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Notes 41

Emission and Absorption of Radiation†

1. Introduction

In these notes we will examine some simple examples of the interaction of the quantized radiation

field with matter. We will mostly be concerned with the emission and absorption of radiation by

atoms. With minor changes, our results also apply to molcules, nuclei, and other material systems.

The scattering of radiation by matter is treated in Notes 42. These notes continue with the notation

for description of the electromagnetic field and its modes that was developed in Notes 39 and 40.

These notes also make use of the notation developed in Notes 33 (on time-dependent perturbation

theory), in which |i〉 is an initial state and |n〉 is a variable final state that we must sum over to

get physical transition rates. In these notes these initial and final states are identified with specific

states of the matter-field system, depending on the problem under consideration.

2. Hamiltonian for Matter Plus Radiation

We begin with the Hamiltonian for the combined matter-field system,

H = Hmatter +Hem, (1)

which is a quantized version of the classical Hamiltonian presented in Sec. 39.16. The quantized

field Hamiltonian was presented in Eq. (40.16), which we reproduce here,

Hem =
∑

λ

h̄ωk a
†
λaλ, (2)

where we use box normalization. The classical matter Hamiltonian was presented in Eq. (39.97),

which we reinterpret as a quantum operator and augment with terms for spins interacting with the

magnetic field,

Hmatter =
∑

α

1

2mα

[

pα − qα
c
A(rα)

]2

+
∑

α<β

qαqβ
|rα − rβ |

−
∑

α

µα ·B(rα). (3)

In this Hamiltonian, indices α, β, etc label the particles, whose positions and momenta are rα and

pα. These are taken as operators with the usual commutation relations. The vector µα is the

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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magnetic moment of particle α, related to the spin in the usual way. The spin-dependent terms are

exactly the ones we have always used, except that now the magnetic field B itself is quantized.

When it is necessary to refer to an arbitrary field point at which a field is evaluated, we will

write it as x. This is not an observable, rather the observable is the field itself, for example, B(x)

is a different (vector) observable for each value of x. However, in many cases a field is evaluated at

a particle position rα, which is an observable.

The total Hamiltonian (1) involves both the matter and field degrees of freedom, and acts on

the total ket space

E = Ematter ⊗ Eem, (4)

where Eem is the ket space for the field (a Fock space) described in Notes 40, and where Ematter is

the usual ket space for nonrelativistic particles, possibly with spin.

Most of the following discussion works for any nonrelativistic system (atom, molecule, nucleus,

nanotube, solid), but when it is necessary to be specific, we will for simplicity take the matter

Hamiltonian to be that of a single-electron atom with an effective central force potential,

Hmatter =
1

2m

[

p+
e

c
A(r)

]2

+ U(r) +
e

mc
S ·B(r), (5)

where we write the potential as U to avoid confusion with the volume of the box V . In this

Hamiltonian we assume for simplicity that the nucleus is infinitely massive, and we set q = −e and

g = 2 for the electron charge and g-factor. This Hamiltonian is not a special case of the Hamiltonian

(3), but can be derived from it in a certain approximation (see Prob. 4).

The total Hamiltonian, including the matter and field terms, is complicated, and cannot be

solved exactly even in simple models. Therefore we must resort to perturbation theory. We begin

by expanding the total Hamiltonian into three terms, H = H0 +H1 +H2, where

H0 =
p2

2m
+ U(r) +

∑

λ

h̄ωk a
†
λaλ,

H1 =
e

mc

[

p ·A(r) + S ·B(r)
]

,

H2 =
e2

2mc2
A(r)2, (6)

which is basically an expansion in the coupling between the matter and the field. This Hamiltonian

represents the interaction of a single-electron atom with an electromagnetic field. It turns out that

as an order of magnitude, H1 ≪ H0 and H2 ≪ H1 if the electric fields associated with the light

waves are small in comparison to the electric fields felt by the electron due to the nucleus, that is, if

Ewave ≪ Enucleus. This is easiest to see if the fields A, B are treated as classical (c-number) fields,

representing a light wave, but the same estimates follow from the quantized fields. In most practical

situations, this condition is met; however, in certain modern experiments involving high intensity

laser light, this condition is not met, and different approximation methods must be used. In our
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initial applications, we will be doing first order perturbation theory, and we will be able to neglect

H2; but in second order calculations it is necessary to treat terms involving both H2
1 and H2.

We note that the unperturbed Hamiltonian H0 in Eq. (6) is the sum of a Hamiltonian for the

matter and one for the field, with no interaction. This Hamiltonian is therefore solvable, and the

unperturbed eigenkets are simply tensor products of atomic eigenkets with field eigenkets. Denoting

the states of the atom by capital letters such as |X〉, we can write a typical eigenstate of H0 in the

form |X〉| . . . nλ . . .〉.

3. Spontaneous Emission

Our first application will be the spontaneous emission of a photon by an atom in an excited

state. We will use box normalization for this calculation. Let |A〉 and |B〉 be two discrete (bound)

states of the atom, with EA < EB, and suppose at t = 0 the atom is in the upper state |B〉. Suppose
furthermore that at t = 0 the electromagnetic field is in the vacuum state |0〉 (with no photons).

We will be interested in time-dependent transitions to the state in which the atom is in the lower

state |A〉, and a photon has been emitted, so that the field contains one photon. Since the wave

vector k of the outgoing photon in the final state is continuously variable (after V → ∞), we have

an example of a time-dependent perturbation problem with a continuum of final states.

The initial state is a tensor product of the atomic state |B〉 with the vacuum state |0〉 for the
field,

|i〉 = |B〉|0〉 = |B0〉, (7)

with an energy Ei = EB (the energy of the atomic state B). The final state, denoted |n〉 in the

general notation of Notes 33, is the tensor product of the atomic state |A〉 with a state of the field

in which there is one photon in mode λ. We will write this state in various ways,

|n〉 = |A〉a†λ|0〉 = |A〉|λ〉 = |Aλ〉. (8)

The energy of the final state is En = EA + h̄ωk, where the k-subscript on ωk is understood to refer

to the k contained in λ = (k, µ). The Einstein frequency is

ωni =
h̄ωk − (EB − EA)

h̄
= ωk − ωBA = c(k − kBA), (9)

where ωBA and kBA are respectively the frequency and wavenumber associated with the energy

difference EB − EA.

According to time-dependent perturbation theory [see Eq. (33.36)], the transition amplitude

from initial state |i〉 to final state |n〉 in first order perturbation theory is

cn(t) =
2

ih̄
eiωnit/2

sin(ωnit/2)

ωni
〈n|H1|i〉, (10)

where for our problem ωni is given by Eq. (9). The term δni present in the general formula (33.30)

vanishes since for our problem n 6= i (the initial and final states have different numbers of photons).
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The square of the transition amplitude is the transition probability,

Pn(t) =
2πt

h̄2 ∆t(ωni)|〈n|H1|i〉|2, (11)

where we have used Eq. (33.46).

We work first on the matrix element. According to Eqs. (7), (8), and (6), we have

〈n|H1|i〉 =
e

mc
〈A|〈0|aλ

[

p ·A(r) + S ·B(r)
]

|B〉|0〉, (12)

where A(r) and B(r) are the quantized fields, given in box-normalization form by

Eqs. (40.22) and (40.24), but here evaluated at the particle position r. The general structure of

these equations is that both A and B consist of a Fourier series involving both annihilation and

creation operators. That is, both fields have the form

A,B ∼
∑

λ′

(

. . . aλ′ . . . a†λ′ . . .
)

, (13)

where all inessential factors are suppressed and where we use λ′ as the dummy index of summation

to avoid confusion with the λ which represents the mode of the outgoing photon. Now we can see

that all annihilation operators aλ′ give zero, since they act on the vacuum |0〉 to the right in Eq. (12).

As for the creation operators a†λ′ , these all give zero, too, except for the one term λ′ = λ in the λ′

sum, because the operator a†λ′ must create a photon that is then destroyed by the operator aλ to

the left in Eq. (12). In other words, the field matrix element has the form,

〈0|aλa†λ′ |0〉 = δλλ′ , (14)

as follows from the commutation relations (40.6). Therefore the field scalar product kills the sum in

Eq. (13), leaving behind the factors ǫ∗λ e−ik·r.

After the field scalar product has been taken, the matrix element is reduced to

〈n|H1|i〉 =
e

mc

√

2πh̄c2

V

1√
ωk

〈A|
[

p · ǫ∗λ − iS · (k×ǫ
∗
λ)
]

e−ik·r|B〉. (15)

Only an atomic matrix element remains, which we abbreviate by the definition,

MBA =
i

h̄
〈B|

[

p · ǫλ + iS · (k×ǫλ)]e
ik·r|A〉, (16)

so that

〈n|H1|i〉 =
e

mc

√

2πh̄c2

V

1√
ωk

ih̄M∗
BA. (17)

In manipulating MBA, it is useful to note that ǫ·p commutes with eik·r, because of the transversality

condition ǫ ·k = 0. The matrix element MBA depends on the quantum numbers of the atomic states

A and B, and on the mode λ = (k, µ) of the outgoing photon.

We will denote a transtion rate with the symbol w, indicating probability per unit time. When

the atom emits a photon and drops into a lower state, the photon can go out into any of a number
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of final states, each with its own probability. Physically interesting results are obtained by summing

these probabilities over collections of final states. In our case, let us choose a direction n̂f for the

outgoing photon, and construct a small cone of solid angle ∆Ω surrounding n̂f , as in Fig. 33.5. (In

that figure, the cone referred to the direction of a scattered particle, whereas here it refers to the

direction of the emitted photon.)

The quantity we are interested in is the probability per unit time per unit solid angle, for given

initial atomic state |A〉 and final atomic state |B〉, and for given polarization µ of the final photon.

We denote this quantity by (dw/dΩ)µ, where A and B are understood. To obtain this we must

take the time long enough that the probability is proportional to time, which means that it is long

enough that ∆t(ωni) can be replaced by δ(ωni). We also take V → ∞ to get physical results. Thus,

the differential transition rate is

(dw

dΩ

)

µ
= lim

t→∞
lim

V→∞

1

t

1

∆Ω

∑

k∈cone

2πt

h̄2 ∆t(ωni)
( e

mc

)2 2πh̄c2

V

1

ω
h̄2|MBA|2. (18)

In the large volume limit the sum can be replaced by an integral, just as in Eq. (33.76). That is, we

can make the replacement,

∑

k∈cone

→ V

(2π)3
∆Ω

∫ ∞

0

k2 dk =
V

(2π)3
∆Ω

c3

∫ ∞

0

ω2 dω, (19)

where we have transformed the variable of integration from k to ω = ck. Putting the pieces together,

we have
(dw

dΩ

)

µ
=

1

2π

e2h̄

m2c3

∫ ∞

0

ω dω δ(ω − ωBA)|MBA|2. (20)

The matrix element MBA depends on the wave vector k of the outgoing photon, but when we sum

only over k in the small cone the direction of k is fixed by the direction n̂f of the cone.

On doing the integral we obtain the result,

(dw

dΩ

)

µ
=

1

2π

e2

m2c3
h̄ω|MBA|2, (21)

where now ω = ωBA. Also, in this result the magnitude of k that appears in MBA is determined

by conservation of energy, that is, it is given by k = kBA = ωBA/c, so now MBA depends only on

the two atomic states A and B, and on the polarization µ and direction k̂ of the outgoing photon.

Equation (21) gives us the intensity of the emitted radiation as a function of both photon polarization

and direction. This result can be obtained from the semiclassical theory of radiation only in an ad

hoc and convoluted manner, but it is perhaps the easiest calculation of quantum electrodynamics.

If we are only interested in the total rate of emission, regardless of direction or polarization,

then we should sum the answer (21) over µ and integrate over solid angle of the outgoing photon.

For this purpose it is convenient to introduce an abbreviation,

|MBA|2 =
1

2

∑

µ

1

4π

∫

dΩ |MBA|2, (22)
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which is the average of the square of the matrix element over polarizations and angles, and which

depends only on the atomic states A and B. In terms of this quantity, the total transition rate can

be written,

w =
4e2

m2c3
h̄ω|MBA|2 = AE , (23)

where AE is the Einstein A coefficient (defined to be the rate of spontaneous emission).

4. Time Scales

This is a good point to examine the various time scales that appear in this derivation of the

transition rate. First, the limit t → ∞ that was used in passing from Eq. (18) to Eq. (20) was used

to replace ∆t(ω − ωBA) by δ(ω − ωBA). Without this replacement, the probability does not grow

in proportion to time, and we do not have a transition rate. In fact, we do not literally take t to

infinity, we only need t to be large enough that the function ∆t(ω − ωBA) is narrow enough in ω

that it behaves like a δ-function under the integral in Eq. (20). As explained in Notes 33, at finite t

the function ∆t has a width ∆ω ∼ 1/t. Therefore the replacement will be valid if ∆ω is much less

than the frequency scale of the rest of the integrand in Eq. (20). The rest of the integrand is the

factor ω|MBA|2, which depends on ω mainly through the factor ω. Thus we must have ∆ω ≪ ωBA

as the condition for the replacement of ∆t by a δ-function. If the quantum numbers of atomic states

A and B are not too large, then ωBA is of the order of the orbital frequency of the electron, that

is, it is of order 1 in atomic units. Thus the condition for the replacement becomes t ≫ 1 in atomic

units, that is, the time must be much larger than a single orbital period of the electron.

There are also limits on the validity of our result (23) at long times. Let us denote the probability

that the system remains in the initial state |i〉 = |B0〉 by Pi(t). In our analysis of time-dependent

perturbation theory in Notes 33 we did not examine the case n = i, but the probability to remain in

the initial state must be 1 minus the probability to make a transition, by conservation of probability.

That is, we must have

Pi(t) = 1−AEt, (24)

according to our result (23).

But this implies that the probability goes negative for times t > 1/AE , as illustrated by the

dotted line in Fig. 1, so there must be something wrong with our theory at such long times. Therefore

our theory can be valid only for times such that

1 ≪ t ≪ 1

AE
, (25)

measured in atomic units. Physically, t must be large compared to an orbital period and small

compared to the lifetime of the excited state. As we will see in Sec. 9, AE is of order α3 ∼ 10−6

in atomic units for electric dipole transitions in hydrogen, and even smaller for other types. Thus

there is plenty of room for the condition (25) on t to be met. (In other systems or circumstances

the conditions may not be so favorable.)
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Pi(t)

t

1

1−AEt

exp(−AEt)

Fig. 1. The prediction of first-order, time-dependent perturbation theory is that after time t = 1/AE , the probability
of remaining in the initial state goes negative. A better approximation gives an exponential decay, but this requires a
different theory, valid for longer times than we have considered.

Our theory breaks down for times comparable to 1/AE because our calculation of the transition

probability in Notes 33 did not take into account the depletion of probability from the initial state.

To deal with the behavior atomic systems on a time scale comparable to or larger than 1/AE, more

powerful techniques must be used than time-dependent perturbation theory. We will see the need

for this later when we take up resonance fluorescence.

5. Absorption of Radiation by Matter

Next we consider the process of absorption, in which the atom is initially in the lower state |A〉,
from which it absorbs a photon from the field and gets lifted into the higher state |B〉 (both assumed

to be discrete). Since the field must contain some photons if one is to be absorbed, we assume the

initial state of the field is given by | . . . nλ . . .〉, for some given list of occupation numbers {nλ}. The
atom can absorb a photon from any mode that initially has photons in it (but for long times, only

those that nearly conserve energy will be important), so the state of the system after some time will

be a linear combination of final states in which one of the modes has one fewer photon than in the

initial state. In the following calculation, we let λ stand for the mode from which a photon has been

absorbed, so that effectively λ also becomes a label of final states. That is, we take our initial and

final states to be
|i〉 = |A〉| . . . nλ . . .〉,
|n〉 = |B〉| . . . , nλ − 1, . . .〉,

(26)

where it is understood that all occupations numbers are identical in the initial and final states except

in mode λ. The resonance frequency we will use is

ωni =
EB − EA − h̄ωk

h̄
= ωBA − ωk = c(kBA − k), (27)

which is the same as the one we had for spontaneous emission except for the sign.

Now the matrix element has the form

〈n|H1|i〉 =
e

mc
〈B|〈. . . , nλ − 1, . . . |

[

p ·A(r) + S ·B(r)
]

|A〉| . . . nλ . . .〉, (28)
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where again the general structure of A and B is indicated by Eq. (13). We see now that the only

term from the λ′ sum in Eq. (13) that survives the field scalar product is the annihilation operator

aλ′ for λ′ = λ, because this is the only operator that will lower the number of photons in mode λ

by one. Furthermore, we have

aλ| . . . nλ . . .〉 =
√
nλ | . . . , nλ − 1, . . .〉, (29)

so after the field scalar product is taken, we are left with

〈n|H1|i〉 =
e

mc

√

2πh̄c2

V

√
nλ√
ωk

〈B|
[

p · ǫλ + iS · (k×ǫλ)
]

eik·r|A〉

=
e

mc

√

2πh̄c2

V

√
nλ√
ωk

(−ih̄)MBA. (30)

The atomic matrix element is the same as in the process of emission, except it is complex conjugated.

Finally, when we use this matrix element to compute the transition rate, we have

w =
2π

h̄2

∑

λ

e2

m2c2
2πh̄c2

V

nλ

ωk
h̄2|MBA|2 δ(ω − ωBA). (31)

This would be fine if we had exact knowledge of the initial state of the electromagnetic field (if

we knew it was in the pure state | . . . nλ . . .〉, and if we knew exactly what all the nλ were), but in

practice we often do not have such information. Often we have only statistical information about

the initial state of the field; this is certainly true for black body radiation, but it is also usually true

for other types of radiation fields, including laser light. Let us suppose, therefore, that we only know

some probability distribution for the occupation numbers, say, P ({nλ}), which is the probability

for a specific list {nλ} of occupation numbers. For example, in thermal equilibrium (black body

radiation), we would have

P ({nλ}) =
1

Z
exp

(

−β
∑

λ

nλ h̄ωk

)

. (32)

Working with such a probability distribution is equivalent to working with a density operator for

the electromagnetic field that is diagonal in the occupation number representation,

ρ =
∑

{nλ}

|{nλ}〉P ({nλ})〈{nλ}|. (33)

As explained in Notes 3, the absence of off-diagonal terms means that the relative phases between

different occupation number states are random.

Under such a statistical assumption, we should replace w by its average over the probability

distribution. This involves placing a sum over {nλ} times P ({nλ}) before the right hand side of

Eq. (31). But the only term in the right hand side that depends on {nλ} is the single factor of nλ

itself, which then gets replaced by its average,

〈nλ〉 =
∑

{nλ}

P ({nλ})nλ. (34)
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Finally, we can replace the sum on λ by the usual limit as V → ∞,

∑

λ

→
∑

µ

V

(2π)3
1

c3

∫ ∞

0

ω2 dω

∫

dΩk, (35)

where we sum over all states (the modes from which the photon could be absorbed) because we are

only interested here in the total rate of absorption. As usual, the ω-integral is trivial because of the

δ-function. We obtain

w =
1

2π

e2

m2c3
h̄ω

∑

µ

∫

dΩk 〈nλ〉|MBA|2. (36)

6. Absorption of Isotropic and Unpolarized Radiation

The average number of photons per mode 〈nλ〉 is a function of λ, that is, in general it depends

on k, k̂, and µ. But if the radiation is isotropic and unpolarized, then by definition 〈nλ〉 depends

only on the magnitude of the wave vector k (or equivalently, on the frequency ω). For simplicity,

let us consider this case. Then 〈nλ〉 can be taken out of the sum and integral in Eq. (36), and what

remains is the average of the squared matrix element, as in Eq. (22). The result is

wabs =
4e2

m2c3
h̄ω|MBA|2 〈nλ〉 = AE 〈nλ〉, (37)

which is the rate of absorption for isotropic, unpolarized radiation. It is just 〈nλ〉 times the Einstein

A-coefficient, a simple result.

It is, however, more convenient to express 〈nλ〉 in terms of macroscopic quantities. The average

number of photons in mode λ can be expressed macroscopically in terms of the energy density per

unit frequency interval. This follows from writing out the energy density u (energy per unit volume)

of the field in a box,

u =
1

V

∑

λ

〈nλ〉 h̄ωk → 1

(2π)3
1

c3

∫ ∞

0

ω2 dω

∫

dΩk

∑

µ

〈nλ〉 h̄ωk, (38)

where the limit V → ∞ is indicated. But if the radiation is unpolarized and isotropic, then the

entire summand/integrand becomes independent of k̂ and µ, and
∫

dΩk

∑

µ can be replaced by 8π.

This gives

u =
h̄

π2c3

∫ ∞

0

dω ω3〈nλ〉, (39)

where it is understood that 〈nλ〉 is a function only of ω. But this is equivalent to

du

dω
=

h̄ω3

π2c3
〈nλ〉. (40)

This is really an elementary result, which just amounts to counting states. Of course, if we use

Eq. (40.39) for 〈nλ〉, we obtain the usual Planck formula for du/dω.
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Equations (37) and (40) show that the rate of absorption is proportional to du/dω. Following

Einstein, we write this relationship in the form

wabs = BE
du

dω
, (41)

which serves to define BE , the Einstein B-coefficient. Now Eqs. (37), (40) and (41) can be used to

obtain a relation between the Einstein A- and B-coefficients,

AE =
h̄ω3

π2c3
BE . (42)

The relation between the Einstein A and B coefficients depends only on the counting of states in the

electromagnetic field; it does not depend on the nature of the matter interacting with the radiation.

Thus, Eq. (42) is valid for radiation interacting with any kind of matter (atoms in a gas, nuclei

inside a star, etc). Equation (42) is of use in the semiclassical theory of radiation, in which BE can

be computed after a tricky and convoluted calculation, but AE is impossible.

7. Stimulated Emission

Finally, let us examine the process of emission in the presence of radiation. This is just like the

spontaneous emission considered above, except the photon field is not assumed to be empty in the

initial state. We let the initial and final states be

|i〉 = |B〉| . . . nλ . . .〉,
|n〉 = |A〉| . . . , nλ + 1, . . .〉,

(43)

where it is understood that all occupation numbers are the same in the initial and final states, except

in mode λ, which gains a photon. Now the matrix element for time-dependent perturbation theory

has the form

〈n|H1|i〉 =
e

mc
〈A|〈. . . , nλ + 1, . . . |(p ·A+ S ·B)|B〉| . . . nλ . . .〉, (44)

and only the creation operator a†λ′ for λ′ = λ survives in the sum (13). Also, we have

a†λ| . . . nλ . . .〉 =
√
nλ + 1 | . . . , nλ + 1, . . .〉, (45)

so that when we compute the transition rate, we obtain

wemiss =
2π

h̄2

∑

λ

e2

m2c2
2πh̄c2

V

nλ + 1

ωk
h̄2|MBA|2 δ(ω − ωBA), (46)

which is exactly the same as the absorption rate (31) except for the replacement of nλ by nλ + 1.

It is also the same as the rate of spontaneous emission (18), except for the replacement of 1 by

nλ + 1. Thus, the nλ part is regarded as the rate of stimulated emission, and the 1 part is the rate

of spontaneous emission.

If the sum on λ is taken over all photon states, then the result is the total rate of emission

of the photon into any final state. Of course energy conservation restricts which final states the
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photon may go into, and the matrix element has a dependence on the direction of the outgoing

photon, but there are still many possible final states. But because of the numerator in nλ +1, those

states that are already populated by photons are more likely to receive the emitted photon. In this

way, photon states that are already populated tend to become more populated; one can say that

bosons not only can occupy the same state, they like to occupy the same state. The classical or

semiclassical interpretation of this process is simple, for if we imagine an initial photon state that is

already populated as a classical electromagnetic wave, assumed to be in resonance with the atomic

transition, then the wave shakes the atom at its resonant frequency and stimulates the emission of

a new photon with the same frequency, wave vector and polarization as the wave itself.

This is the basic principle of amplification in lasers and masers, which typically work by passing

radiation through a cavity containing a population of atoms in an excited state. These atoms are

stimulated to emit photons into one or a few states, which tends to increase the amplitude of the

wave. However, stimulated emission is in competition with absorption, which according to Eq. (31)

has a transition rate that is also proportional to nλ. Of course, absorption removes photons from

the wave. Therefore lasing normally requires a population inversion, to give the advantage to the

process of emission.

The +1 in Eq. (45), representing the rate of spontaneous emission, is generally parasitic to laser

operation, since the emitted photon is just as happy to go out in any direction or polarization. For

proper laser operation, the population inversion must be sufficiently favorable to overcome these and

other losses.

Let us now assume that the initial radiation field is represented by an isotropic and unpolarized

ensemble P ({nλ}), just as we did for absorption. Then we can average over the ensemble and sum

over modes λ in Eq. (46), to obtain

wemiss = AE(〈nλ〉+ 1) = BE
du

dω
+AE . (47)

We see that the rate of stimulated emission is equal to the rate of absorption; this is called de-

tailed balance, which means that transition rates between two microscopic states are equal. Detailed

balance is not necessary to establish thermal equilibrium, but it generally holds in first order per-

turbation theory, due to the Hermiticity of the perturbing Hamiltonian H1.

8. Decomposition of MBA into Multipoles

We will now analyze the atomic matrix element MBA, given by Eq. (16), which applies to both

emission and absorption. First we note that the phase k · r in the exponent in Eq. (16) is small over

the size of the atom. This follows easily in atomic units, in which the size of the atom is a ∼ 1/Z,

and the frequency of the emitted or absorbed radiation is ω ∼ Z2. But since k = ω/c = αω in

atomic units, and since x ∼ a, we have

k · r ∼ Zα. (48)
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If Z is not too large, this is a small quantity. Similarly, we find that the term iS · (k×ǫλ) in Eq. (16)

is of order Zα relative to p · ǫλ. Therefore expanding in powers of k is equivalent to expanding in

powers of Zα. We write

MBA = M
(0)
BA +M

(1)
BA + . . . (49)

for this expansion, where

M
(0)
BA =

i

h̄
〈B|ǫλ · p|A〉, (50)

M
(1)
BA = − 1

h̄
〈B|S · (k×ǫλ) + (ǫλ · p)(k · r)|A〉. (51)

As we shall show, the term M
(0)
BA is the electric dipole (E1) term, while the term M

(1)
BA contains both

the magnetic dipole (M1) term and the electric quadrupole (E2) term.

First we work on M
(0)
BA. We invoke the following commutator, which is equivalent to the Heisen-

berg equations of motion for the operator r,

[r, H0] =
ih̄p

m
= ih̄ṙ. (52)

Here H0 can be taken to be the unperturbed atomic Hamiltonian seen in Eq. (6) since the field

Hamiltonian will not contribute. Using Eq. (52) in Eq. (50), we find

M
(0)
BA =

m

h̄2 ǫλ · 〈B|rH0 −H0r|A〉

=
m

h̄2 (EA − EB)ǫλ · 〈B|r|A〉 = −mω

h̄
ǫλ · 〈B|r|A〉, (53)

where ω = ωBA = (EB − EA)/h̄. The matrix element of r is proportional to the matrix element of

the electric dipole operator, defined by

D = −er, (54)

so we will henceforth refer to M
(0)
BA as the electric dipole contribution to the matrix element. We

will write this contribution as

ME1
BA = −mω

h̄
ǫλ · 〈B|r|A〉. (55)

Because the electric dipole term is the leading term in the expansion in kx, the assumption kx ≪ 1

is sometimes called the electric dipole approximation.

As for M
(1)
BA, we work on the orbital part first [the second term in Eq. (51)]. We note that the

two factors in this term can be written in any order, since

[ǫλ · p,k · r] = −ih̄ ǫλ · k = 0, (56)

because the light waves are transverse. We use the summation convention and break this term up

into its symmetric and antisymmetric parts, finding,

M
(1)
orb = − 1

h̄
kiǫj〈B|xipj |A〉

= − 1

2h̄
kiǫj〈B|xipj − xjpi|A〉 −

1

2h̄
kiǫj〈B|xipj + xjpi|A〉. (57)
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The antisymmetric part can be written in terms of the orbital angular momentum,

− 1

2h̄
kiǫj〈B|xipj − xjpi|A〉 = − 1

2h̄
(k×ǫ) · 〈B|r×p|A〉, (58)

which, when combined with the spin part of M
(1)
BA [the first term in Eq. (51)], gives the magnetic

dipole contribution to the matrix element,

MM1
BA = − 1

2h̄
(k×ǫλ) · 〈B|L+ 2S|A〉. (59)

With the help of the commutation relations (52) and (56), the symmetric part of M
(1)
BA can be

transformed as follows:

− 1

2h̄
kiǫj〈B|xipj + pixj |A〉 =

im

2h̄2 kiǫj〈B|xixjH0 −H0xixj |A〉

= − imω

2h̄
kiǫj〈B|xixj |A〉, (60)

where we have swapped xj and pi in the second term of the first expression. In the final expression

it is customary to replace the operator xixj by Qij/3, where Qij is the electric quadrupole operator,

Qij = 3xixj − r2δij . (61)

Quadrupole moments were discussed in Sec. 15.11; see Eq. (15.88). The extra term proportional

to δij in Eq. (61) makes no contribution to the matrix element (60) because ǫ · k = 0. We include

it anyway because it makes the tensor Qij a k = 2 irreducible tensor operator. The extra term in

Eq. (61) has the effect of subtracting off the k = 0 component of the tensor product xixj . Altogether,

we find the electric quadrupole contribution to the matrix element,

ME2
BA = − imω

6h̄
kiǫj 〈B|Qij |A〉. (62)

In these operations on the atomic matrix element MBA, we have been doing two things: one

is to expand the matrix element in the small quantity kx ≪ 1, and the other is to organize the

results into irreducible tensor operators. We have done this in an ad hoc manner for the first three

terms (E1, M1 and E2) of the multipole expansion; these are the terms that are usually of most

importance in atomic physics. However, in nuclear and molecular physics, one often has need to go

to higher order in the multipole expansion, and one must be more systematic.

It is not necessary to expand in powers of kx in order to carry out the multipole expansion,

and in some applications kx is not small. This is notably true in nuclear physics, where kx is not

as favorable as in atomic applications. To carry out the multipole expansion without expanding in

powers of kx, it is convenient to organize the photon states as eigenfunctions of (k, π, J2, Jz), rather

than as eigenfunctions of (k,Ω) as we have done. The eigenfunctions of (π, J2, Jz) are known as

vector spherical harmonics; they are a generalization of the ordinary spherical harmonics to vector

fields. The theory of the vector spherical harmonics is essentially a straightforward application of
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rotation operators to the wave functions of a spin-1 particle, but it is sufficiently lengthy that we

will not go into it in detail.

However, we remark that if kx is small, it means that the phase of the light wave is nearly

constant over the spatial extent of the radiator, namely, the atom. We recall that in scattering

theory we have s-wave scattering in the long wavelength limit, because the radiators stimulated by

the incident wave are all in phase. In s-wave scattering, the scattered wave is isotropic and the

cross section is independent of angle. In the case of a scalar wave, it is possible to radiate s-waves,

but for transverse vector waves such as electromagnetic waves there are no s-waves. Instead, the

lowest angular momentum state for the radiated waves is the j = 1 state, which comes in two

varieties, odd and even parity, representing electric and magnetic dipole radiation. These give the

simplest radiation patterns possible with electromagnetic waves. If kx is not small, it means that

it is necessary to take into account the phase differences in the radiated wave across the radiator,

which can be regarded as the effects of retardation.

9. Order of Magnitude of Different Multipoles

The total matrix element MBA is a sum of terms in the multipole expansion, but if kx is small,

there will be one term of leading order that dominates the others. Thus, in atomic transitions, the

radiation is dominantly of one type (E1, M1, etc.), although higher order corrections are present, in

general. The transition rate for the different multipole types is conveniently estimated by working

in atomic units and expressing the dependence of w on Z and the fine structure constant α = 1/c.

For simplicity, we will ignore the dependence on the atomic quantum numbers, but if any of these

are large, they should be taken into account, too. Then we find that the matrix element ME1
BA of

Eq. (55) is of order Z in atomic units, while the matrix elements MM1
BA and ME2

BA, given by Eqs. (59)

and (62), are both of order αZ2. Therefore the spontaneous transition rate, given by Eq. (23), goes

as α3Z4 for E1 transitions, and as α5Z6 for M1 and E2 transitions. We see that if Z is not too

large, the condition (25) on time scales is easily met. In fact, for Z ≈ 1 and for quantum numbers of

order unity, the lifetimes for electric dipole transitions are of the order of α3 ∼ 10−6 times smaller

than the orbital period of the electron. For example, in the 2p → 1s transition in hydrogen (the

fastest one), we can think of the electron as orbiting on the order of a million times before dropping

into the ground state. The factor becomes α5 ∼ 10−10 for M1 and E2 transitions that are even

slower.

10. Selection Rules

The operators that occur in the various multipole matrix elements (55), (59), and (62), can

be expressed in terms of irreducible tensor operators T k
q . These operators also have well defined

transformation properties under conjugation by parity π. Table 1 summarizes the different operators

we have considered and lists their k values and parities. The general rules are that an Ek or an
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Mk operator is an irreducible tensor operator (perhaps in Cartesian form) of order k, and that an

Ek-operator has parity (−1)k and an Mk-operator has parity (−1)k+1.

T k
q k π Selection Rules

E1 r 1 − ∆j = 0,±1, ∆ℓ = ±1

M1 L+ 2S 1 + ∆j = 0,±1, ∆ℓ = 0

E2 Qij 2 + ∆j = 0,±1,±2, ∆ℓ = 0,±2

Table 1. Multipole terms in the expansion of the transition matrix element. The order k and parity π of the irreducible
tensor operator T k

q are tabulated.

These operators are sandwiched between atomic states A and B, which are eigenstates of various

angular momentum operators and also of parity (ignoring the weak interactions). The Wigner-Eckart

theorem and rules of parity can be applied to the resulting matrix elements to obtain selection rules.

For example, consider a model of hydrogen in which we include the fine structure corrections but

ignore the hyperfine structure. Let us denote the upper state B by |nℓjmj〉 and the lower state A by

|n′ℓ′j′m′
j〉, so the different multipole contributions have the form 〈nℓjmj |T k

q |n′ℓ′j′m′
j〉. The selection

rules for E1 transitions are familiar; the operator r is a k = 1 irreducible tensor operator both under

total rotations, generated by J, and under purely orbital rotations, generated by L. Therefore the

Wigner-Eckart theorem gives the selection rules ∆j = 0,±1 and ∆ℓ = 0,±1; but the case ∆ℓ = 0 is

excluded by parity (otherwise known as Laporte’s rule). For M1 transitions, the operator L + 2S

is a k = 1 irreducible tensor operator under total rotations, generated by J, but is the sum of a

k = 1 and a k = 0 operator under purely spatial rotations. Again, the Wigner-Eckart theorem gives

∆j = 0,±1 and ∆ℓ = 0,±1, but this time parity excludes the case ∆ℓ = ±1. Similarly, for E2

transitions, the case ∆ℓ = ±1, which would be allowed by the Wigner-Eckart theorem, is excluded

by parity. These rules are summarized in Table 1.

There are further restrictions imposed by the Wigner-Eckart theorem. For example, an E2

transition j = 1
2 → j = 1

2 is not allowed, because it is impossible to reach j = 1
2 from 2 ⊗ 1

2 .

Similarly, ℓ = 0 → ℓ = 0 is impossible in E2 transitions. In hydrogen, only half-integral j are

allowed, but in atoms with an even number of electrons, J is integral, and there are further rules of

a similar sort. For example, J = 0 → J = 0 is impossible in either E1 or M1 transitions.

An interesting case in hydrogen is the 2s1/2 → 1s1/2 transition. Of course, the 2p states can

make an E1 transition to the ground state, and do so with a lifetime on the order of 10−9 sec.

However, the 2s1/2 → 1s1/2 is forbidden as an E1 transition, because of parity. It would appear

from Table 1 that this transition is allowed as an M1 transition, but it turns out that the matrix

element (59) vanishes because of the orthogonality of the radial wave functions. In detail, the story

of the M1 transition in this case is somewhat complicated. It turns out that if the hydrogen atom

is modeled with the Dirac equation, then the M1 matrix element does not exactly vanish, but it is
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higher order in powers of v/c ∼ α than one would normally expect, and is very small. A similar

result is obtained with the Schrödinger-Pauli theory, if we expand to higher order in kx and extract

the M1 contribution from some higher order terms (although the Schrödinger-Pauli theory is not

reliable for terms that are higher order in v/c). Suffice it to say that the M1 matrix element is very

small. What about higher multipole moments in the 2s1/2 → 1s1/2 transition? The E2 transition is

forbidden in this case because it would be both a j = 1
2 → j = 1

2 and an ℓ = 0 → ℓ = 0 transition.

Similarly, we can see that all higher order multipole transitions are forbidden, because we cannot

reach j = 1
2 from k ⊗ 1

2 , when k ≥ 2. In fact, it turns out that the principal decay mode of the

metastable 2s1/2 state is a two-photon decay to the 1s1/2 state, with a lifetime of about 10−1 sec.

See Prob. 42.1.

Speaking of small effects, we may also notice that the 2s1/2 can decay to the 2p1/2 state by

an E1 transition, since the latter is lower in energy by the (small) Lamb shift. But this rate is

much smaller than the two-photon decay mentioned above, and does not contribute much to the

overall decay rate. This transition is, however, important when driven by microwaves at or near the

resonant frequency of 1.06 GHz. Indeed, Lamb and Retherford first used such microwave techniques

in 1949 to make an unequivocal and high precision measurement of the Lamb shift.

11. Angle and Polarization Dependence of Radiation

Let us return now to the process of spontaneous emission, and consider the intensity of the

emitted radiation as a function of angle and polarization. We will work this out only for electric dipole

radiation, the most common case. We can imagine an experimental situation such as that illustrated

in Fig. 2, which effectively measures the polarization µ and direction k̂ of the outgoing photon. In

the following we will assume for simplicity that some state (µ = ±1) of circular polarization is

measured, but other states of polarization are only slightly more complicated to analyze.

x

y

z

k

θ

φ

D

P

Fig. 2. Photons are emitted from a source of excited atoms at the origin of the coordinates. Photons emitted in a small
solid angle around the direction k are filtered by the polarizer P , which passes only one state of polarization, and are
detected by the detector D.
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We start with Eq. (21), into which we substitute Eq. (53) for the electric dipole approximation

to the matrix element. This gives

(dw

dΩ

)

µ
=

1

2π

e2ω3

h̄c3
|ǫµ · rBA|2, (63)

where ǫµ = ǫµ(k̂) = ǫλ, and where

rBA = 〈B|r|A〉. (64)

For simplicity we assume the atom is a hydrogen-like atom in the fine-structure model (we ignore

hyperfine effects, etc.), and we take the upper and lower states to be |B〉 = |nℓjmj〉 and |A〉 =

|n′ℓ′j′m′
j〉, as above, so that

rBA = 〈nℓjmj|r|n′ℓ′j′m′
j〉. (65)

(However, hardly anything changes if we use the eigenstates |απLJMJ 〉 of a multi-electron atom.)

It is convenient to expand r in terms of the spherical basis as in Eq. (19.43),

r =
∑

q

ê∗q xq, (66)

because then the components xq are components of a rank 1 irreducible tensor operator. We also

use Eq. (40.80) to express ǫµ in terms of the spherical basis. Then we have

ǫµ · r =
∑

q

xq ê
∗
q ·

[

R(k̂)êµ
]

=
∑

q

xq D
1
qµ(k̂), (67)

where R(k̂) is defined by Eq. (40.78) and D1(k̂) is the corresponding D-matrix, and where we use

Eq. (19.67).

Now when we compute ǫµ · rBA, we obtain a sum over the matrix elements of xq, which can be

transformed by the Wigner-Eckart theorem [see Eq. (19.90)]:

ǫµ · rBA =
∑

q

〈nℓjmj|xq |n′ℓ′j′m′
j〉D1

qµ(k̂)

= 〈nℓj||x||n′ℓ′j′〉
∑

q

〈jmj |j′1m′
jq〉D1

qµ(k̂). (68)

But by the selection rule (18.51) for the Clebsch-Gordan coefficients, only the term q = mj − m′
j

survives in the sum. Therefore when we combine all the pieces together, we obtain the following

expression for the differential transition rate for electric dipole transitions:

(dw

dΩ

)

µ
=

1

2π

e2ω3

h̄c3
|〈nℓj||x||n′ℓ′j′〉|2 |〈jmj |j′1m′

jq〉|2 |D1
qµ(k̂)|2, (69)

where now it is understood that q = mj−m′
j (q is not summed over). This is a convenient expression,

because the reduced matrix element shows the dependence of the transition rate on the manifolds

(nℓj) and (n′ℓ′j′) of the initial and final states, the Clebsch-Gordan coefficient shows the dependence

on the magnetic quantum numbers, and the D-matrix shows the dependence on the polarization
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and direction of the outgoing photon. Furthermore, writing the D-matrix in Euler angle form and

using Eq. (13.67), we have

(dw

dΩ

)

µ
∼ |ê∗q · ǫµ(k̂)|2 = |D1

qµ(φ, θ, 0)|2 = [d1qµ(θ)]
2, (70)

where as illustrated in Fig. 2 (θ, φ) are the spherical angles of k̂ and where we suppress all leading

factors and concentrate on the dependence on k̂ and µ. We see that the intensity of the emitted

radiation is independent of the azimuthal angle φ, as we would expect since the initial and final states

are eigenstates of Jz. Finally, we can invoke Eq. (13.70) for the reduced rotation matrix to determine

the angular distribution as a function of θ for different choices of q and µ. The angular distribution

is plotted in Fig. 3 for different cases. By the way, the quantity q has a simple interpretation, for if

we write its definition in the form mj = m′
j + q, we see that q is just the Jz quantum number of the

emitted photon, since the total Jz of the combined matter-field system is conserved in the emission

process.

z z z

(a) (b) (c)

Fig. 3. Polar plots of intensity of electric dipole radiation for different cases. Case (a), q = µ = ±1; case (b), q = 0,
µ = ±1; case (c), q = −µ = ±1. Intensity is azimuthally symmetric.

The radiation patterns in Fig. 2 can be seen experimentally by placing the source (for example,

a gas discharge tube) in a strong magnetic field, which will split the various magnetic substates of the

otherwise degenerate initial and final states, so that a transition with a definite value of ∆mj = −q

can be observed. On the other hand, in many practical circumstances there is no magnetic field to

split these substates, nor is the initial ensemble of atoms polarized. In such cases, the atom has an

equal probability of being in any of the magnetic substates of the initial, degenerate atomic level;

and all transitions to the various magnetic substates of the final, degenerate atomic level lie on top

of one another (they have the same frequency), so the spectroscope simply sees a single line whose

intensity is the superposition of the intensities of possibly several transitions. Furthermore, if the

initial state of the atom is unpolarized, then it has no preferred direction, and the emitted radiation
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is isotropic. In this case we might as well ask for the total transition rate (integrated over all solid

angles and summed over polarizations). We will now analyze this case for electric dipole radiation.

12. The Total Transition Rate

We begin by computing the total transition rate. We could do this by integrating Eq. (69) over

solid angles and summing it over polarizations, but it is just as easy to go back to Eq. (23), and to

use the electric dipole expression (53) for the matrix element. Also, for simplicity, we will use the

simple electrostatic, spinless model for the states |nℓm〉 of the one-electron atom, that is, we will

ignore the fine structure corrections. Then combining Eqs. (22) and (53), we have

|MBA|2 =
m2ω2

h̄2

1

8π

∑

µ

∫

dΩk |ǫµ(k̂) · rBA|2, (71)

where now

rBA = 〈nℓm|r|n′ℓ′m′〉. (72)

Here the initial and final states are |B〉 = |nℓm〉 and |A〉 = |n′ℓ′m′〉, respectively. The polarization

sum in Eq. (71) is easy if we use the completeness relation (39.53) for the polarization vectors. This

gives
∑

µ=±1

|ǫµ(k̂) · rBA|2 = |rBA|2 − |k̂ · rBA|2. (73)

Next, the angular integration of this over Ωk is easy, since the first term is independent of angle and

the second term is just the angle average of one component of a vector. Thus we have

∫

dΩk

(

|rBA|2 − |k̂ · rBA|2
)

=
8π

3
|rBA|2. (74)

Altogether, Eq. (71) becomes

|MBA|2 =
1

3

m2ω2

h̄2 |rBA|2. (75)

As for the rBA, it is convenient to use it in complex conjugated form,

|rBA|2 = |〈B|r|A〉|2 = |〈A|r|B〉|2 = |rAB |2, (76)

where

rAB = 〈n′ℓ′m′|r|nℓm〉. (77)

We expand r in this expression in the spherical basis as in Eq. (66), so that

rAB =
∑

q

ê∗q 〈A|xq |B〉, (78)

and so that

|rAB|2 =
∑

q

|〈n′ℓ′m′|xq|nℓm〉|2. (79)
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But by Eq. (19.53), the quantity xq can be expressed in terms of Y1q(θ, φ), where (θ, φ) are the

spherical angles in r-space. This causes the matrix element in Eq. (79) to factor into a radial part

times an angular part,

〈n′ℓ′m′|xq|nℓm〉 = IrIΩ, (80)

where

Ir =

∫ ∞

0

r2 dr Rn′ℓ′(r)rRnℓ(r), (81)

and

IΩ =

√

4π

3

∫

dΩY ∗
ℓ′m′(Ω)Y1q(Ω)Yℓm(Ω). (82)

We apply the 3-Yℓm formula (18.67) to the latter, to obtain

IΩ =

√

2ℓ+ 1

2ℓ′ + 1
〈ℓ1mq|ℓ′m′〉〈ℓ′0|ℓ100〉. (83)

Then Eq. (79) becomes

|rAB|2 =
2ℓ+ 1

2ℓ′ + 1
I2r |〈ℓ′0|ℓ100〉|2

∑

q

〈ℓ′m′|ℓ1mq〉〈ℓ1mq|ℓ′m′〉, (84)

which shows how the total transition rate depends on the magnetic quantum numbers of the tran-

sition.

Now, however, we assume that the initial state is unpolarized and that we don’t care which

final state the atom falls into. Then we obtain an effective value of |rAB |2 by averaging over initial

magnetic substates, and summing over final magnetic substates. This causes the replacement,

|rAB|2 → 1

2ℓ+ 1

∑

mm′

|rAB|2. (85)

But when we use Eq. (84) in this, the q and mm′ sums can be done,

∑

mm′

∑

q

〈ℓ′m′|ℓ1mq〉〈ℓ1mq|ℓ′m′〉 =
∑

m′

1 = 2ℓ′ + 1, (86)

where we use the orthonormality relation (18.50a) of the Clebsch-Gordan coefficients. Finally,

putting all the pieces together and using Eq. (23), we find the effective Einstein A-coefficient for

electric dipole radiation,

AE1 =
4

3

e2ω3

h̄c3
I2r |〈ℓ′0|ℓ100〉|2. (87)

A standard reference for the material in these notes is Bethe and Salpeter, Quantum Mechanics

of One- and Two-Electron Atoms, which includes tables of dipole transition rates.
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Problems

1. The perturbation expansion (6) is valid if Ewave ≪ Enucleus. Compute the energy flux (in watts

per square cm) of light for which the rms electric field of the light wave is equal to the electric field

strength due to the proton in a hydrogen atom at the Bohr radius. There is current experimental

interest in the physics that arises at such high fields. The fields are created by focussing laser light

onto a small region.

2. Compute the lifetime of the 21 cm transition in Hydrogen, 1s1/2 (f = 1) → 1s1/2 (f = 0).

Here f is the total angular momentum F = L + S + I, orbital plus spin for the electron plus spin

for the proton. The splitting between the energy levels is given by Eq. (26.50), where gN is the

proton g-factor, µN and µB are the nuclear and Bohr magnetons, respectively, and a0 is the Bohr

radius. Assume the upper state is unpolarized (equal probabilities of being in the different magnetic

substates). The lifetime is the inverse of the Einstein A coefficient. This lifetime determines the

radio power radiated by galactic clouds of atomic hydrogen.

3. A hydrogen atom is at distance D from a hot blue star with radius R and surface temperature

T , which radiates significantly in the ultraviolet. Assume D ≫ R, so that the light coming from the

star is concentrated in a narrow range of solid angles. Assume the surface of the star radiates as a

blackbody. Assume the atom is unpolarized. When the atom absorbs a photon, taking it from the

1s state to the 2p state, it absorbs the photon momentum and suffers a recoil; then in short order

(∼ 10−9 sec), it reemits a photon and drops back into the ground state. But since the reemission

of the photon is isotropic (for an unpolarized atom), the average momentum transferred by the

emitted photon is zero. In this way, the atom feels an effective force because of the absorption of

photons from the star. Find an expression for this force in terms of D, R, T , and other appropriate

parameters. Ignore all atomic states except the 1s and 2p.

4. The matter Hamiltonian (5) is not a special case of the Hamiltonian (3), because the potential

U(r) in (5) is an external, c-number potential introduced in an ad hoc manner to describe the

interaction of the atomic electron with the nucleus, assumed to be infinitely massive and situated

at the origin of the coordinates. It is certainly plausible that (5) should represent the dynamics of

the atomic electron interacting with the electrostatic field of the nucleus and with the quantized

electromagnetic field, but it would be nice to actually derive (5) from (3), taking into account both

the dynamics of the electron and that of the nucleus.

(a) Consider a two-particle system with masses m1 and m2 and charges q1 = e and q2 = −e. This

covers the case of hydrogen, for which m1 ≫ m2, and positronium (a bound state of an electron and

a positron), for which m1 = m2. Write the matter Hamiltonian as

Hmatt =
1

2m1

[

p1 −
e

c
A(r1)

]2

+
1

2m2

[

p2 +
e

c
A(r2)

]2

− e2

|r1 − r2|
, (88)
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where we ignore the µ ·B terms because we will be working only to the accuracy of the E1 or electric

dipole approximation. In this approximation, k · r is of order α ≈ 1/137 and is negligible, where r

is the separation between the two particles. This means that A(r1) or A(r2) can be approximated

by A(R), where R is the center of mass position.

Perform a transformation from the particle positions (r1,r2) and momenta (p1,p2) to center-of-

mass positions and momenta (R,P) and relative positions and momenta (r,p), as in Sec. 16.9. Let

M be the total mass of the system and µ the reduced mass, as in Sec. 16.9. Show that in the dipole

approximation, the Hamiltonian (88) can be transformed into

Hmatt =
P 2

2M
+

1

2µ

[

p+
e

c
A(R)

]2

− e2

r
. (89)

(b) This is similar to the Hamiltonian (5). Differences include the center-of-mass kinetic energy

term P 2/2M , present here but absent in Eq. (5); the replacement of m in Eq. (5) by µ here; and

the fact that the Hilbert space contains the center-of-mass degrees of freedom as well as those of the

electron and the electromagntic field. Write the total Hamiltonian (matter plus field) in the form

H = Hmatt +Hem = H0 +H1 +H2, (90)

where

H0 =
P 2

2M
+

p2

2µ
− e2

r
+
∑

λ

h̄ωλ a
†
λaλ, (91a)

H1 =
e

µc
p ·A(R), (91b)

H2 =
e2

2µc2
A(R)2, (91c).

Write the eigenstates of H0 as a product of a matter times a field part, where the matter eigenstate

has the form |XK〉, where X refers to an atomic state and K is an eigenstate of the center-of-mass

Hamiltonian (with P = h̄K). Notice that there three classes of degrees of freedom now, the relative

coordinates in the atom, the center of mass coordinates, and the field.

Assume the system is initially in the excited atomic state B with no photons in the field, as

in Sec. 3, and with the initial center of mass momentum h̄Ki = 0. Use first-order time-dependent

perturbation theory to compute the differential transition rate as in Eq. (21), with MBA replaced

by the electric dipole approximation as in Eq. (50). You want the rate at which photons make

transitions into a small cone, but you do not care about the center of mass momentum, so you

should sum over all values of K in the final state.

Show that in addition to the physics discussed in Secs. 3 and 8, we find the fact that the atom

as a whole recoils upon the emission of the photon. The photon frequency is no longer ω = ωBA, but

rather there is a correction, which is small since h̄ω ≪ Mc2. Compute this correction as a function

of ωBA to first order in small quantities. This correction is the Doppler shift due to the recoil of

the atom. It is certainly small, but important in some applications, for example, in laser cooling of

atomic gases and in the Mössbauer effect (see Sec. 19.10).


