the 4-vector potential Aµ in electromagnetism, for which

Aµ =

(

Φ
A

)

, (84)

where Φ and A are the usual scalar and vector potentials.
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Obviously we must distinguish the spatial parts of the covariant components of a 4-vector from

the usual Cartesian components of a 3-vector, expressed with the usual custom of using lower indices.

In these Notes we will use the following notation to deal with this problem. If we have a 4-vector

such as pµ, and we set a Greek index to a Latin one to indicate the spatial components, we will

write something like pµ→i for the result. On the other hand, the usual components of the standard

3-vector will be denoted by something like pi. For example, in the case of the momentum 4-vector,

we can write,

pµ→i = pi, pµ→i = −pi. (85)

21. The x4 = ict Convention

In older references on special relativity it is common to use a coordinate system xµ on space-

time, in which xi, i = 1, 2, 3 are the usual rectangular coordinates (x, y, z) on space, while x4 = ict.

The purely imaginary time coordinate x4 replaces the real coordinate x0 = ct used in these notes.

Thus the invariant interval can be written in Euclidean form,

∆x2 − c2∆t2 =

4
∑

µ=1

∆x2

µ. (86)

That is, gµν = δµν in these coordinates. This has the advantage that there is no need to distinguish

between contravariant and covariant indices, and lower indices can be used throughout. With this

convention, Lorentz transformations, which preserve the Euclidean form of the metric, are orthogo-

nal, but they are not real, in general. This is because boosts turn out to be rotations by an imaginary

angle.

The disadvantage of this convention is that physical time is real, not imaginary, and it is

awkward to keep track of the factors of i that appear everywhere. Nowadays the trend is to use the

real Minkowski metric (74) (with some choice of overall sign), and to maintain the distinction between

contravariant and covariant indices. This distinction is necessary anyway in general relativity, which

is becoming more central and important in physics. Sakurai uses the x4 = ict convention in his book

Advanced Quantum Mechanics as does Jackson in Classical Electrodynamics, 1st ed, but the real

metric is used in the 3rd edition of Jackson, as well as by Bjorken and Drell, Relativistic Quantum

Mechanics and most other modern references. These notes use the real metric (74) throughout.

22. Electromagnetism in Special Relativity

We summarize here our notation and conventions for electromagnetism in special relativity.

The 4-vector potential is given in terms of the scalar potential Φ and the 3-vector potential A

by

Aµ =

(

Φ
A

)

, Aµ =

(

Φ
−A

)

. (87)
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The 4-current is given in terms of the charge density ρ and the 3-vector current J by

Jµ =

(

cρ
J

)

, Jµ =

(

cρ
−J

)

. (88)

In these definitions we insert factors of c to make all the components have the same physical di-

mensions, as is necessary if they are to transform as 4-vectors under Lorentz transformations. The

same was done with the definitions of xµ and pµ [see Eq. (70) and (B.53)]. The continuity equation

(conservation of charge) is

∂µJ
µ =

∂Jµ

∂xµ
= 0. (89)

The field tensor is defined by

Fµν = ∂µAν − ∂νAµ =
∂Aν

∂xµ
−

∂Aµ

∂xν
=







0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0






, (90)

where the first index µ on Fµν labels the rows of the matrix and the second the columns. Raising

one index gives the mixed tensor,

Fµ
ν =







0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0






, (91)

while raising both indices gives

Fµν =







0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0






. (92)

The inhomogeneous Maxwell’s equations are

∂µF
µν =

∂Fµν

∂xµ
=

4π

c
Jν , (93)

while the homogeneous ones are

∂µFαβ + ∂αFβµ + ∂βFµα = 0. (94)

Finally, the equations of motion of a particle of charge q in the field given by Fµν are

m
d2xµ

dτ2
=

dpµ

dτ
=

q

c
Fµ

ν

dxν

dτ
. (95)

Here pµ is the kinetic momentum defined in Eq. (82) and τ is the proper time.
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Problems

1 Show that the contraction of a contravariant vector times a covariant vector transforms as a scalar.

See Eq. (18).

2. Some problems on the metric tensor.

(a) Show that the metric tensor gij , defined by Eq. (23) in all coordinate systems, transforms as a

second-rank, purely covariant tensor.

(b) Given that gij transforms as a second-rank, purely covariant tensor, show that gij , defined by

Eq. (24), transforms as a second-rank, purely contravariant tensor.

(c) Tensors gij and gij are regarded as the purely covariant and purely contravariant versions of

the metric tensor. What do we get if we raise the index on one of the components of gij , to obtain

a mixed version of the metric tensor? What do we get if we raise both indices on gij?

(d) Prove Eq. (31).

3. Let Ai be a contravariant vector, and let Bi
j be defined by Eq. (33). Show that under general

(curvilinear coordinate) transformations, Bi
j does not transform as a (mixed) tensor, but that under

linear transformations it does.


