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Notes 18

Coupling of Ket Spaces and the Addition of Angular Momenta†

1. Introduction

In these notes we discuss the coupling of ket spaces of systems to form the ket spaces of larger

systems. The constituent systems may be independent of each other in some physical circumstances

or in some models, while in other circumstances or more realistic models they may become coupled.

We will see many examples of this process in this course, including the coupling of spin and orbital

degrees of freedom for a single particle, the coupling of the electronic degrees of freedom in an atom

with the degrees of freedom of the nucleus, the coupling of matter degrees of freedom with those of

the electromagnetic field, and many more.

In this process it frequently happens that the systems being coupled possess angular momentum

operators, that is, the action of rotations on these systems is defined. Recall that the existence of

angular momentum operators implies the existence of rotation operators, and vice versa. In this case,

it turns out that rotations are also defined on the coupled system, and that the angular momentum

in the coupled system is just the sum of the angular momenta of the constituent systems. Likewise,

the rotations that act on the coupled ket space are the products of the rotations acting on the

constituent spaces. In such cases there arises the problem of constructing the standard angular

momentum basis in the coupled space in terms of the standard angular momentum bases in the

constituent spaces. This problem is very common in applications, and is important for computing

and classifying energy eigenstates and for many other purposes.

2. The Tensor Product of Kets and Ket Spaces

We begin with the tensor product, a mathematical operation used in quantum mechanics to

combine together the ket spaces corresponding to different degrees of freedom to obtain a ket space

for a composite system. For example, one can combine the ket spaces for two individual particles,

to obtain the ket space for a two-particle system; or one can combine the orbital and spin degrees

of freedom for a single particle.

To be specific, suppose we have two spinless distinguishable particles, labeled 1 and 2, and let

the ket spaces for these particles be denoted E1 and E2. These ket spaces can be identified with

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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spaces of wave functions on 3-dimensional space, so we write

E1 = {φ(r), particle 1}

E2 = {χ(r), particle 2}. (1)

We regard these two ket spaces as two distinct spaces, because they are associated with two different

particles. The use of two symbols (φ and χ) for the wave functions is just a way of reminding ourselves

which particle is being referred to. Now the wave function space for the combined, two-particle

system is another space, the space E of wave functions defined on the combined, 6-dimensional

configuration space (r1, r2):

E = {ψ(r1, r2)}. (2)

A special case of a two-particle wave function is a product of single particle wave functions,

ψ(r1, r2) = φ(r1)χ(r2), (3)

but not every two-particle wave function can be written in this form. On the other hand, every

two-particle wave function can be written as a linear combination of products of single particle wave

functions. To see this, we simply introduce a basis {un(r)} of wave functions in E1, and another

basis {vm(r)} of wave functions in E2. Then an arbitrary two-particle wave function can be written,

ψ(r1, r2) =
∑

n,m

cnm un(r1) vm(r2), (4)

where the cnm are expansion coefficients. In other words, the products of single particle basis wave

functions forms a basis in the wave function space for two particles.

In the construction we have just presented, we say that the space E is the tensor product of the

spaces E1 and E2, and we write

E = E1 ⊗ E2. (5)

Loosely speaking, one can say that the tensor product space is the space spanned by the products

of wave functions from the two constituent spaces.

In addition to forming the tensor product of ket spaces, one can also form the tensor product

of kets. An example is given in wave function language by Eq. (3), which in ket language would be

written

|ψ〉 = |φ〉 ⊗ |χ〉. (6)

Thus, the tensor product of kets corresponds to the ordinary product of wave functions. Often in

casual physics notation, the tensor product sign ⊗ is omitted from a tensor product such as (6), and

one simply writes |ψ〉 = |φ〉|χ〉.
More generally, suppose E1 is a ket space spanned by the basis {|un〉}, and E2 is a ket space

spanned by the basis {|vm〉}. Then E1⊗E2 is a new ket space spanned by the basis kets {|un〉⊗|vm〉}.
If E1 and E2 are finite-dimensional, then so is E , and we have

dim E = (dim E1)(dim E2). (7)

If either E1 or E2 is infinite-dimensional, then so is E .
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3. The Case of Particles with Spin

An important example of the tensor product occurs when we combine the spatial or orbital

degrees of freedom of a single particle with the spin degrees of freedom. We can define orbital and

spin ket spaces by

Eorb = span{|r〉},

Espin = span{|m〉}, (8)

where m = −s, . . . ,+s. Notice that Eorb is infinite-dimensional, whereas Espin is finite-dimensional.

Then the total Hilbert space for the particle is

E = Eorb ⊗ Espin = span{|r〉 ⊗ |m〉}. (9)

Let us write

|r,m〉 = |r〉 ⊗ |m〉 (10)

for the basis vectors of the tensor product space, so that an arbitrary ket |ψ〉 belonging to E can be

written as a linear combination of these basis vectors. Then by applying a resolution of the identity

we have

|ψ〉 =
∑

m

∫

d3r |r,m〉〈r,m|ψ〉 =
∑

m

∫

d3r |r,m〉ψ(r,m), (11)

where

ψ(r,m) = 〈r,m|ψ〉. (12)

As we have emphasized, the wave function is just the set of expansion coefficients of the state

vector with respect to some basis. In the present case, the basis has two quantum numbers, a

continuous one r and a discrete one m. Therefore the wave function ψ(r,m) depends on these two

variables, one continuous and one discrete.

In other places in these notes we may write the wave function of a particle with spin as ψm(r)

instead of ψ(r,m), but they mean the same thing. Then we can think of m as an index of the

components of a wave function with 2s+ 1 components, which we can arrange as in a column, like

this:






ψs(r)
ψs−1(r)
. . .

ψ−s(r)






. (13)

Such an object is usually called a “spinor” rather than a vector. For example, in the case of a spin- 12
particle, for which m = ± 1

2 , we can write

ψ(r) =

(

ψ+(r)

ψ−(r)

)

. (14)

Spin- 12 particles have 2-component spinors. In this notation we must understand that ψ(r) stands

for a spinor with two components.
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In some ways the notation ψ(r,m) is preferable to ψm(r), since it emphasizes that r and m

play a similar role, that is, they are the variables upon which the wave function depends. Also,

there is danger of confusion in the notation ψm(r), since it is common practice to use subscripts

on an eigenfunction of some set of commuting operators to indicate the quantum numbers of those

operators. For example, in the case of the hydrogen atom in the fine structure model we may write

ψnℓjmj
for the wave function of the electron, in which case the subscripts do not indicate the the

variables upon which the wave function depends, rather the function is an eigenfunction of four

operators and the subscripts are the quantum numbers of those operators. The wave function itself

is a 2-component spinor; if we want to indicate that explicitly, we can write ψnℓjmj
(r,m). This is

writing the wave function in the r, Sz representation, that is, we are expanding the state vector in

the eigenbasis of r, Sz. Notice that in this notation, m takes on the values ± 1
2 , while mj runs over

−j,−j + 1, . . . ,+j (and mj is fixed for a fixed eigenfunction).

By the way, notice that a wave function such as ψnℓmℓms
can be written in bra-ket language as

ψnℓmℓms
(r,m) = 〈r,m|nℓmℓms〉, (15)

so that

ψ∗nℓmℓms
(r,m) = 〈nℓmℓms|r,m〉. (16)

Thus, the complex conjugated wave function ψ∗nℓmℓms
can be regarded as the eigenfunction of the

operators r̂ and Sz with eigenvalues r and m in the (nℓmℓms)-representation. Recall that there is

nothing in the postulates of quantum mechanics that assigns a privileged role to the r-space (or

(r, Sz)-space) wave function; in fact, the postulates do not mention wave functions at all, and in

practice the representation used for the wave function is a matter of convenience.

We see that wave functions such as (16) are really scalar products, and that it is partly a matter

of choice to decide which set of quantum numbers [(r,m) or (nℓmℓms) in the example] are the ones

that label the eigenfunction and which are those “upon which the wave function depends.” From

another point of view, the wave function is the component of a unitary matrix that connects the

two bases, each labeled by the quantum numbers of a complete set of commuting operators.

Having made these warnings about confusion of notation, let us look at the normalization of a

spinor wave function, using the notation ψm(r). If the state vector |ψ〉 is normalized, then

1 = 〈ψ|ψ〉 =
∑

m

∫

d3r 〈ψ|rm〉〈rm|ψ〉 =
∑

m

∫

d3rψ∗m(r)ψm(r). (17)

If we write simply ψ(r) for the spinor (13), remembering that this is a multicomponent object, then

we can define a Hermitian conjugate row spinor by

ψ†(r) =
(

ψ∗s (r), ψ∗s−1(r), . . . , ψ
∗
−s(r)

)

. (18)

This allows us to write the normalization (17) in the form,

1 =

∫

d3rψ†(r)ψ(r), (19)
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where the multiplication of the row spinor times the column spinor is implied. We will use this type

of notation extensively when we come to the Dirac equation.

4. The Tensor Product of Operators

To return to the tensor product, one can form the tensor product not only of vectors, but also

of operators. Suppose A1 is an operator that acts on E1, and A2 is an operator that acts on E2, and
let E = E1 ⊗ E2. Then we define an operator A1 ⊗ A2, whose action on a tensor product of vectors

from E1 and E2 is given by

(A1 ⊗A2)(|α〉1 ⊗ |β〉2) = (A1|α〉1)⊗ (A2|β〉2). (20)

In this equation, the subscripts 1, 2 on the kets indicate which space (E1 or E2) the kets belong to.

But since an arbitrary vector in E can be represented as a linear combination of tensor products of

vectors from E1 and E2, we can use linear superposition to extend Eq. (20) to define the action of

A1 ⊗ A2 on an arbitrary vector in E . Again, in casual physics notation, the tensor product sign is

often omitted in a product of operators such as A1 ⊗A2, and one would simply write A1A2.

A special case of the above is when one or the other of the operators A1 or A2 is the identity.

For example, if A2 = 1, we have

(A1 ⊗ 1)(|α〉1 ⊗ |β〉2) = (A1|α〉1)⊗ |β〉2. (21)

In such cases it would be normal in casual physics notation to write simply A1 instead of A1 ⊗ 1,

thereby confusing an operator that acts on E1 with an operator that acts on E . Similar considerations

apply to operators of the form 1 ⊗ A2, where A1 = 1. We note that operators of the type A1, A2,

when regarded as acting on the tensor product space E , always commute with one another,

[A1 ⊗ 1, 1⊗A2] = [A1, A2] = 0, (22)

as follows from Eq. (20). As we say, A1 and A2 commute because they act on different spaces.

5. Hamiltonians for Particles With Spin

In Sec. 5.17 we guessed that the quantum Hamiltonian for a particle in an electromagnetic field

could be borrowed from classical mechanics. The guess was

H =
1

2m

[

p− q

c
A(r, t)

]2

+ qΦ(r, t), (23)

where for generality we allow the electromagnetic field to be time-dependent. But this Hamiltonian

does not take into account the spin of the particle, since there is no spin in classical mechanics. The

issue is especially clear in the case of a neutral (q = 0) spinning particle, such as a neutron or a

silver atom, for which the Hamiltonian (23) becomes simply H = p2/2m, the Hamiltonian for a

free particle. We know that a neutral spinning particle is not free in an nonuniform magnetic field,

because a beam of silver atoms is split in a Stern-Gerlach experiment.
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As discussed in Notes 14, however, a classical magnetic moment µ has an energy of orientation

in a magnetic field given by −µ ·B, which depends on space and time if B does. So it is a reasonable

guess that this quantity behaves something like a potential energy, and that it should be reinterpreted

as a quantum operator and included in the Hamiltonian to account for the effects of spin. That is,

µ should be interpreted as proportional to S, as explained in Notes 14, an operator that acts on the

spin degrees of freedom of the particle, and the Hamiltonian for a neutral spinning particle should

be taken to be

H =
p2

2m
− µ ·B(r, t). (24)

The extra term is proportional to B ·S, which contains a term BxSx, which is precisely an operator

of the general form given in Eq. (20), with the ⊗ omitted. That is, Bx acts on the spatial part of

the wave function, and Sx the spin part. The whole scalar product −µ ·B is a sum of three such

operators.

To be clear about the meaning of the Hamiltonian (24), let us write out the Schrödinger equation

for a neutron, exhibiting it as two coupled differential equations for the components of the two-

component wave function ψ±, as in Eq. (14). We use Eq. (14.24) for the magnetic moment of the

neutron,

µ =
g

2
µNσ, (25)

where g is the g-factor of the neutron and µN is the nuclear magneton. Then the time-dependent

Schrödinger equation can be written,

− h̄2

2m
∇2ψ+ − g

2
µN [Bzψ+ + (Bx − iBy)ψ−] = ih̄

∂ψ+

∂t
,

− h̄2

2m
∇2ψ− − g

2
µN [(Bx + iBy)ψ+ −Bzψ−] = ih̄

∂ψ−

∂t
.

(26)

We see that the two components of the neutron spinor are coupled together by the magnetic field.

It can be shown that these equations explain the splitting of the beam in an nonuniform magnetic

field.

6. The Pauli Equation

If the particle has charge as well as spin, then we may take the Hamiltonian to be

H =
1

2m

[

p− q

c
A(r, t)

]2

+ qΦ(r, t) − µ ·B(r, t), (27)

This is called the Pauli Hamiltonian and the version of the Schrödinger equation that employs it

is called the Pauli equation. If the Pauli equation is written out in components as in Eq. (26), it

will be seen that the only term that couples the components of the spinor is the term −µ ·B. The

kinetic energy and potential energy are diagonal in spin space.



Notes 18: Coupling Ket Spaces and Angular Momenta 7

The normalization of the spinor wave function was given in Eq. (19). This leads to the definition

of the probability density in the Pauli theory,

ρ(r, t) = ψ†(r, t)ψ(r, t) =
∑

m

ψ∗m(r, t)ψm(r, t), (28)

where the product of a row spinor times a column spinor is understood. This simply means, for

example in the case of an electron with two components, that the probability density for finding an

electron somewhere in space is the sum of the probabilty density for finding a spin-up electron, plus

that of finding a spin-down electron.

The probability density ρ should be associated with a probability current J, that together satisfy

the continuity equation,
∂ρ

∂t
+∇ · J = 0. (29)

It is easy to show that a definition of the current that satisfies Eq. (29) is given by the obvious

generalization of Eq. (5.57), namely,

J(r, t) = Re[ψ†(r, t)vψ(r, t)] = Re
∑

m

ψ∗m(r, t)v ψm(r, t), (30)

where the velocity operator v is given by

v =
1

m

[

−ih̄∇− q

c
A(r, t)

]

. (31)

One finds in the computation of ∂ρ/∂t that the term −µ · Bψ in the Pauli equation does not

contribute. The probability current is just the sum of the currents for spin-up and spin-down

particles (speaking of a spin- 12 particle), a simple result.

A question that arises here and also in the derivation of the probability current in Sec. 5.14

is whether the J we have found is unique. The only requirement we have imposed in finding J is

that it satisfy the continuity equation (29). But if J satisfies this equation, then so does J+∇×K,

where K is any vector field. So we must ask, is there any physically interesting way to modify the

current by the addition of an exact curl? In the case of the spinless particle, discussed in Sec. 5.14,

the answer is no, but here, in the case of a particle with spin, there is a way to do it. It proceeds

like this.

We will speak of a spin- 12 particle. Since µ is the magnetic moment operator, it makes sense to

regard the quantity

M = ψ†
µψ (32)

as a density of magnetic moment, what in classical electromagnetic theory would be called the

magnetization. In this expression it is understood that the row spinor and column spinor are

sandwiched around the Pauli matrices contained in µ. This is just like what we did in Sec. 5.15

when we defined a charge density and current density by ρc = qρ and Jc = qJ; now we have in

addition a dipole density. But in classical electromagnetism a nonuniform magnetization gives rise
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to a bound current Jb = c∇×M. See Eq. (A.23). The bound current arises from the fact that when

the magnetization is nonuniform, the current in a loop from one dipole does not exactly cancel the

current in the loop of the neighboring dipole.

Therefore if we are thinking of electric current instead of probability current, it makes sense to

define Jc by

Jc = qReψ†vψ +∇×(ψ†
µψ). (33)

Such a magnetization term arises in the nonrelativistic limit of the probability current for the Dirac

equation, as we will see later in the course.

Now the question is, which is physically correct, the version of the current (charge or probability)

with the magnetization term, or the one without it? It makes no difference if all we are interested

in is conservation of probability, since ∇ · J is the same in both cases. But real electrons produce

real currents and real magnetizations, and these produce real magnetic fields, according to Ampere’s

law ∇×B = (4π/c)Jc. And there is no doubt that the magnetization contributes to the observed

magnetic field, as one sees for example in ferromagnets.

7. The Problem of Addition of Angular Momenta

Now we turn to the problem of the coupling or addition of angular momenta. Suppose we have

two ket spaces E1 and E2 upon which two angular momentum operators J1 and J2 act, each of which

satisfies the angular momentum commutation relations (13.1). The case of the orbital and spin ket

spaces discussed above is a good example; if E1 = Eorb and E2 = Espin, then the angular momentum

J1 is the orbital angular momentum L and J2 is the spin angular momentum S. Then in accordance

with the general theory laid out in Notes 13, we know that each space E1 and E2 breaks up into

the direct sum of a set of irreducible subspaces, each with a definite j value. For example, the

irreducible subspaces of Eorb are spanned by wave functions of the form un(r)Yℓm(θ, φ) for a definite

element of a basis {un(r)} of radial wave functions, a definite value of ℓ, and for −ℓ ≤ m ≤ +ℓ.

This subspace has dimensionality 2ℓ + 1. As for the space Espin, it consists of a single irreducible

subspace of dimensionality 2s+ 1, characterized by the value s of the spin.

In the general case, the spaces E1 and E2 possess standard angular momentum bases, say,

{|γ1j1m1〉} and {|γ2j2m2〉}, in the notation of Notes 13. We denote the corresponding irreducible

subspaces by E1γ1j1 and E2γ2j2 , so that

E1 =
∑

γ1j1

⊕E1γ1j1 ,

E2 =
∑

γ2j2

⊕E2γ2j2 .
(34)

We assume that since operators J1 and J2 are given, we know what values of j1 and j2 occur in

these decompositions of E1 and E2 and with what multiplicity, we know what the standard angular

momentum bases are on E1 and E2.
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Next consider the tensor product space E = E1 ⊗ E2. We define a “total” angular momentum

operator acting on E by

J = J1 ⊗ 1 + 1⊗ J2 = J1 + J2, (35)

where the final expression is in casual physics notation. We note that J1 and J2 commute,

[J1,J2] = 0, (36)

since they act on different spaces. (This commutator means that every component of J1 commutes

with every component of J2.) From this it easily follows that J also satisfies the angular momentum

commutation relations,

[Ji, Jj ] = ih̄ ǫijk Jk. (37)

Therefore we have a new space E upon which a vector J of angular momentum operators acts;

in accordance with the theory of Notes 13, this space breaks up into the direct sum of a sequence of

irreducible subspaces, each characterized by some j value. Furthermore, we know that there exists a

standard basis |γjm〉 on E . The basic problem of the addition of angular momenta is to find which

values of j occur in E and with what multiplicity, and to find some convenient way of constructing

the standard basis |γjm〉.

8. Restricting Spaces E1 and E2

In solving this problem it suffices to consider the case in which E1 and E2 consist of a single

irreducible subspace. For example, in the case of the combination of orbital and spin degrees of free-

dom, instead of considering the infinite dimensional space of wave functions in Eorb, we can consider

a single, finite-dimensional space spanned by the wave functions {u(r)Yℓm(θ, φ),m = −ℓ, . . . ,+ℓ} for

a definite radial wave function u(r) and a definite value of ℓ. The spin space Espin already consists

of a single irreducible subspace, and need not be restricted. This is because (in the general case) the

product space E is the direct sum of tensor products of the irreducible subspaces E1γ1j1 and E2γ2j2 ,

and these tensor products can be handled one at a time. That is,

E = E1 ⊗ E2 =
∑

γ1,j1

γ2,j2

⊕
(

E1γ1j1 ⊗ E2γ2j2

)

, (38)

as follows from Eq. (34). Therefore in the following we will restrict E1 to one of its subspaces E1γ1j1

and E2 to one of its subspaces E2γ2j2 , so that E = E1 ⊗ E2 will henceforth stand for just one of the

terms in the sum (38).

This means that E1 and E2 are (2j1 +1)- and (2j2 +1)-dimensional, respectively, with standard

bases {|j1m1〉} and {|j2m2〉}. The indices γ1 and γ2 are dropped because we now only have one

irreducible subspace. Similarly, the indices j1 and j2 are constants characterizing the subspaces E1
and E2. If these were understood, it would be possible to drop them as well, and write the standard

bases in E1 and E2 simply as {|m1〉} and {|m2〉}, respectively, but for clarity we shall retain indices
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j1 and j2 in the following discussion. As for the space E = E1 ⊗ E2, it also possesses a standard

angular momentum basis, {|γjm〉}, in which for all we know at this point an index γ is necessary

to indicate possible multiple occurrences of different j values. As it will turn out, however, the

maximum multiplicity of the different j values is 1, so the γ index is unnecessary here as well. The

space E has dimensionality

dim E = (2j1 + 1)(2j2 + 1). (39)

We can now rephrase the problem of the addition of angular momenta. It is to find which j

values occur in the space E = E1⊗E2 and with what multiplicity as a function of the given parameters

j1 and j2, and to find convenient ways of constructing the standard angular momentum basis in E .

9. Two Bases in E

The standard basis kets in E1, |j1m1〉, are eigenkets of the operators J2
1 and J1z with eigenvalues

j1(j1 + 1)h̄2 and m1h̄, respectively, and similarly for space E2 with its standard basis kets |j2m2〉.
The tensor products of these basis kets form a basis in E = E1⊗E2. We adopt the shorthand notation

for this basis in E ,
|j1j2m1m2〉 = |j1m1〉 ⊗ |j2m2〉, (40)

where m1 = −j1, . . . , j1 and m2 = −j2, . . . , j2. We will call the basis {|j1j2m1m2〉} in E the tensor

product basis or uncoupled basis.

The standard basis in E will be denoted {|jm〉}, without the γ in anticipation of the fact that

it will not be needed. We will call this basis the coupled basis. We will be interested in the unitary

matrix that connects the coupled with the uncoupled basis.

10. Allowed Values of j and m

The kets of the coupled or standard basis in E , |jm〉, are eigenkets of the operators J2 =

(J1 + J2)
2 and Jz = J1z + J2z with eigenvalues j(j + 1)h̄2 and mh̄, respectively. We will now find

which values of j and m occur.

We start by finding the eigenstates of Jz. This is easy, because the vectors of the tensor product

basis are all eigenkets of Jz = J1z + J2z, with eigenvalues (m1 +m2)h̄:

Jz |j1j2m1m2〉 = (J1z + J2z)|j1m1〉|j2m2〉 = (m1 +m2)h̄|j1j2m1m2〉

= mh̄|j1j2m1m2〉, (41)

where we set

m = m1 +m2 (42)

for the quantum number of Jz. The spectrum of Jz ranges from the maximum value of m1 +m2,

which is j1 + j2, down to the minimum, which is −(j1 + j2).
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Fig. 1. Each dot in the rectangular array stands for one vector of the uncoupled or tensor product basis, |j1j2m1m2〉 =
|j1m1〉|j2m2〉. The dashed lines are contours of m = m1 +m2.

These eigenvalues of Jz are in general degenerate. To follow the subsequent argument, it helps

to have an example. Let us take the case j1 = 5
2 and j2 = 1, so that 2j1 + 1 = dim E1 = 6 and

2j2 + 1 = dim E2 = 3. Thus, the dimensionality of E = E1 ⊗ E2 is 6 × 3 = 18. It is convenient to

make a plot in the m1-m2 plane of the basis vectors of the tensor product basis, by placing a dot at

each allowed m1 and m2 value. We then obtain a rectangular array of dots, as illustrated in Fig. 1.

As illustrated in the figure, lines of constant m = m1 +m2 are straight lines, dashed in the figure,

sloping downwards. The number of dots each dashed line passes through is the number of kets of

the uncoupled basis with a given m value; we see that the degeneracies of the different m values

range from one to three, as summarized in Table 1.

In particular, the stretched state (the one for which (m1,m2) = (j1, j2), in the upper right hand

corner in the figure) is a nondegenerate eigenstate of Jz with quantum number m = 7
2 . But since

[J2, Jz ] = 0, this state is also an eigenstate of J2, in accordance with Theorem 1.5. But what is

the eigenvalue of J2, that is, what is the quantum number j? Certainly we cannot have j < 7
2 ,

because then this would violate the rule m ≤ j. Nor can we have j > 7
2 , because, for example, if

the stretched state were |jm〉 = | 92 7
2 〉, then we could apply the raising operator J+ and obtain the

state | 92 9
2 〉. But there is no state with m = 9

2 , as we see from the figure or table. Therefore the j

quantum number of the stretched state must be j = 7
2 ; this state is the state |jm〉 = | 72 7

2 〉 of the

coupled basis. But given this state, we can apply lowering operators J− to obtain all eight states

| 72m〉, which are indicated in the third column of the table.
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m g(m) j = 7
2 j = 5

2 j = 3
2

7
2 1 1
5
2 2 1 1
3
2 3 1 1 1
1
2 3 1 1 1

− 1
2 3 1 1 1

− 3
2 3 1 1 1

− 5
2 2 1 1

− 7
2 1 1

Total 18 8 6 4

Table 1. The first column contains m, the quantum number of Jz ; the second column contains g(m), the degeneracy of
m; columns 3, 4 and 5 contain a unit for each vector |jm〉 of the standard or coupled basis with given j and m values.

Now let us consider the 2-dimensional eigenspace of Jz corresponding to quantum number

m = 5
2 . This space is spanned by the kets of the uncoupled basis corresponding to (m1,m2) = (52 , 0)

and (32 , 1). Furthermore, the ket | 72 5
2 〉 of the coupled basis also lies in this space. Let us consider

the ket, call it |x〉, that is orthogonal to | 72 5
2 〉 in this space. Certainly |x〉 is an eigenket of Jz with

eigenvalue 5
2 . And it is also an eigenket of J2, a fact that is left as an exercise (the logic is an

extension of the proof of Theorem 1.5). But what is the j value? Certainly we cannot have j < 5
2 ,

because this would violate the m ≤ j rule. Nor can we have j > 5
2 , because if we had j = 7

2 , for

example, for the state |x〉, then we would have two linearly independent states, both with m = 5
2

and j = 7
2 . We could then apply the raising operator J+ to both of them, and obtain two linearly

independent states with m = 7
2 , j = 7

2 . But there is only one state with m = 7
2 , as we see from

the figure or table. Therefore we must have j = 5
2 for the state |x〉, which otherwise is the ket | 52 5

2 〉
of the coupled basis. Then, by applying lowering operators to this, we obtain all six vectors | 52m〉,
which are indicated in the fourth column of the table. Finally, we carry out the same procedure

for the 3-dimensional space corresponding to m = 3
2 , and we obtain four more vectors | 32m〉 of the

coupled basis.

In this way, all 18 dimensions of E are used up, as indicated by the totals at the bottom of

the table. We see that the tensor product space E consists of the direct sum of three irreducible

subspaces, corresponding to j = 3
2 ,

5
2 , and

7
2 , and that each of these j values occurs with multiplicity

one. These facts are summarized by the notation,

5
2 ⊗ 1 = 3

2 ⊕ 5
2 ⊕ 7

2 , (43)

which corresponds to the dimensionality count,

18 = 6× 3 = 4 + 6 + 8. (44)

By using diagrams like these, it is easy to work out the general case in which we combine
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arbitrary angular momenta j1 and j2. The result is

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ . . .⊕ j1 + j2, (45)

that is, the j values in j1 ⊗ j2 range from a minimum of |j1 − j2| to a maximum of j1 + j2 in integer

steps, and each j value in this range occurs once. Since no j value occurs more than once, there

is no need for the index γ, and the vectors of the coupled basis can be denoted simply |jm〉. Also,

since the dimensionalities of the subspaces must add up to the dimensionality of the tensor product

space, we have the identity
j1+j2
∑

j=|j1−j2|

2j + 1 = (2j1 + 1)(2j2 + 1). (46)

This identity can be proved by elementary algebra, as a check on the count of dimensions.

11. The Clebsch-Gordan Coefficients

At this point we have two bases in E = E1 ⊗ E2, the uncoupled basis |j1j2m1m2〉 with −j1 ≤
m1 ≤ j1 and −j2 ≤ m2 ≤ j2 and the coupled basis |jm〉 with |j1−j2| ≤ j ≤ j1+j2 and −j ≤ m ≤ j.

These two bases must be connected by a unitary matrix, the components of which are just the scalar

products of the vectors from one basis with the vectors from the other. That is, we have

|jm〉 =
j1
∑

m1=−j1

j2
∑

m2=−j2

|j1j2m1m2〉〈j1j2m1m2|jm〉, (47a)

|j1j2m1m2〉 =
j1+j2
∑

j=|j1−j2|

j
∑

m=−j

|jm〉〈jm|j1j2m1m2〉, (47b)

which can be regarded as the insertion of two resolutions of the identity in two different ways. The

expansion coefficients 〈j1j2m1m2|jm〉 or 〈jm|j1j2m1m2〉 are called the Clebsch-Gordan coefficients

or the vector coupling coefficients. Note the effect of the selection rule (51) on the sums (47): many

of the terms are zero.

The Clebsch-Gordan coefficients are determined by Eqs. (47) only to within certain phase

conventions. As explained in Sec. 13.4, the relative phases of the basis vectors |jm〉 inside a given

irreducible subspace are chosen so that the matrix elements of J+ and J− are real and positive, but

this still leaves arbitrary the phases of the stretched states within each irreducible subspace. This in

turn leaves some arbitrariness in the phase conventions for the Clebsch-Gordan coefficients. These

are pinned down by a further phase convention,

〈jj|j1j2j1, j − j1〉 > 0, (48)

for each allowed j value in j1 ⊗ j2, which is due to Condon and Shortley, authors of the classic book

The Theory of Atomic Spectra. Under these phase conventions, the Clebsch-Gordan coefficients are

real, that is,

〈jm|j1j2m1m2〉 = 〈j1j2m1m2|jm〉, (49)
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so that the unitary matrix connecting the coupled and uncoupled bases is in fact a real, orthogonal

matrix.

The Clebsch-Gordan coefficients have several properties that follow in a simple way from their

definition. The first follows from the fact that the Clebsch-Gordan coefficients are the components

of a unitary matrix, so that
∑

m1m2

〈jm|j1j2m1m2〉〈j1j2m1m2|j′m′〉 = δjj′ δmm′ , (50a)

∑

jm

〈j1j2m1m2|jm〉〈jm|j1j2m′
1m

′
2〉 = δm1m′

1
δm2m′

2
. (50b)

Again, these are nothing but orthonormality relations for the two bases, with resolutions of the

identity inserted.

Another property is the selection rule,

〈jm|j1j2m1m2〉 = 0 unless m = m1 +m2, (51)

which follows immediately from Eq. (41).

The Clebsch-Gordan coefficients also satisfy various recursion relations. We can obtain one of

these by applying J− = J1− + J2− to Eq. (47a). This gives

1

h̄
J−|jm〉 =

√

(j +m)(j −m+ 1) |j,m− 1〉

=
∑

m1m2

(

√

(j1 +m1)(j1 −m1 + 1) |j1j2,m1 − 1,m2〉

+
√

(j2 +m2)(j2 −m2 + 1) |j1j2m1,m2 − 1〉
)

〈j1j2m1m2|jm〉

=
∑

m1m2

(

√

(j1 −m1)(j1 +m1 + 1) 〈j1j2,m1 + 1,m2|jm〉

+
√

(j2 −m2)(j2 +m2 + 1) 〈j1j2m1,m2 + 1|jm〉
)

× |j1j2m1m2〉, (52)

to which we apply the bra 〈j1j2m′
1m

′
2| from the left and rearrange indices to obtain,

√

(j +m)(j −m+ 1) 〈j1j2m1m2|j,m− 1〉

=
√

(j1 −m1)(j1 +m1 + 1) 〈j1j2,m1 + 1,m2|jm〉

+
√

(j2 −m2)(j2 +m2 + 1) 〈j1j2m1,m2 + 1|jm〉.

(53)

Similarly, working with J+ we obtain,

√

(j −m)(j +m+ 1) 〈j1j2m1m2|j,m+ 1〉

=
√

(j1 +m1)(j1 −m1 + 1) 〈j1j2,m1 − 1,m2|jm〉

+
√

(j2 +m2)(j2 −m2 + 1) 〈j1j2m1,m2 − 1|jm〉.

(54)
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The method of Sec. 12 for calculating the Clebsch-Gordan coefficients uses a slightly disguised version

of these recursion relations.

Other properties of the Clebsch-Gordan coefficients include the following identities:

〈j1j2m1m2|jm〉 = (−1)j1+j2−j〈j2j1m2m1|jm〉, (55a)

= (−1)j1−j+m2

√

2j + 1

2j1 + 1
〈jj2m,−m2|j1m1〉, (55b)

= (−1)j2−j−m1

√

2j + 1

2j2 + 1
〈j1j,−m1,m|j2m2〉, (55c)

= (−1)j1+j2−j〈j1j2,−m1,−m2|j,−m〉. (55d)

We will not prove these identities here. If you ever have to use such identities in a serious way,

you should look into the Wigner 3j-symbols, which provide a more symmetrical way of dealing with

Clebsch-Gordan coefficients.

12. Calculating the Clebsch-Gordan Coefficients

The following method for calculating the Clebsch-Gordan coefficients differs slightly from the

usual one taught in introductory courses, mainly in its method of handling the stretched states. We

illustrate it with the example of Sec. 10, in which j1 = 5
2 and j2 = 1. Suppose we wish to obtain

the Clebsch-Gordan coefficient 〈j1j2m1m2|jm〉 = 〈521 1
20| 32 1

2 〉. We begin by writing |jm〉 = | 32 3
2 〉,

the stretched state in the irreducible subspace j = 3
2 , as a linear combination of basis vectors of the

uncoupled basis with m = m1 +m2 = 3
2 :

| 32 3
2 〉 = a| 52 〉| − 1〉+ b| 32 〉|0〉+ c| 12 〉|1〉, (56)

where |m1〉|m2〉 is short for |j1m1〉|j2m2〉 and where a, b and c are the expansion coefficients. We

determine these by applying J+ = J1+ + J2+ to both sides. The left hand side is annihilated by J+

so we obtain

0 = a
[

(J1+| 52 〉)| − 1〉+ | 52 〉(J2+| − 1〉)
]

+ b
[

(J1+| 32 〉)|0〉+ | 32 〉(J2+|0〉)
]

+ c
[

(J1+| 12 〉)|1〉+ | 12 〉(J2+|1〉)
]

= a
[

0 +
√
2| 52 〉|0〉

]

+ b
[
√
5| 52 〉|0〉+

√
2| 32 〉|1〉

]

+ c
[
√
8| 32 〉|1〉+ 0

]

,

(57)

or, since the basis vectors are linearly independent,

√
2 a+

√
5 b = 0,

√
2 b +

√
8 c = 0. (58)

This determines the vector (a, b, c) to within a normalization and phase. By Eq. (56) this vector

must be normalized, and by Eq. (48) a is real and positive. Taken together, these imply,

| 32 3
2 〉 =

√

2
3 | 52 〉| − 1〉 − 2√

15
| 32 〉|0〉+

√

1
15 | 12 〉|1〉. (59)
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This is the stretched state in the j = 3
2 subspace. Notice that we did not have to go through the

Clebsch-Gordan coefficients for j = 7
2 or 5

2 to obtain it.

We now apply J− = J1− + J2− to both sides. On the left we obtain
√
3| 32 1

2 〉, while the right

hand side can be expressed as a linear combination of the vectors of the uncoupled basis. The result

is

| 32 1
2 〉 =

√

2
5 | 32 〉| − 1〉 −

√

2
5 | 12 〉|0〉+

√

1
5 | − 1

2 〉|1〉. (60)

The desired Clebsch-Gordon coefficient can be read off from this,

〈521 1
20| 32 1

2 〉 = −
√

2
5 . (61)

This method is suitable for calculating Clebsch-Gordan coefficients by hand for small quantum

numbers. There are also explicit formulas for the Clebsch-Gordan coefficients. These are awkward

to use for calculation by hand, but are easily coded into computer programs. See also the link to

the table of Clebsch-Gordan coefficients.

13. Universal Coefficients and Matrices

The Clebsch-Gordan coefficients have been constructed in such a way that they depend only

on the angular momentum commutation relations and various phase conventions for the standard

angular momentum basis states. They do not depend on the physical interpretation of the angular

momenta that occur (J1, J2, J = J1 + J2, etc., whether spin, orbital, isospin, or any other kind),

or on the nature of the vector space upon which these operators act (whether a state space for a

quantum mechanical system or any other kind). The Clebsch-Gordan coefficients are just numbers

that are universal in the sense that they apply in the analysis of any physical system, as long as the

standard phase and other conventions are followed.

Therefore the scalar product that appears in the notation 〈jm|j1j2m1m2〉 for the Clebsch-

Gordan coefficient can be understood as taking place in some model space, one that is set up just

for the purposes of constructing the coefficients. It is not necessarily the same as the state space

for whatever application one is making. For this reason some authors prefer to write the Clebsch-

Gordan coefficients as Cjm
j1j2m1m2

or some such notation, to avoid confusing the scalar products in

the two different spaces. The scalar product notation used in these notes has the advantage that it

makes identities such as (47) obvious.

Similar considerations apply to the D-matrices. According to the definition (13.56), these are

the components of rotation operators with respect to a standard angular momentum basis. The

matrices that result are independent of the nature of the space upon which the matrix elements

are taken, as long as standard conventions are followed for the phases etc. of the basis vectors.

Therefore the D-matrices are universal in the sense that they apply in all physical applications, as

long as standard conventions are followed. The space in which the matrix element is taken in the

definition (13.56) can be any model space in which the standard conventions are followed.
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14. Rotations, D-matrices and Clebsch-Gordan Coefficients

Let us now consider the effect of the rotation operator U(n̂, θ) on the tensor product space

E = E1 ⊗ E2. This rotation operator is defined in the usual way, and can be expressed in terms of

the rotation operators U1(n̂, θ) and U2(n̂, θ) that act on the constituent spaces E1 and E2:
U(n̂, θ) = e−iθn̂·J/h̄ = e−iθn̂·(J1+J2)/h̄

= e−iθn̂·J1/h̄e−iθn̂·J2/h̄ = U1(n̂, θ)U2(n̂, θ). (62)

Here the exponential of the sum factors into a product of exponentials because J1 and J2 commute.

Interesting results can be obtained from this. First let us apply a rotation operator U to a

vector of the uncoupled basis. We find

U |j1j2m1m2〉 = (U1|j1m1〉)(U2|j2m2〉) =
∑

m′

1
m′

2

|j1j2m′
1m

′
2〉Dj1

m′

1
m1

Dj2
m′

2
m2

=
∑

jm

∑

m′

|jm′〉Dj
m′m〈jm|j1j2m1m2〉, (63)

where we use Eqs. (13.85) and (47b), and where it is understood that all D matrices have the same

axis and angle (n̂, θ). Then we multiply this on the left by 〈j1j2m′′
1m

′′
2 | and rearrange indices, to

obtain,

Dj1
m1m′

1

Dj2
m2m′

2

=
∑

jmm′

〈j1j2m1m2|jm〉Dj
mm′〈jm′|j1j2m′

1m
′
2〉. (64)

In a similar manner we can obtain the identity,

Dj
mm′ =

∑

m1m2

m′

1
m′

2

〈jm|j1j2m1m2〉Dj1
m1m′

1

Dj2
m2m′

2

〈j1j2m′
1m

′
2|jm′〉. (65)

These identities are useful for a variety of purposes; for example, Eq. (64) can be used whenever

it is necessary to express a product of D matrices as a linear combination of single D matrices (a

problem that arises often in atomic, molecular, and nuclear physics), and Eq. (65) shows that D

matrices for small values of j can be combined to find the D matrices for larger values of j.

15. The Three-Yℓm Formula

We present here one application of Eq. (64), in which we use Eq. (15.67) to obtain an identity

involving the Yℓm’s. First we change notation in Eq. (64), setting j1 = ℓ1, j2 = ℓ2 and j = ℓ

(indicating integer angular momenta), and we set m′
1 = m′

2 = 0. Then because of the selection rule

(51), the m′ sum on the right hand side is replaced by the single term m′ = 0. Then we take the

complex conjugate of both sides and use Eq. (15.67), to obtain

Yℓ1m1
(θ, φ)Yℓ2m2

(θ, φ) =
∑

ℓm

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ+ 1)

× Yℓm(θ, φ) 〈ℓ0|ℓ1ℓ200〉〈ℓ1ℓ2m1m2|ℓm〉. (66)
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Of course, the product of two Yℓm’s is a function on the unit sphere, which can be expanded as a

linear combination of other Yℓm’s; this formula gives the expansion explicitly. We see that the ℓ

values that contribute are exactly those which occur in ℓ1 ⊗ ℓ2. Finally, we can multiply this by

Y ∗
ℓ3m3

and integrate to obtain the useful formula,

∫

dΩY ∗
ℓ3m3

Yℓ1m1
Yℓ2m2

=

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ3 + 1)
〈ℓ3m3|ℓ1ℓ2m1m2〉〈ℓ1ℓ200|ℓ30〉. (67)

We will call this the three-Yℓm formula; it is very useful in atomic physics. This formula and Eq. (64)

can be regarded as a special cases of the Wigner-Eckart theorem, which we consider later.

In conclusion, we mention a special case of Eq. (66), obtained by setting m1 = m2 = 0 and

using Eq. (15.51),

Pℓ1(cos θ)Pℓ2(cos θ) =
∑

ℓ

Pℓ(cos θ) |〈ℓ0|ℓ1ℓ200〉|2, (68)

which is sometimes useful.

Problems

1. About wave functions of particles, including spin.

(a) The wave function of a particle with spin was defined in Eq. (12). If ψm(r) is the wave function

of a spinning particle in state |ψ〉, then what is the wave function of the particle in the rotated state,

U(R)|ψ〉? The rotation operator U(R) is the product of a spatial rotation times a spin rotation, both

parameterized by the same R.

(b) Let us use the Pauli equation to describe the dynamics of an electron. The wave function is a

2-component spinor as in Eq. (14), and in the Pauli Hamiltonian (27) we set q = −e and g = ge, the

electron g-factor. Also note the sign in Eq. (14.16), that is, µ = −geµB(S/h̄), which comes from

the fact that the charge on the electron is negative.

Consider an electron in a central force potential V (r), plus a uniform magnetic field B = Bb̂.

Let ω0 = eB/mc. Use the gauge A = 1
2B×r. Consider the time-dependent Pauli equation for the

electron,

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉, (69)

where H is the Pauli Hamiltonian (27) and where qΦ = V (r).

Define a new state |φ(t)〉 by
|ψ(t)〉 = U(b̂, ωt)|φ(t)〉, (70)

where U(b̂, ωt) is a rotation operator that rotates the whole system (orbital and spin degrees of

freedom). This means that |φ(t)〉 is the state in a frame rotating with angular velocity ω about the

axis b̂.
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Find a frequency ω that eliminates the effect of the magnetic field on the orbital motion of the

particle, apart from the centrifugal potential which is proportional to (b×r)2. Find a frequency ω

that eliminates the effect of the magnetic field on the spin. Express your answers as some multiple of

ω0. Can you eliminate the effects of the magnetic field entirely, apart from the centrifugal potential?

2. In Notes 10 we worked out the energy levels of a “spinless electron” in a uniform magnetic

field. Including the spin, find the energy levels of an electron in a uniform magnetic field. You

may approximate g ≈ 2. Express your answer in terms of ω0 = eB/mc, the orbital frequency of a

classical electron in a uniform magnetic field. Sketch the first few Landau energy levels on a vertical

energy axis, first in the model in which we ignore the electron spin, and then after we take the spin

into account. Ignore the energy coming from the z-motion in this diagram. Label the levels by their

degeneracies. What happens if you take into account the fact that g is not exactly 2? This is a short

problem, and does not require any lengthy calculations.

3. I won’t ask you to work out any numerical values of Clebsch-Gordan coefficients, but you should

be comfortable in doing so. The following is a related problem.

Consider the angular momentum problem ℓ ⊗ 1
2 , where ℓ is arbitrary and could be very large.

We write j = ℓ+ 1
2 or j = ℓ− 1

2 for the resulting angular momentum. By beginning with the doubly

stretched state,

|ℓ+ 1
2 , ℓ+

1
2 〉 = |ℓℓ〉| 12 1

2 〉, (71)

apply lowering operators to construct the states |ℓ+ 1
2 ,m〉 for m going down to ℓ− 5

2 . By this time

a pattern should be evident; guess it, and prove that it is right by induction, to obtain a general

formula for |ℓ+ 1
2 ,m〉. You may simplify notation by omitting the total angular momenta ℓ and 1

2 in

the kets on the right hand sides of your equations, because they are always the same; for example,

the right hand side of Eq. (71) can be written simply |ℓ〉| 12 〉.
Now construct the stretched state for j = ℓ− 1

2 , namely |ℓ− 1
2 , ℓ− 1

2 〉. Use the standard phase

convention given by Eq. (48). Then lower this enough times to see a pattern, guess it, and prove it

by induction.

The following are some useful formulas that can be derived by the methods of this problem.

We present them here for future reference. We combine ℓ⊗ 1, and find, for the three cases j = ℓ+1,

j = ℓ, and j = ℓ− 1, the following:

|ℓ+ 1,m〉 =
√

(ℓ+m+ 1)(ℓ +m)

(2ℓ+ 2)(2ℓ+ 1)
|m− 1〉|1〉

+

√

(ℓ−m+ 1)(ℓ+m+ 1)

(ℓ + 1)(2ℓ+ 1)
|m〉|0〉+

√

(ℓ −m)(ℓ−m+ 1)

(2ℓ+ 2)(2ℓ+ 1)
|m+ 1〉| − 1〉.

(72a)
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|ℓm〉 = −
√

(ℓ−m+ 1)(ℓ+m)

2ℓ(ℓ+ 1)
|m− 1〉|1〉

+
m

√

ℓ(ℓ+ 1)
|m〉|0〉+

√

(ℓ−m)(ℓ +m+ 1)

2ℓ(ℓ+ 1)
|m+ 1〉| − 1〉. (72b)

|ℓ− 1,m〉 =
√

(ℓ−m)(ℓ −m+ 1)

2ℓ(2ℓ+ 1)
|m− 1〉|1〉

−
√

(ℓ−m)(ℓ +m)

ℓ(2ℓ+ 1)
|m〉|0〉+

√

(ℓ +m+ 1)(ℓ+m)

2ℓ(2ℓ+ 1)
|m+ 1〉| − 1〉. (72c)


